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The genomic selection (GS) methodology proposed over 20 years ago by

Meuwissen et al. (Genetics, 2001) has revolutionized plant breeding. A

predictive methodology that trains statistical machine learning algorithms

with phenotypic and genotypic data of a reference population and makes

predictions for genotyped candidate lines, GS saves significant resources in

the selection of candidate individuals. However, its practical implementation is still

challengingwhen the plant breeder is interested in the prediction of future seasons

or new locations and/or environments, which is called the “leave one environment

out” issue. Furthermore, because the distributions of the training and testing set do

not match, most statistical machine learning methods struggle to produce

moderate or reasonable prediction accuracies. For this reason, the main

objective of this study was to explore the use of the multi-trait partial least

square (MT-PLS) regression methodology for this specific task, benchmarking its

performancewith the BayesianMulti-trait Genomic Best Linear Unbiased Predictor

(MT-GBLUP) method. The benchmarking process was performed with five actual

data sets. We found that in all data sets the MT-PLS method outperformed the

popular MT-GBLUP method by 349.8% (under predictor E + G), 484.4% (under

predictor E + G + GE; where E denotes environments, G genotypes and GE the

genotype by environment interaction) and 15.9% (under predictor G + GE) across

traits. Our results provide empirical evidence of the power of the MT-PLS

methodology for the prediction of future seasons or new environments.

Furthermore, the comparison between single univariate-trait (UT) versus MT for

GBLUP and PLS gave an increase in prediction accuracy of MT-GBLUP versus UT-

GBLUP, but not for MT-PLS versus UT-PLS.
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Introduction

In genomic assisted plant breeding, improving the prediction

of future years or new locations and/or environments (leave one

environment out), is necessary to increase the genetic gain in

breeding programs. Genomic selection (GS) has the potential to

increase the prediction accuracy of future seasons or new

locations because it is based on a predictive methodology.

Multi-trait (MT) models are key tools for improving

prediction accuracy in genomic selection (GS). For example,

MTmodels offer benefits over single-trait (unit-trait, UT)models

when the traits under study are correlated, and in addition, allow

the computation of an optimal and simplified total merit

selection index (Okeke et al., 2017). Most existing models for

genomic prediction are UT models, and few are used for MT

genomic prediction even though MT models offer many

advantages. UT models are trained to predict a single trait at

a time (continuous, binary, categorical or count), while MT

models are trained to simultaneously predict at least two traits.

MT models are preferred over UT models because: 1) they

more efficiently represent complex relationships between traits,

2) simultaneously exploit the correlation between lines and traits,

3) offer better interpretability than UT models, 4) are more

efficient to train computationally than each UTmodel separately,

5) improve index selection since more precise estimates of

random effects of lines and genetic correlation between traits

are obtained, 6) improve indirect selection because of increased

precision of genetic correlation parameter estimates between

traits, and 7) improve hypotheses to reduce type I and II

errors. A type I error (false-positive) occurs when the

investigator rejects a null hypothesis that is true; a type II

error (false-negative) occurs when the investigator fails to

reject a null hypothesis that is false (Montesinos-López et al.,

2019a).

There is empirical evidence that MT models can increase

prediction accuracy of low heritability traits that have at least

moderate correlation with high heritability traits (Jia and

Jannink, 2012; Montesinos-López et al., 2016). In general,

when the traits are at least moderately correlated, MT models

improve parameter estimates and prediction accuracy as

compared to UT models as reported by Schulthess et al.

(2017). Calus and Veerkamp (2011), Jia and Jannink (2012),

Jiang et al. (2015), Montesinos-López et al. (2016), He et al.

(2016) and Schulthess et al. (2017) reported better prediction

accuracies of MT models with respect to UT models. These

authors have also documented the efficiency of MT models for

predicting expensive traits that are correlated with inexpensive

secondary traits, as MT models are helpful in developing better

genomic selection strategies. Montesinos-López et al. (2019a)

proposed an improved Bayesian multi-trait and multi-

environment (BMTME) R package that implements the

BMTME model (Montesinos-López et al., 2016) and is able to

capture the correlation not only between lines, but also between

traits and environments. Additionally, this package allows the

Bayesian multi-output regressor stacking (BMORS) functions to

be implemented, which are considerably efficient in terms of

computational resources.

In the statistical literature, MT models are known as

multivariate models and have been implemented in many

areas, including environmental science, education, chemistry,

telecommunications, psychology, medicine, communications,

engineering, and food science. MT models are better than UT

models because of improved parameter estimates and prediction

accuracy. With the continuous and dramatic growth of

computational power, MT models play an increasingly

important role in data analysis in plant and animal genomic-

assisted breeding for selecting the best candidate genotypes.

However, the use of MT models is not as widespread as UT

models because: 1) there is a lack of friendly software for

performing MT analyses; 2) there are insufficient

computational resources since fitting MT models is more

demanding than fitting UT models; 3) MT models have more

complex genotype × environment interactions (GE) since traits

have different response patterns in different environments; 4) it is

more difficult to assess and achieve MT model assumptions; 5)

MT models have more problems of convergence than UT

models; and 6) implementing MT models for genomic

prediction is more challenging due to the size and complexity

of the underlying data sets (Montesinos-López et al., 2019b).

With the goal of utilizingMTmodels for genomic prediction,

some models have been proposed for GS; the two most popular

methods are multi-trait mixed models and their Bayesian

version, Bayesian Multi-Trait Genomic Best Linear Unbiased

Predictor (MT-GBLUP). Multi-trait models under artificial deep

neural networks have even been explored in genomic selection

(Montesinos-López et al., 2018; 2019c). Recently, Montesinos-

López et al. (2022a) explored the use of the partial least

square (PLS) regression methodology for the prediction of one

full environment of a single trait. The authors’ benchmarked

the performance of the PLS for predicting a UT with the

Bayesian Genomic Best Linear Unbiased Predictor (GBLUP)

method, and in all data sets the UT-PLS method

outperformed the UT-GBLUP method by margins between

0% and 228.28% across traits, environments and types of

predictors. These results show empirical evidence of the

power of PLS methodology for the prediction of future

seasons or new environments.

The Multi-Trait Partial Least Square (MT-PLS) regression

model is one of the most popular in biological sciences, because it

can model complex biological events, it is flexible for considering

different factors, and it is unaffected by data collinearity. For this

reason, authors suggest that the MT-PLS is a potentially valuable

method for modeling high-dimensional biological data (as

derived from genomics, proteomics and peptidomics)

(Palermo et al., 2009). MT-PLS can model multiple responses,

while efficiently dealing with multicollinearity. This model is also
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used for variable selection as a process to discover the most

relevant features. MT-PLS has been successful in biological

research because many datasets contain observations of

multiple correlated traits. Unlike single-trait association

analysis, which cannot extract additional information from

correlated traits, joint association analysis like MT-PLS

explicitly uses the correlation structure among such traits. For

these reasons, MT-PLS is preferred since this technique achieves

greater statistical power for gene detection and in terms of

prediction performance, it is expected to achieve improved

accuracy.

In the current research, we evaluate the prediction

performance of two multi-trait methods, MT-PLS and MT-

GBLUP, in the context of leave-one-location-out cross

validation. The proposed MT-PLS model is an extension of

the UT-PLS recently proposed by Montesinos-López et al.

(2022a). The goals of this study are three-fold: 1) benchmark

the genomic-enabled prediction power of MT-PLS and UT-

GBLUP, 2) compare the prediction performance of these two

multi-trait methods (MT-PLS and MT-GBLUP) with their

corresponding UT versions (UT-PLS and UT-GBLUP) and 3)

evaluate the prediction power of these methods within three

different predictor models (E + G, E + G + GE, and G + GEwhere

E = Environment; G = genomic, and GE is genomic ×

environment interaction) under the leave one location out

cross validation.

Materials and methods

Bayesian MT-GBLUP model

This model is given in Eq. 1 as:

Y � 1nμ
T + XEβE + ZLg + ZELgE + ϵ

where Y is the matrix of phenotypic response variables of order

n × nT and ordered first by environments and then by lines, nT
denotes the number of traits, 1n is a vector of ones of length n, μT

is a vector of intercepts for each trait of length nT, T denotes the

transpose of a vector or matrix, that is, μ � [μ1, . . . , μnT]T, XE is

the design matrix of environments of order n × I, I denotes the

number of environments, βE is the matrix of beta coefficients for

environments with a dimension of I × nT, ZL is the designmatrix

of lines of order n × J, J denotes the number of lines, g is the

matrix of random effects of lines of order J × nT distributed as

g ~ MNJ×nT(0,G,ΣT), that is, with a matrix-variate normal

distribution with parameters M � 0, U � G and V � ΣT, G
denotes the genomic relationship matrix (VanRaden, 2008)

built with marker data of order J × J and ΣT is the variance-

covariance matrix of traits of order nT × nT. ZEL is the design

matrix of the genotype × environment interaction of order n × JI,

gE is the matrix of genotype × environment interaction random

effects distributed as gE ~ MNJI×nT(0,G ⊗ H,ΣT), where H is a

general variance-covariance matrix of environments of order I × I,

andG ⊗ H is the Kronecker product of the lth type of kernel matrix

of lines and the environmental relationship matrix.  is the residual

matrix of dimension n × nT distributed as  ~ MNn×nT(0, IIJ,R),
whereR is the residual variance-covariancematrix of order nT × nT.

It is important to point out that the H matrix was computed from

environmental covariates only for data set 4 and 5, since

environmental covariates were available only for these two data

sets. For this reason, for the remaining data sets (1, 2, and 3) the H
matrix was an identity matrix of order I × I. The UT version of the

MT-GBLUP is obtained when the response variable (Y) in place of

having nT columns contain only one column, which causes that the

number of columns of the matrices βE, g and gE are reduced from

nT columns to only 1. Furthermore, the vector of intercepts (μT)
and variance-covariance matrix of traits (ΣT of genetic effects and

R of residual effects) are reduced to a scalar.

Multi-trait partial least square method

PLS is a multi-trait regression statistical technique

introduced by Wold (1966) in the fields of econometrics and

chemometrics. PLS is very efficient for dealing with the p> n

problem, i.e., when the number of observations (n) is less than the

number of explanatory variables (p) whichmany times are highly

correlated. The multi-trait version of PLS works for relating a

matrix of response variables (Y) of order n × nT to a set of

explanatory variables (X) (Wold, 2001; Boulesteix and Strimmer,

2006).

In PLS the regression analysis is not done regressing Y on X,

but rather regressing Y on T, where T are called the Latent

Variables (LVs) latent vectors or X-scores, and are obtained

iteratively. The basic steps to compute the LVs are:

Step 1. Initialize two matrices, E = X and F = Y. Center and

normalize each column of E and F.

Step 2. Form cross product matrix S � XTY and perform its

singular value decomposition (SVD). The first left and right

singular vectors, w and q, are used as weight vectors for X and Y,

respectively, to obtain scores t and u:

t � Xw � Ew (1)
u � Yq � Fq (2)

where E and F were initialized as both X and Y, respectively. The

X scores t are often normalized:

t � t/ ���
tTt

√
(3)

The Y scores u are not necessary in the regression but are

often saved for interpretation purposes.
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Step 3. Next, X and Y loadings are obtained by regressing

against the same vector t:

p � ETt (4)
q � FTt (5)

Step 4. Having extracted the first latent vector and

corresponding loading vectors, the matrices E and F are

deflated by subtracting information related to the first latent

vector. This produces deflated matrices En+1 and Fn+1 as shown
in the calculations below.

En+1 � En − tpT (6)
Fn+1 � Fn − tqT (7)

Step 5. Calculate the cross-product matrix of En+1 and Fn+1 as
was done in Step 2. With this new cross-product matrix, repeat

steps 3 and 4 and save the resulting w, t, p and q vectors to form

the next columns of matrices W, T, P, and Q, respectively. This

yields the next component. After this, we continue the above

steps until the deflated matrices are empty or the necessary

number of components have been extracted. Then the

algorithm stops.

It is important to point out that the columns of matrix W

cannot be compared directly: they are derived from successively

deflated matrices E and F as can be seen in the previous five steps.

For this, reason after having all the columns of W, we compute

R as:

R � W(PTW)−1 (8)

Finally, using R we can compute the latent variables, which

are related to the original X matrix as:

T � XR (9)

Next, since we regress Y on T, the resulting beta coefficients

are b � (TTT)−1TTY. However, to convert these back to the

realm of the original variables (X)we pre-multiply with matrixR

the beta coefficients (b), since T � XR,

B � Rb (10)

To obtain better performance of the PLS method, only the

first a components are used. Since regression and dimension

reduction are performed simultaneously, all B, T, W, P, and Q

are part of the output. Both X and Y are considered when

calculating the LVs in T. Moreover, they are defined so that

the covariance between the LVs and the matrix of response

variables is maximized. Finally, predictions for new data (Xnew)
should be done with:

Ŷnew � XnewB � XnewRb � Tnewb (11)

where Tnew � XnewR. Usually, the optimal number of

components need to be determined by cross-validation. We used

the root means squared error of prediction (RMSEP), which was

minimized with 10-fold cross-validation in the training data set and

for each value of LV (Mevik and Cederkvist, 2004).

The input used under MT-PLS is the concatenation of the

following three augmented matrices: XLLE,XgLg and

XgL(LE⊗Lg), which belong to environments, genotypes, and

GE components, respectively. It is important to note that the

design matrices (dummy variables) of environments (XL),
genotypes (Xg) and GE interaction (XgL) were computed

first. Then Lg and LE were computed. Lg denotes the square

root of the genomic relationship matrix G, while LE denotes the

square root of the environmental relationship matrix H. The

reason why G and H matrices are square root is because under

PLS framework we cannot directly input these covariance

matrices as done under the MT-GBLUP model. Also, since

the PLS method only requires a unique matrix of inputs

(predictors) it is necessary to concatenate all the terms that

we suspect are related to the response variables. It is also

important to point out that the implementation of both MT

models (GBLUP and PLS) was done in the R statistical software

(R Core Team, 2022), but the MT- GBLUP was done with BGLR

library (Pérez and de los Campos, 2014), while the MT-PLS was

done with the pls library (Mevik and Wehrens, 2007).

Furthermore, here the H matrix was computed from

environmental covariates only for data sets 4 and 5, since

only for these two data sets environmental covariates were

available. The UT-PLS model is obtained when the response

variable (Y) is reduced from a matrix to a vector, but the

algorithm for all the computations is the same.

Data sets

Datasets 1. Elite wheat yield trial years
2013–2014

These datasets belong to elite yield trials (EYT) from

2013–2014, from the International Maize and Wheat

Improvement Center (CIMMYT) that were established in four

different cropping seasons within four environments. A total of

776 lines were examined. An alpha-lattice experimental design

was used, and the lines were sown in 39 trials, with 28 lines each

and 2 checks in 6 blocks with 3 replications. In this study, four

traits were evaluated for each line in each environment: days to

heading, computed as the number of days from germination to

50% spike emergence (DTHD), days to maturity, computed as

the number of days from germination to 50% physiological

maturity or the loss of the green color in 50% of the spikes

(DTMT), and plant height and grain yield (GY). For more details

about the data sets as well as BLUEs computation, Juliana et al.

(2018).
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For dataset 1, four environments were evaluated. The

environments studied were bed planting with five irrigations

(Bed5IR), early heat (EHT), flat planting with five irrigations

(Flat5IR), and late heat (LHT). Genotyping-by-sequencing

(GBS) was used to gather the genome-wide markers of the

776 lines (Elshire et al., 2011; Poland et al., 2012) obtained at

Kansas State University using an Illumina HiSeq2500. From an

initial set of 34,900 markers, after filtering, 2,038 markers were

used. LinkImpute (Money et al., 2015) was used for the

imputation of missing marker data and implemented in

TASSEL (Bradbury et al., 2007), version 5. Only 2,515 lines

were used in this study because lines missing more than 50% of

data were removed.

Dataset 2. Groundnut data

This data set was provided by Pandey et al. (2020) and

contains phenotypic and genotypic information for 318 lines

and four environments. In the present study we assessed the

prediction performance of the following four traits: seed yield per

plant (SYPP), pods per plant (NPP), pod yield per plant (PYPP)

and yield per hectare (YPH). The environments were denoted as:

Aliyarnagar_Rainy 2015 (ENV1); Jalgoan_Rainy 2015 (ENV2);

ICRISAT_Rainy 2015 (ENV3); ICRISAT Post-Rainy 2015

(ENV4).

The dataset contained a total of 1272 assessments and is

balanced since each line is included once in each environment.

For each line, 8,268 single nucleotide polymorphisms (SNP)

markers (coded with 0, 1 and 2) were available after quality

control.

Dataset 3. Disease data

In this data set, 438 wheat lines with three disease traits were

measured 1) PTR, for Pyrenophora tritici-repentis (PTR) that

causes yellow spot, also known as yellow leaf spot, tan spot,

yellow leaf blotch or helminthosporiosis. 2) SN, for

Parastagonospora nodorum (SN), is a major fungal pathogen

of wheat fungal taxon that includes plant pathogens affecting the

leaves and other parts of the plants.and 3) SB denotes Bipolaris

sorokiniana (SB), which causes seedling diseases, common root

rot and spot blotch of several crops such as barley and wheat.

These 438 lines were evaluated in the greenhouse for several

replicates. The replicates were considered as environments

(Env1, Env2, Env3, Env4, Env5, and Env6). For the three

traits measured, the total number of observations were

438 × 6 = 2628.

DNA samples were genotyped using 67,436 SNPs. For a given

marker, the genotype for each line was coded as the number

of copies of a designated marker-specific allele carried by the

line (absence = zero and presence = one). SNP markers with

unexpected heterozygous genotypes were recoded as

either AA or BB. Markers with over 15% missing values

and/or MAF <0.05 were removed. A total of 11,617 SNPs

were available for analysis after quality control and

imputation.

Dataset 4. Indica

This dataset contains information on the phenotypic

performance of four traits (GY = Grain Yield, PHR =

Percentage of Head Rice Recovery, GC = percentage of

Chalky Grain, PH = Plant Height) of rice and was reported

by Monteverde et al. (2019) for three environments in 2010,

2011 and 2012. For each year, 327 lines were evaluated and

environmental covariates were measured at each developmental

stage: vegetative, reproductive, and maturation. The following

18 environmental covariates were also evaluated: 1) ThermAmp,

average of daily thermal amplitude calculated as max

temperature (°C)—min temperature (°C), 2) RelSun, the

relative sunshine duration (%) computed as the quotient

between the real duration of the brightness of the sun and the

possible geographical or topographic duration, 3) SolRad,

solar radiation (cal/cm2/day) calculated using Armstrong’s

formula, 4) EfPpit, effective precipitation (mm) computed

as the average of daily precipitation in mm added and stored

in the soil, 5) DegDay, the mean of daily average temperature

minus 10°C, 6) RelH, relative humidity (hs) computed as the

sum of daily amount of hours (0hs–24hs) where the relative

humidity was equal to 100%, 7) PpitDay, the precipitation day

computed as the sum of days when it rained, 8) MeanTemp,

the mean of temperature (°C) over 24hs (0–24 hs), 9) AvTemp,

the average temperature (°C) calculated as daily (Max + Min)/

2, (10) MaxTemp, the average of maximum daily temperature

(°C), 11) MinTemp, the average of minimum daily

temperature (°C), 12) TankEv, tank water evaporation (mm)

computed as the amount of evaporated water under the

influence of sun and wind, 13) Wind, wind speed (2 m/km/

24 hs) computed as the distance covered by wind (in km) over

2 m height in 1 day, 14) PicheEv, the piche evaporation (mm)

computed as the amount of evaporated water without the

influence of the sun, 15) MinRelH, the minimum relative

humidity (%) computed as the lowest value of relative

humidity for the day, 16) AccumPpit, the daily accumulated

precipitation (mm), 17) Sunhs, the sunshine duration

computed as the sum of total hours of sunshine per day,

and 18) MinT15, the minimum temperature below 15°

computed as the sum of the days when the minimum

temperature was below 15.

The total number of assessments in this balanced data set is

981 since each line is included once in each environment. After

quality control, markers for 16,383 SNPs remained and were

coded as 0, 1, and 2.
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Dataset 5. Japonica

Monteverde et al. (2019) reported this rice data set, belonging

to the tropical Japonica population with the same four traits

(GY = Grain Yield, PHR = Percentage of Head Rice Recovery,

GC = percentage of Chalky Grain, PH = Plant Height) as for the

Indica population (data set 6) but over the course of 5 years

(2009, 2010, 2011, 2012 and 2013). The lines evaluated were 93,

292, 316, 316, and 134 lines for 2009, 2010, 2011, 2012, and 2013,

respectively. The same 54 environmental covariates measured in

the Indica data set (Data set 4) were evaluated. In this set,

1051 assessments were evaluated in the five environments. A

total of 320 lines and 6,383 SNP markers remained after quality

control, coded as 0, 1, and 2.

Metrics for evaluation of prediction
accuracy

In each of the five datasets, the leave one environment out

cross-validation was implemented (Montesinos-López et al.,

2022b). For this reason, I − 1 environments were assigned to

the training set and the remaining were assigned to the

testing set, until each of the I environments was tested

once. The MT-GBLUP model 1) did not require a tuning

process, but in the MT-PLS model we tuned the number of

principal components using five nested cross-validations

dividing the training set (information of the I − 1

environments) into the inner training set (80% of the

training) and validation (tuning) set (20% of the training)

in each of the five folds. Of the five folds, one was used as the

validation set and the remaining four as inner training.

Next, the average of the five validation folds was reported

as the metric of prediction performance to select the optimal

hyperparameter (number of principal components) in the

MT-PLS model (Montesinos-López et al., 2022b). Then,

using this optimal number of hyperparameters, the

MT-PLS model was refitted with the whole training set

(the I − 1 environments) and finally, the prediction of each

testing set (a full environment) was obtained. The

normalized root mean square error is represented as

(NRMSE � RMSE
�y ), where RMSE �

�����������������
1
T(∑T

i�1(yi − f̂(xi))2
√

,

with yi denoting the observed value i, while f̂(xi) represents

the predicted value for observation i (i=1...n) used as a metric

to evaluate the prediction accuracy. To compare both

models in terms of NRMSE, the relative efficiency was

computed as

RENRMSE � NRMSEMT_GBLUP

NRMSEMT_PLS

where NRMSEMT_GBLUP and NRMSEMT_PLS denote the

NRMSE under the MT-GBLUP and MT-PLS models,

respectively. When RENRMSE > 1, the best prediction

performance in terms of NRMSE was obtained using the MT

PLS method, but when RENRMSE < 1, the MT-GBLUP method

was superior in terms of prediction accuracy, when

RENRMSE � 1, both methods were equally efficient. Also, to

compare the prediction performance for each model, we

computed the relative efficiency between the NRMSE

obtained under the UT and MT models. This computation

was done as

RENRMSE � NRMSEUT

NRMSEMT

where NRMSEMT denotes the NRMSE under an MT model,

andNRMSEUT denotes theNRMSE under a UT model. Now if

RENRMSE > 1, the best prediction performance in terms of

NRMSE was obtained using the MT model, but when

RENRMSE < 1, the UT model was superior in terms of

prediction accuracy. When RENRMSE � 1, both models were

equally efficient. Note that the observed and predicted values

are in the same scale under both models (MT-GBLUP and

MT-PLS) for this reason the comparison between models

using the NRMSE is valid. We used only the NRMSE

since it is one of the most appropriate metrics for

comparing when the response variables are in different

scales, since it is not dependent on the effect of the scale of

the traits. However, even though there are other metrics that

can be used for the same task in this paper we only focused in

this metric, to capture the essential behavior of both models

(MT-GBLUP and MT-PLS).

Data availability and Supplementary
Tables

The data files and the Supplementary Tables can be found in

link https://hdl.handle.net/11529/10548705. The phenotypic and

genotypic data for the 5 datasets are in EYT_1.RDATA

(Dataset 1), Groundnut.RData (Dataset 2), Disease.RData

(Dataset 3), Indica.RData (Dataset 4), and Japonica.RData

(Dataset 5). Supplementary Tables S1 with the genomic

prediction accuracy results of the different data sets are

shown in Supplementary Tables SA1,A2 for Dataset 1,

Supplementary Tables SB1,B2 for Dataset 2, Supplementary

Tables SC1,C2 for Dataset 3, Supplementary Tables SD1,D2

for Dataset 4, and Supplementary Tables SE1,E2 for Dataset 5.

Results

All the results are displayed in Figures 1A,B for Dataset 1,

Figures 2A,B for Dataset 2, Figures 3A,B for Dataset 3, Figures

4A,B for Dataset 4, and Figures 5A,B for Dataset 5. Detail

information for the results of the 5 data sets can also be

found on the Supplemental Tables.
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FIGURE 1
(A) Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the multi-trait best
linear unbiased predictor model (MT-GBLUP) by the NRMSE of the multi-trait partial least square regression method (MT-PLS). Prediction
performance is reported across traits for each environment and across environments (Global) in dataset 1 (EYT_1), also with three predictors (E + G,
E + G + GE and G + GE). When the RE_NRMSE>1 the MT-PLS outperform in terms of prediction performance (lower NRMSE) the MT-GBLUP
method. (B) Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE of either the UT best
linear unbiased predictor model (UT-GBLUP) or UT partial least square regression method (UT-PLS), by the NRMSE of either MT-GBLUP or MT-PLS
method. Prediction performance is reported across traits for each environment and across environments (Global) in dataset 1 (EYT_1), also with three
predictors (E + G, E + G + GE and G + GE). When the RE_NRMSE>1 the multi-trait method outperform in terms of prediction performance (lower
NRMSE) the UT method.

FIGURE 2
(A) Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the multi-trait best
linear unbiased predictor model (MT-GBLUP) by the NRMSE of the multi-trait partial least square regression method (MT-PLS). Prediction
performance is reported across traits for each environment and across environments (Global) in dataset 2 (Groundnut), alsowith three predictors (E +
G, E + G + GE and G + GE). When the RE_NRMSE>1 the MT-PLS outperform in terms of prediction performance (lower NRMSE) the MT-GBLUP
method. (B) Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE of either the UT best
linear unbiased predictor model (UT-GBLUP) or UT partial least square regression method (UT-PLS), by the NRMSE of either MT-GBLUP or MT-PLS
method. Prediction performance is reported across traits for each environment and across environments (Global) in dataset 2 (Groundnut), also with
three predictors (E + G, E + G + GE and G + GE). When the RE_NRMSE>1 the multi-trait method outperform in terms of prediction performance
(lower NRMSE) the UT method.
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FIGURE 3
(A) Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the multi-trait best
linear unbiased predictor model (MT-GBLUP) by the NRMSE of the multi-trait partial least square regression method (MT-PLS). Prediction
performance is reported across traits for each environment and across environments (Global) in dataset 3 (Disease), also with three predictors (E + G,
E + G + GE and G + GE). When the RE_NRMSE>1 the MT-PLS outperform in terms of prediction performance (lower NRMSE) the MT-GBLUP
method. (B) Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE of either the UT best
linear unbiased predictor model (UT-GBLUP) or UT partial least square regression method (UT-PLS), by the NRMSE of either MT-GBLUP or MT-PLS
method. Prediction performance is reported across traits for each environment and across environments (Global) in dataset 3 (Disease), also with
three predictors (E + G, E + G + GE and G + GE). When the RE_NRMSE>1 the multi-trait method outperform in terms of prediction performance
(lower NRMSE) the UT method.

FIGURE 4
(A) Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the multi-trait best
linear unbiased predictor model (MT-GBLUP) by the NRMSE of the multi-trait partial least square regression method (MT-PLS). Prediction
performance is reported across traits for each environment and across environments (Global) in dataset 4 (Indica), also with three predictors (E + G,
E + G + GE and G + GE). When the RE_NRMSE>1 the MT-PLS outperform in terms of prediction performance (lower NRMSE) the MT-GBLUP
method. (B) Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE of either the UT best
linear unbiased predictor model (UT-GBLUP) or UT partial least square regression method (UT-PLS), by the NRMSE of either MT-GBLUP or MT-PLS
method. Prediction performance is reported across traits for each environment and across environments (Global) in dataset 4 (Indica), alsowith three
predictors (E + G, E + G + GE and G + GE). When the RE_NRMSE>1 the multi-trait method outperform in terms of prediction performance (lower
NRMSE) the UT method.
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Dataset 1. EYT_1

Results are displayed in Figures 1A,B and further details are

given in Supplementary Tables SA1,A2.

MT-GBLUP versus MT-PLS

We observed that the relative efficiencies in terms of NRMSE

of the MT-GBLUP method and MT-PLS method for predictor

E + Gwere 0.935, 1.381, 2.202, 0.625, and 0.921 for environments

Bed5IR, EHT, Flat5IR, and LHT and across environments

(Global), respectively. The MT-PLS method outperformed the

MT-GBLUP method only for environments EHT and Flat5IR by

(1.381–1) × 100 � 38.1% EHT and (2.202–1) × 100 � 120.2%,

respectively. In the case of the E +G + GE predictor, the observed

relative efficiencies were 1.000 (Bed5IR), 1.475 (EHT), 2.118

(Flat5IR), 0.813 (LHT) and 1.040 (Global). This indicates that

MT-PLS had better prediction accuracy than MT-GBLUP in

most environments by 47.5% (EHT), 111.8% (Flat5IR) and 4.0%

(Global). For the G + GE predictor, the relative efficiencies

observed were 0.936 (Bed5IR), 0.962 (EHT), 1.134 (Flat5IR),

1.003 (LHT) and 1.007 (Global). Only for Flat5IR, LHT and

across environments, MT-PLS had better prediction

performance than MT-GBLUP by 13.4% (Flat5IR), 0.3%

(LHT) and 0.7% (Global). Figure 1A. For more details,

Supplementary Table SA1.

Uni-trait versus multi-trait

We observed that the relative efficiencies for two GBLUP

methods (MT and UT), in terms of NRMSE for predictor E + G,

were 1.833 (Bed5IR), 2.016 (EHT), 1.120 (Flat5IR), 1.219 (LHT)

and 1.417 (Global). The multi-trait method outperformed the UT

method in every environment by 83.3% (Bed5IR), 101.6% (EHT),

12.0% (Flat5IR), 21.9% (LHT) and 41.7% (Global). For E + G +

GE, the observed relative efficiencies were 0.916 (Bed5IR), 0.760

(EHT), 1.929 (Flat5IR), 0.466 (LHT) and 0.875 (Global). Multi-

trait outperformed UT only in Flat5IR environment by 92.9%. In

G + GE, the relative efficiencies were 1.085 (Bed5IR), 1.050

(EHT), 0.872 (Flat5IR), 0.999 (LHT) and 0.996 (Global),

meaning the UT method had better prediction performance

than the multi-trait method only in Bed5IR and EHT

environments by 8.5% (Bed5IR), 5.0% (EHT).

Regarding both implementations under the PLS (MT and

UT) method, the observed relative efficiencies in terms of

NRMSE for predictor E + G were 1.004 (Bed5IR), 1.022

(EHT), 1.012 (Flat5IR), 1.001 (LHT) and 1.004 (Global),

indicating that the multi-trait PLS method had better

prediction performance than the UT-PLS by 0.4% (Bed5IR),

2.2% (EHT), 1.2% (Flat5IR), 0.1% (LHT) and 0.4% (Global). For

the E + G + GE predictor, the observed relative efficiencies were

1.011 (Bed5IR), 0.999 (EHT), 1.021 (Flat5IR), 1.000 (LHT) and

1.004 (Global). The multi-trait PLS method outperformed the

UT PLS method in every environment except the EHT and LHT

FIGURE 5
(A) Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE under the multi-trait best
linear unbiased predictor model (MT-GBLUP) by the NRMSE of the multi-trait partial least square regression method (MT-PLS). Prediction
performance is reported across traits for each environment and across environments (Global) in dataset 5 (Japonica), also with three predictors (E +
G, E + G + GE and G + GE). When the RE_NRMSE>1 the MT-PLS outperform in terms of prediction performance (lower NRMSE) the MT-GBLUP
method. (B) Relative efficiency in terms of normalized root mean square error (RE_NRMSE) computed by dividing the NRMSE of either the UT best
linear unbiased predictor model (UT-GBLUP) or UT partial least square regression method (UT-PLS), by the NRMSE of either MT-GBLUP or MT-PLS
method. Prediction performance is reported across traits for each environment and across environments (Global) in dataset 5 (Japonica), also with
three predictors (E + G, E + G + GE and G + GE). When the RE_NRMSE>1 the multi-trait method outperform in terms of prediction performance
(lower NRMSE) the UT method.
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environments by 1.1% (Bed5IR), 2.1% (Flat5IR) and 0.4%

(Global). Finally, for the G + GE predictor, the observed

relative efficiencies were 0.987 (Bed5IR), 0.996 (EHT), 0.987

(Flat5IR), 1.001 (LHT) and 0.996 (Global), so the MT-PLS

method outperformed UT- PLS only in the LHT environment

by 0.1% Figure 1B. For more details, Supplementary Table SA2

Results show that MT-PLS overcame the genomic-enabled

prediction accuracy of MT-GBLUP, and MT-GBLUP is more

precise than UT-GBLUP; however MT-PLS and UT-LS yielded

similar genomic-enabled prediction accuracy.

Dataset 2. Groundnut

Results are shown in Figures 2A,B and further details are in

Supplementary Tables SB1,B2.

MT-GBLUP versus MT-PLS

We observed that the relative efficiencies in terms of NRMSE

of the MT-GBLUP method and MT-PLS method for predictor

E + Gwere 1.230, 1.110, 1.800, 1.424, and 1.343 for environments

ALIYARNAGAR_R15, ICRISAT_PR15-16, ICRISAT_R15,

JALGOAN_R15 and across environments (Global), respectively. So

theMT-PLSmethod outperformedMT-GBLUPmethod by 23.0% in

ALIYARNAGAR_R15, 11.0% in ICRISAT_PR15-16, 80.0% in

ICRISAT_R15, 42.4% in JALGOAN_R15 and 34.3% across

environments. In the case of the E + G + GE predictor, the

observed relative efficiencies were 1.075 (ALIYARNAGAR_R15),

1.774 (ICRISAT_PR15-16), 1.980 (ICRISAT_R15), 1.566

(JALGOAN_R15) and 1.600 (Global), indicating that MT-PLS had

a better prediction accuracy than MT-GBLUP by 7.5%

(ALIYARNAGAR_R15), 77.4% (ICRISAT_PR15-16), 98.0%

(ICRISAT_R15), 56.6% (JALGOAN_R15) and 60.0% (Global). For

the G + GE predictor, the relative efficiencies observed were 1.056

(ALIYARNAGAR_R15), 0.877 (ICRISAT_PR15-16), 1.062

(ICRISAT_R15), 1.238 (JALGOAN_R15) and 1.040 (Global),

meaning that MT-PLS outperformed MT-GBLUP in every

environment except ICRISAT_PR15-16 by 5.6%

(ALIYARNAGAR_R15), 6.2% (ICRISAT_R15), 23.8%

(JALGOAN_R15) and 4.0% (Global) Figure 2A

(Supplementary Table SB1).

Uni-trait versus multi-trait

We observed that the relative efficiencies for MT versus UT

methods both under a GBLUP framework, in terms of NRMSE

for predictor E + G, were 1.614 (ALIYARNAGAR_R15), 4.043

(ICRISAT_PR15-16), 3.004 (ICRISAT_R15), 4.581 (JALGOAN_R15)

and 3.346 (Global), indicating that themulti-traitmethod outperformed

the UT method in every environment by 61.4%

(ALIYARNAGAR_R15), 304.3% (ICRISAT_PR15-16),

200.4% (ICRISAT_R15), 358.1% (JALGOAN_R15) and

234.6% (Global). With E + G + GE, also under a GBLUP

framework, the observed relative efficiencies were 4.784

(ALIYARNAGAR_R15), 0.702 (ICRISAT_PR15-16), 1.881

(ICRISAT_R15), 2.849 (JALGOAN_R15) and 2.127 (Global),

so MT outperformed UT by 378.4% (ALIYARNAGAR_R15),

88.1% (ICRISAT_R15), 184.9% (JALGOAN_R15) and 112.7%

(Global). In G + GE, under the GBLUP framework, the relative

efficiencies were 0.920 (ALIYARNAGAR_R15), 1.156

(ICRISAT_PR15-16), 0.901 (ICRISAT_R15), 0.794

(JALGOAN_R15) and 0.948 (Global), meaning that the MT

method had a better prediction performance than UT only in

the ICRISAT_PR15-16 environment by 15.6%.

Regarding the comparison between MT and UT methods

under a PLS framework, the observed relative efficiencies in

terms of NRMSE for predictor E + G were 1.025

(ALIYARNAGAR_R15), 1.027 (ICRISAT_PR15-16), 0.997

(ICRISAT_R15), 1.049 (JALGOAN_R15) and 1.025 (Global),

indicating that the multi-trait method had a better prediction

performance by 2.5% (ALIYARNAGAR_R15), 2.7%

(ICRISAT_PR15-16), 4.9% (JALGOAN_R15) and 2.5% (Global).

For the E + G + GE predictor, also under a PLS framework, the

observed relative efficiencies were 1.008 (ALIYARNAGAR_R15),

0.962 (ICRISAT_PR15-16), 0.997 (ICRISAT_R15), 1.003

(JALGOAN_R15) and 0.989 (Global), meaning that the multi-

trait method outperformed the UT method only in the

ALIYANAGAR_R15 and JALGOAN_R15 environments by

0.8% and 0.3%, respectively. For the G + GE predictor, the

observed relative efficiencies were 1.012 (ALIYARNAGAR_R15),

1.007 (ICRISAT_PR15-16), 0.998 (ICRISAT_R15), 0.971

(JALGOAN_R15) and 0.998 (Global), which means that the

multi-trait method (MT-PLS) outperformed UT only in the

ALIYARNAGAR_R15 environment by 0.7% Figure 2B

(Supplementary Table SB2). In summary, while MT-PLS gave

better genomic-enabled prediction accuracy than MT-GBLUP,

and MT-GBLUP is more precise than UT-GBLUP, and MT-PLS,

UT-PLS had similar genomic-enabled prediction accuracy.

Dataset 3. Disease

Results are given in Figures 3A,B and further details are in

Supplementary Tables SC1,C2.

MT-GBLUP versus MT-PLS

We observed that the relative efficiencies in terms of NRMSE

computed with the MT-GBLUP results divided by the MT-PLS

results for predictor E + G were 1.634, 2.755, 3.252, 4.359, 4.498,

3.207, and 3.300 for environments Env1, Env2, Env3, Env4,

Env5, Env6 and across environments (Global), respectively.
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This indicates that MT-PLS method outperformed the MT-

GBLUP method in all the environments by 63.4% (Env1),

175.5% (Env2), 225.2% (Env3), 335.9 (Env4), 349.8% (Env5),

220.7% (Env6) and 230.0 (Global). In the case of the E + G + GE

predictor, the observed relative efficiencies were 2.166 (Env1),

5.844 (Env2), 4.821 (Env3), 2.051 (Env4), 3.453 (Env5), 3.498

(Env6) and 3.640 (Global), revealing that MT-PLS had better

prediction accuracy than MT-GBLUP in every environment by

116.6% (Env1), 484.4% (Env2), 382.1% (Env3), 105.1% (Env4),

245.3% (Env5), 249.8% (Env6) and 264.0% (Global). For theG+GE

predictor, the relative efficiencies observed were 0.980 (Env1), 0.970

(Env2), 0.969 (Env3), 0.978 (Env4), 0.977 (Env5), 0.982 (Env6) and

0.975 (Global), meaning that MT-PLS was outperformed by MT-

GBLUP in all the environments by 2.0% (Env1), 3.0% (Env2), 3.1%

(Env3), 2.2% (Env4), 2.3% (Env5), 1.8% (Env6) and 2.5% (Global)

Figure 3A (Supplementary Table SC1).

Uni-trait versus multi-trait

We observed that the relative efficiencies in terms of NRMSE

when comparing UT versus MT models in a GBLUP framework,

under predictor E + G, were 3.142 (Env1), 1.211 (Env2), 1.369

(Env3), 0.348 (Env4), 0.749 (Env5), 0.830 (Env6) and 1.031

(Global), indicating that the multi-trait method outperformed

the UT method in only Env1 (214.2%), Env2 (21.1%), Env3

(36.9%) and Global (3.1%). For E + G + GE, also under a GBLUP

framework, the observed relative efficiencies were 2.155 (Env1),

0.622 (Env2), 1.191 (Env3), 1.559 (Env4), 1.722 (Env5), 0.471

(Env6) and 1.135 (Global), so the multi-trait model

outperformed the UT model only in some environments by

115.5% (Env1), 19.1% (Env3), 55.9% (Env4), 72.2% (Env5)

and 13.5% (Global). When the predictor evaluated was G +

GE, the relative efficiencies were 1.004 (Env1), 1.005 (Env2),

1.002 (Env3), 0.996 (Env4), 1.006 (Env5), 0.999 (Env6) and 1.002

(Global). This means that the multi-trait method had a better

prediction performance than the UT method only in some

environments by 0.4% (Env1), 0.5% (Env2), 0.2% (Env3),

0.6% (Env5) and 0.2% (Global).

Regarding the comparison between the UT and MT models

under the PLSmethod, the observed relative efficiencies in terms

of NRMSE with predictor E + G were 1.014 (Env1), 1.014 (Env2),

1.020 (Env3), 1.008 (Env4), 1.012 (Env5), 1.006 (Env6) and 1.012

(Global), so the multi-trait method had better prediction

performance than the UT method by 1.4% (Env1), 1.4%

(Env2), 2.0% (Env3), 0.8% (Env4), 1.2% (Env5), 0.6% (Env6)

and 1.2% (Global). For the E + G + GE predictor, also under a

PLS framework, the observed relative efficiencies were 1.051

(Env1), 1.009 (Env2), 1.071 (Env3), 1.013 (Env4), 1.047

(Env5), 1.013 (Env6) and 1.034 (Global), indicating that the

multi-trait method outperformed the UT method by 5.1%

(Env1), 0.9% (Env2), 7.1% (Env3), 1.3% (Env4), 4.7% (Env5),

1.3% (Env6) and 3.4% (Global). Finally, for theG +GE predictor,

the observed relative efficiencies were 1.044 (Env1), 1.029 (Env2),

1.039 (Env3), 1.044 (Env4), 1.047 (Env5), 1.038 (Env6) and 1.040

(Global). This means that the MT method outperformed the UT

by 4.4% (Env1), 2.9% (Env2), 3.9% (Env3), 4.4% (Env4), 4.7%

(Env5), 3.8% (Env6) and 4.0% (Global) Figure 3B

(Supplementary Table SC2). Results show that while MT-PLS

provided better genomic-enabled prediction accuracy than MT-

GBLUP, MT-PLS did not improve the genomic-enabled

prediction accuracy of UT-PLS.

Dataset 4. Indica

Results for this data sets can be found in Figures 4A,B and

further details are found in Supplementary Tables SD1,D2.

MT-GBLUP versus MT-PLS

We observed that the relative efficiencies in terms of NRMSE

in the comparison between the MT-GBLUP method and MT-

PLS method for predictor E + G were 1.577, 1.224, 0.915 and

1.231 for environments 2010, 2011, 2012 and across

environments (Global), respectively. The MT-PLS method

outperformed the MT-GBLUP method in all the

environments except in years 2012 by 57.7% (2010), 22.4%

(2011) and 23.1% (Global). In the E + G + GE predictor, the

observed relative efficiencies were 1.091 (2010), 1.134 (2011),

0.904 (2012) and 1.043 (Global), indicating that MT-PLS had a

better prediction accuracy than MT-GBLUP in every

environment except 2012 by 9.1% (2010), 13.4% (2011) and

4.3% (Global). For the G + GE predictor, the relative efficiencies

observed were 1.135 (2010), 0.986 (2011), 0.984 (2012) and 1.031

(Global), which means that MT-PLS outperformed MT-GBLUP

only in 2010 and across environments (Global) by 13.5% (2010)

and 3.1% (Global) Figure 4A (Supplementary Table SD1).

Uni-trait versus multi-trait

We observed the relative efficiencies when comparing UT vs.

MT models under a GBLUP framework. For predictor E + G, the

relative efficiencies were 0.607 (2010), 0.773 (2011), 1.016 (2012)

and 0.768 (Global), indicating that multi-trait method

outperformed the UT method only in environment 2012 by

1.6%. For E + G + GE, the observed relative efficiencies were

0.852 (2010), 0.849 (2011), 1.019 (2012), and 0.900 (Global). The

multi-trait model outperformed the UTmodel under the GBLUP

framework only in environment 2012 by 1.9%. In G + GE, the

relative efficiencies were 0.853 (2010), 0.976 (2011), 0.963 (2012)

and 0.930 (Global), meaning that the UT method had better

prediction performance than the multi-trait method in every

environment by 14.7% (2010), 2.4% (2011), 3.7% (2012) and 7.0%
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(Global). Regarding the comparison between the UT versus the MT

model under the PLS method, the observed relative efficiencies in

terms of NRMSE for predictor E +Gwere 0.993 (2010), 0.987 (2011),

0.937 (2012), and 0.972 (Global). This means that the multi-trait

method was outperformed by UT in all the environments by 6.7%

(2010), 1.3% (2011), 6.3% (2012) and 2.8% (Global).

For the E + G + GE predictor, the relative efficiencies were

0.969 (2010), 0.980 (2011), 0.949 (2012) and 0.966 (Global). The

multi-trait method was outperformed by the UTmethod in every

environment by 3.1% (2010), 2.0% (2011), 5.1% (2012) and 3.4%

(Global). Finally, for the G + GE predictor, the observed relative

efficiencies were 0.975 (2010), 0.985 (2011), 0.961 (2012) and

0.974 (Global), revealing that the multi-trait method was

outperformed by UT in all the environments by 2.5% (2010),

1.5% (2011), 3.9% (2012) and 2.6% (Global) Figure 4B

(Supplementary Table SD2). MT-PLS method gave better

genomic-enabled prediction accuracy than MT-GBLUP. While

MT-GBLUP was better than UT-GBLUP, MT-PLS did not

improve the genomic-enabled prediction accuracy of UT-PLS.

Dataset 5. Japonica

For this dataset results can be found in Figures 5A,B and

other details are in Supplementary Tables E1,E2.

MT-GBLUP versus MT-PLS

We observed that in the prediction performance of the MT-

GBLUP method and MT-PLS method for predictor E + G, the

relative efficiencies were 1.128, 0.948, 0.926, 0.981, 0.966, and

0.995 for environments 2009, 2010, 2011, 2012, 2013 and across

environments (Global), respectively. That is, theMT-PLSmethod

outperformed the MT-GBLUP method only in the

2009 environment by 12.8%. With the E + G + GE predictor,

the observed relative efficiencies were 0.921 (2009), 1.017 (2010),

0.898 (2011), 0.973 (2012), 0.823 (2013), and 0.948 (Global),

indicating that MT-PLS had better prediction accuracy than MT-

GBLUP only in 2010 by 1.7%. For theG+GE predictor, the relative

efficiencies observed were 1.116 (2009), 1.094 (2010), 1.007 (2011),

0.970 (2012), 1.099 (2013), and 1.057 (Global), meaning that MT-

PLS outperformed MT-GBLUP in every environment except

2012 by 11.6% (2009), 9.4% (2010), 0.7% (2011), 9.9% (2013),

and 5.7% (Global) Figure 5A (Supplementary Table SE1).

Uni-trait versus multi-trait

The relative efficiencies in terms of NRMSE when comparing

UT versus MT models under GBLUP for predictor E + G were

0.968 (2009), 1.519 (2010), 1.011 (2011), 0.991 (2012), 1.305

(2013), and 1.166 (Global), indicating that the multi-trait method

outperformed the UT method in every environment except

2009 and 2012 by 51.9% (2010), 1.1% (2011), 30.5% (2013),

and 16.6% (Global). For the predictor E + G + GE, the observed

relative efficiencies were 0.887 (2009), 1.043 (2010), 1.116 (2011),

1.002 (2012), 1.186 (2013), and 1.021 (Global). That is, the multi-

trait model outperformed the UT model in most environments

by 4.3% (2010), 11.6% (2011), 0.2% (2012), 18.6% (2013), and

2.1% (Global), while under predictor G + GE, the relative

efficiencies were 0.958 (2009), 0.925 (2010), 0.987 (2011),

1.005 (2012), 0.913 (2013), and 0.958 (Global). This shows

that the multi-trait method only had better prediction

performance than the UT model in environment 2012 by

0.5%. Regarding the prediction performance between the UT

and MT models under the PLS framework, the observed relative

efficiencies in terms of NRMSE for predictor E + G were 0.954

(2009), 0.975 (2010), 0.941 (2011), 0.986 (2012), 0.954 (2013),

and 0.966 (Global), indicating the multi-trait method was

outperformed by the UT model in all the environments by

4.6% (2009), 2.5% (2010), 5.9% (2011), 1.4% (2012), 4.6%

(2013), and 3.4% (Global).

For the E + G + GE predictor, the observed relative

efficiencies were 0.937 (2009), 1.009 (2010), 0.937 (2011), 0.986

(2012), 0.879 (2013), and 0.964 (Global), meaning that the multi-

trait method outperformed the UT method only in environment

2010 by 0.9%. Finally, for theG+GE predictor, the observed relative

efficiencies were 0.977 (2009), 0.992 (2010), 0.969 (2011), 0.989

(2012), 0.973 (2013), and 0.982 (Global). This means that the multi-

trait method was outperformed by the UT method in all the

environments by 2.3% (2009), 0.8% (2010), 3.1% (2011), 1.1%

(2012), 2.7% (2013), and 1.8% (Global) Figure 5B

(Supplementary Table SE2). Like the previous findings, the MT-

PLS method provided better prediction accuracy than MT-GBLUP

andMT-GBLUP better than UT-GBLUP,MT-PLS did not improve

the genomic-enabled prediction accuracy of UT-PLS.

Discussion

Multi-trait models use all the available traits simultaneously

and thus are able to capture the correlation between traits. When

this correlation between traits is moderate or large, most of the

time the prediction performance ofMTmodels is better than that

of UT models (Montesinos-López et al., 2016; Montesinos-López

et al., 2019a; Montesinos-López et al., 2019b; Montesinos-López

et al., 2019c; Montesinos-López et al., 2020). However, most of

the MT models are unable to capture complex non-linear

patterns. Studies on Bayesian linear and non-linear multi-trait

kernel methods for genomic prediction of multi-environment

data showed that non-linear Gaussian kernel method

outperformed conventional Bayesian Ridge and GBLUP multi-

trait linear models (Montesinos-López et al., 2021).

It is important to note that this research evaluated the

prediction performance of MT-PLS versus MT-GBLUP. Both
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models are not new in the context of multivariate analysis;

however, the MT-GBLUP is more popular in GS, while the

MT-PLS is more popular in the context of chemometrics

(i.e., computational chemistry) and the biological sciences.

The advantages of multi-trait models are well documented;

however, larger data sets require more computing resources,

as there are additional parameters that need to be estimated (beta

coefficients and genetic and error covariances), which affect the

efficiency of genomic prediction. MT-PLS is a novel technique

that generalizes and combines features from principal

component analysis and multiple regression.

There is much empirical evidence showing that MT-PLS is

useful when predicting a set of dependent variables from a large

set of independent variables (i.e., inputs), because MT-PLS finds

components from the input X that are also relevant for Y.

Specifically, MT-PLS searches for a set of latent vectors

(principal components) that perform simultaneous

decomposition of X and Y with the constraint that these

principal components explain as much as possible of the

covariance between X and Y. It is followed by a regression

step where the decomposition of X is used to predict Y. The

main difference between the principal component regression

(PCR) and the MT-PLS method is that PCR is an

unsupervised method since it considers only the predictors

variables (which are interrelated) in the construction of the

principal components (applying principal component analysis,

PCA on the inputs), whereas MT-PLS is a supervised method

since also takes the dependent variables into account

(Garthwaite, 1994) for computing the required number of

latent variables.

Our results provide relevant empirical evidence that the MT-

PLS methodology is very competitive for multi-trait prediction in

genomic selection. For example, we found that in most data sets

under predictors (E + G and E + G + GE models), MT-PLS

outperformed the MT-GBLUP model by large margins: by

349.8% (under predictor E + G), 484.4% (under predictor E +

G + GE) and 15.9% (under predictor G + GE) across traits. Also,

in this context of multi-trait prediction under the MT-PLS, no

large differences were observed in terms of prediction

performance under the three predictors examined (E + G; E +

G + GE and G + GE), which can be attributed to the PLS

methodology not working directly with the independent

variables but with a compressed version of the original

independent variables, called latent variables. While using the

MT-GBLUP model, we observed very large differences in terms

of prediction performance among the three predictors (E + G; E +

G + GE and G + GE), but in general under the predictor G + GE,

we observed stable and low predictions.

It is important to point out that the MT-PLS is very

attractive since is very competitive in terms of prediction

performance compared with the Bayesian MT-GBLUP.

However, more research should be conducted to be able to

compare the MT-PLS with other multi-trait models like: 1) the

BMTME, which allows researchers to simultaneously model the

correlation of lines, traits and environments (Montesinos-

López et al., 2019a); 2) conventional multi-trait mixed

models (Montesinos-López et al., 2022c); 3) state of the art

statistical machine learning methods like random forest

(Montesinos-López et al., 2022d) and even deep learning

methods (Montesinos-López et al., 2018; 2019c).

Nevertheless more benchmarking studies need to be

conducted to have a more precise idea of its power in terms

of prediction performance in the context of multi-trait analysis.

Our results provide empirical evidence that MT-PLS should be

considered as a power ally statistical machine learning method

for multi-trait prediction in plant breeding.

The MT-PLS methodology is not new in plant breeding, as it

has been used for association and prediction studies. For

example, Vargas et al. (1998), Vargas et al. (1999) and Crossa

et al. (1999) used this methodology for interpreting genotype by

environment interaction in maize and wheat. For prediction in

GS, this methodology has been used by Monteverde et al. (2019),

Colombani et al. (2012) and by Montesinos-López et al. (2022a)

for UT predictions.

It is important to highlight that the larger the data set, the

more computational resources are required under the MT-PLS

model because in order to select the optimal hyperparameters

(number of principal components), an inner (nested) cross-

validation needs to be implemented to select the optimal

number of principal components. However, Silveira et al.

(2017) conducted research for selecting the optimal number of

principal components in the context of UT-PLS using nested

cross-validation as we did and using the degree-of-freedom

(DoF) method and they reported that both approaches found

the same optimal number of components. This option for

selecting the optimal number of principal components should

be explored in the context of MT-PLS since significant

computational resources can be saved for implementing the

MT-PLS method. Choosing the optimal number of

components remains a relevant issue for UT and multi-trait

PLS applications.

Conclusions

This research evaluated the prediction performance of the

MT-PLS method and compared with the MT-GBLUP method

under the leave one environment-out cross-validation. We found

that the MT-PLS method is very competitive because in two of

the predictors evaluated (E + G; E + G + GE), it significantly

outperformed the MT-GBLUP method. However, using the

predictor (G + GE), no relevant gain was observed for MT-

PLS over MT-GBLUP. When we compared MT-PLS to UT-PLS,

no significant gain was observed in terms of prediction

performance; however, we found better prediction of MT-

GBLUP compared to UT-GBLUP. It is important to point out
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that to successfully implement the MT-PLS, we needed to

implement a nested cross-validation (divide the training set

into inner training and validation) to obtain the optimal

number of principal components. With this optimal number

of principal components inserted into the model using the

complete training set, we obtained the predictions for the

testing set. However, the tuning process of the MT-PLS is not

complex and or time consuming since only one hyperparameter

(number of principal components) needs to be tuned. Finally, in

this research we provided empirical evidence of the advantages

and disadvantages of using the MT-PLS methodology for

genomic prediction in the context of multi-trait data.
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