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Heart failure (HF) is the main manifestation of cardiovascular disease. Recent

studies have shown that various RNAmolecules and their complex connections

play an essential role in HF’s pathogenesis and pathological progression. This

paper aims to mine key RNA molecules associated with HF. We proposed a

Prior-knowledge Driven Joint Deep Semi-Negative Matrix Factorization (PD-

JDSNMF) model that uses a hierarchical nonlinear feature extraction method

that integrates three types of data: mRNA, lncRNA, and miRNA. The PPI

information is added to the model as prior knowledge, and the Laplacian

constraint is used to help the model resist the noise in the genetic data. We

used the PD-JDSNMF algorithm to identify significant co-expression modules.

The elements in the module are then subjected to bioinformatics analysis and

algorithm performance analysis. The results show that the PD-JDSNMF

algorithm can robustly select biomarkers associated with HF. Finally, we built

a heart failure diagnostic model based on multiple classifiers and using the Top

13 genes in the significant module, the AUC of the internal test set was up to

0.8714, and the AUC of the external validation set was up to 0.8329, which

further confirmed the effectiveness of the PD-JDSNMF algorithm.
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Introduction

Heart failure (HF) is a common type of cardiovascular disease, and its morbidity and

mortality are increasing yearly (Castiglione et al., 2022). The pathogenesis of HF involves

multiple risk factors, especially diabetes, acute myocardial infarction, hypertension, and

coronary heart disease (Fan and Hu, 2022). Despite significant improvements in disease

diagnosis and treatment, the prognosis of patients with HF remains poor (Gomes et al.,

2020). Various methods have been used to diagnose HF, such as echocardiography,
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clinical signs, and NT-proBNP/BNP. However, these methods

have certain limitations. For example, echocardiography relies on

experts’ operation ability and rich experience. NT-proBNP/BNP

is an invasive diagnosis and may harm HF patients. Therefore,

genes or other genetic material have emerged as an alternative

non-invasive method for disease diagnosis (Chair et al., 2021). In

addition, genotypic biomarkers also provide potential targets for

drug development. The search for new biomarkers is of great

significance for improving the diagnosis and treatment of HF.

With the development of RNA sequencing data, researchers can

effectively identify and mine disease-related RNA molecular

biomarkers. In addition to messenger RNA (mRNA), long non-

coding RNA (lncRNA) and microRNA (miRNA) have also been

shown to be extensively involved in the pathological progression of

HF (Fan et al., 2018). MiRNAs can alter cardiac differentiation,

proliferation, maturation, and pathological remodeling responses

(Yan et al., 2017). Sala et al., 2016 reviewed severalmiRNAs that play

an essential role in HF, such as miR-18a-5p, miR-652–3p, and miR-

126 (Wang and Cai, 2017). LncRNAs are essential regulators during

cardiovascular development (Fan et al., 2018). Researchers found

that lncRNA-Cancer Susceptibility Candidate 7 (CASC7) is involved

in the progression of HF by regulating the expression of miR-30c,

which is also a promising diagnostic-related gene for HF (Xu et al.,

2020). In addition, the three RNA molecules are complexly

interconnected (Song et al., 2016). Therefore, identifying HF-

related RNA molecules may provide new insights into the

pathogenesis and progression of HF.

Due to their complementary information, multi-omics data

can capture andmine disease-related and biologically meaningful

biomarkers. Exploring multi-omics integration algorithms is a

hot topic in bioinformatics research. Joint non-negative matrix

factorization (JNMF) has attracted the attention of researchers

due to its low time complexity and strong clustering

performance. Zhang et al. first proposed this algorithm,

applied it to cancer genomics (Zhang et al., 2012), and

identified multiple biologically meaningful co-expression

modules. Deng et al. used this algorithm to construct a

ceRNA network closely related to lung cancer (Deng et al.,

2018). Further, they added orthogonal constraints to the

algorithm and proposed a Multi-Constrained Joint Non-

negative Matrix Factorization (MCJNMF) algorithm. The

algorithm integrates PET image data and DNA methylation

data of patients with soft tissue sarcoma and mines

biomarkers and significant imaging features related to soft

tissue sarcoma lung metastasis (Deng et al., 2019). Recently,

to integrate pathological images of soft tissue sarcomas with two

genetic data (DNA methylation and copy number variation),

they proposed a Multi-Dimensional Joint Non-negative Matrix

Factorization (MDJNMF) algorithm that integrates multiple

biological empirical knowledge, the potential association

pattern with the three kinds of data was found through multi-

level analysis. The comprehensive prediction index AUC of the

identified relevant biomarkers reached 0.8 (Deng et al., 2021).

The above matrix factorization correlation algorithms are based

on linear assumptions and cannot consider the complex

relationship between multi-omics data from a nonlinear

perspective. To this end, Sehwan Moon et al. proposed a Joint

Deep Semi-Negative Matrix Factorization (JDSNMF) algorithm,

which applies a deep neural network (DNN) to the JNMF

algorithm to identify disease-related significant nonlinear

features. However, the JDSNMF algorithm does not consider

the rich prior knowledge in multi-omics data, which can induce

the algorithm to select biologically meaningful modules (Wei

et al., 2022).

To this end, this paper proposed a prior knowledge-driven

joint, semi-nonnegative matrix factorization algorithm (PD-

JDSNMF) to integrate miRNA, mRNA, and lncRNA. The

algorithm adds PPI interaction information based on the

JDSNMF algorithm. The aim is to drive the algorithm to

obtain more biologically meaningful co-expression modules.

Since the algorithm based on matrix factorization is more

sensitive to noise, we add Laplacian matrix constraints on the

three kinds of data to enhance the anti-noise performance of the

algorithm. We used the PD-JDSNMF algorithm to obtain

multiple biologically significant co-expression modules. For

the modules with strong correlation, we performed

correlation analysis on the three types of data and mined

multiple pathways significantly related to the disease. In

addition, we constructed a heart failure diagnosis model

using multiple classifiers for the top 13 features with high

importance in this module, and its AUC in the test set

reached the highest of 0.8714. We use an independent

external validation set for diagnostic model validation, which

achieves the highest AUC of 0.8329. It suggests that the selected

features have diagnostic significance for heart failure.

Meterial and methods

This section describes the framework of the PD-JDSNMF

algorithm, which combines three types of RNA-seq data to

identify co-expression modules. Figure 1 below presents the

overall experimental framework of this paper. First, the objective

function and its iterative update rule are given. The input of the

whole framework consists of three parts, one is the expression profile

of miRNA, mRNA, and lncRNA of the same set of samples

(represented as matrix X1, X2, X3), and the second part is the

PPI prior knowledge, which is used to describe whether it has an

interactive relationship between mRNA and mRNA. The third part

is the Laplacian matrix of the three RNAs, which is used to improve

the anti-noise performance of the algorithm.

Then, the three RNA expression matrices are decomposed

into a common basis matrix W and three coefficient matrices

H1, H2, and H3 by the PD-JDSNMF algorithm. Membership in

the co-expression module is confirmed based on the z-score of

the resulting coefficient matrix after decomposition. Finally,

Frontiers in Genetics frontiersin.org02

Ma et al. 10.3389/fgene.2022.967363

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.967363


further analysis is performed using elements from modules

with strong correlations, including exploring co-expression

modules associated with HF and analyzing significant

pathways and key genes and constructing age-related

regression models to identify significant potential

correlations with patient age. The validity of the proposed

algorithm is verified using genes and the construction of a

diagnostic model of HF.

Joint non-negative matrix factorization

Let Xi ∈ Rn×pi represent the original matrix of different

modes, Xi is decomposed into a base matrix U ∈ Rn×k, and

coefficient matrix Hi ∈ Rk×mi , JNMF algorithm Decompose Xi

into a common base matrix Uand multiple coefficient matrices

Hi(i � 1, 2, . . .), and define its objective function as follows:

Γ(W ,Hi) � min
W,H

⎛⎝∑N
i�1
‖Xi − UH i‖2F⎞⎠ s.t. W > 0, H i > 0, i � 1, 2, 3, . . . ,N . (1)

Joint Deep Semi-Negative Matrix
Factorization

JDSNMF adopts the principle of multilayer NMF and

nonlinear activation functions to represent nonlinear

manifolds. Also, it uses regularization to prevent overfitting.

Its objective function is as follows:

min∑I
i�1

‖ Xi − UH i0 ‖2F + λ ‖ S‖′F
s.t.Hi0 � s(Zi1s(Zi2 . . . s(ZiNHiN)))
Hin−1 � s(ZinHin),Hi0 . . .HiN−1 ≥ 0,

S ∈ {U ,Zi1, . . . ,ZiN ,HiN}, n � 1, . . . ,N

(2)

Among them, U ∈ Rn×k0 is called the sample latent

matrix, Hi0 ∈ Rk0×pi is called the feature latent matrix of

the first layer neural network, Hin ∈ Rkn×pi is the feature

latent matrix of the sublayer n + 1. Zn ∈ Rkn−1×kn is the

junction latent matrix. In the JDSNMF algorithm,

k<min {n, pi} needs to be satisfied, and k0 < kn.
Furthermore, they used the sigmoid activation function in

FIGURE 1
The overall flow chart of the experiment.
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the neural network to decomposeH nonlinearly. The

expression for this activation function is given below.

s(x) � 1
1 + e−x

. (3)

PD-JSNMF

This section proposed a prior knowledge-driven Joint Deep

Semi-Non-Negative Matrix Factorization. Specifically, we added

PPI interaction information to the feature latent matrixHi0 in the

first layer of the algorithm, aiming to induce the algorithm to

generate more biologically meaningful co-expression modules.

Furthermore, we imposed a Laplacian constraint onHi0 to resist

noise in the multi-omics data. The objective function of PD-

JDSNMF is given below.

min∑3
i�1

‖ Xi − UHi0 ‖2F + λ1 ‖ S‖′F + λ2Tr(HT
20
PH20) + λ3P(Hi0)

s.t.Hi0 � s(Zi1s(Zi2 . . . s(ZiNHiN)))
Hin−1 � s(ZinHin), Hi0 . . .HiN−1 ≥ 0,
S ∈ {U ,Zi1, . . . ,ZiN ,HiN}, n � 1, 2, 3

(4)
Among them, P ∈ Rp2×p2 is the PPI prior knowledge

matrix with only two elements, 0 and 1. One means

mRNA-mRNA interaction, and 0 means no interaction. In

addition, a Laplacian matrix is introduced in the algorithm as

a penalty term to improve the similarity of the related

elements of the norm vector. This constraint forces the

corresponding canonical correlation coefficient vectors to

be more similar when the connectivity between the i − th

node and the j − th node of the data is high (Kim et al.,

2019). Its expression is as follows.

P(Hi) � ∑
p,q

LHi(p,q)(Hip −Hiq)(i � 1, 2, 3) . (5)

Here, Lh1, Lh2, Lh3 represent the connectivity matrices of

X1,X2and X3, respectively. Next, we further rewrite

P(Hi) (i � 1, 2, 3) into the following form:

P(Hi) � Tr(HT
i0
BiHi0), (6)

Bi represents the Laplace matrix of Xi (i � 1, 2, 3) and

Bi � Di − Li (i � 1, 2, 3), Di respectively represents the degree

matrix of the three kinds of data, and Li respectively represents

the connectivity matrix of the three kinds of data.

Protein-protein Interaction Network
construction

The STRING (http://string-db.org) database was used to

predict the PPI network in the module and analyze the

interactions between proteins. Pairs of nodes in the PPI

network were screened, and interactions with a combined

score >0.4 were considered statistically significant. Molecular

interaction networks were visualized using Cytoscape. Next, we

identified core genes from the PPI network using the MCC

method in cytoHubba (Cytoscape plugin).

Functional enrichment analysis

To explore the biological functions of genes in modules in

HF, we performed Disease ontology (DO) enrichment analysis

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis in selected modules. The DO enrichment

analysis as well as the KEGG enrichment analysis were

performed by the “clusterProfiler” package. The “ggplot”

package is used to draw bubble plots. In DO analysis, q-values

less than 0.05 were considered statistically significant. Pathways

with p-values less than 0.05 were considered significant in the

KEGG analysis.

Results

Data preprocessing

We downloaded RNA-seq data (GSE141910) containing

200 HF samples and 166 normal samples from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/). This paper used

the human genome assembly GRCh38 file to convert the

ensemble ID of GSE141910 data into gene name and

genotype annotation and extracted 14914 mRNAs,

3,134 lncRNAs, and 30 miRNAs. Moreover, we downloaded

the GSE116250 data from the GEO database as a validation

dataset for ROC analysis. 14 normal samples and 50 HF samples

were included in the GSE116250 data. Then randomly select 80%

of the samples as the training set and 20% as the test set. Finally,

292 training samples and 74 testing samples are obtained.

We normalized the three RNA expression data using the R

package “limma” and performed differential expression analysis on

the expression data of mRNA and lncRNA. mRNAs or lncRNAs

whose absolute value of logFC was less than 1 and p-value less than

0.05 were regarded as differentially expressed genes. The

“pheatmap” package draws volcano plot and heatmaps. Finally,

this study obtained 727 differentially expressed mRNAs

(DEmRNAs) (Figures 2A,B) and 162 differentially expressed

lncRNAs (DElncRNAs) (Figures 2C,D).

Hyperparameter settings

In this paper, the sigmoid function is used as the activation

function so that the decomposed feature latent matrix has
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non-negative nonlinearity. Furthermore, for the initialization

of the basis and coefficient matrices, we use the singular value

decomposition (SVD) algorithm, which has been shown to

produce better local optima for matrix classification

algorithms.

Furthermore, this section will introduce the hyperparameter

settings of PD-JDSNMF and classification models. PD-JDSNMF

model has four key hyperparameters: number of layers,

dimensionality reduction ki per layer, F-norm strength λ1, PPI

prior constraint strength λ2, and Laplacian constraint strength λ3. In

order to simplify the parameter selection process, we select these

three hyperparameters from the parameter set

para � [0.001 0.01 0.1], a total of 27 parameter combinations. As

shown in Figure 3, we use the Pearson correlation coefficient

between the original matrix and the reconstructed matrix before

and after matrix decomposition as the parameter evaluation index.

Specifically, the larger the Pearson correlation coefficient, the better

the reconstruction performance of our algorithm is considered to be.

We selected the parameters based on the mean value in

subgraph D of Figure 3 and finally select the eighth group of

parameters, whose corresponding parameters are

λ1 � 0.001, λ2 � 0.1, λ3 �0.01. In addition, we invoked python’s

scikit-learn library (Pedregosa et al., 2011) to evaluate the

proposed algorithm’s feature selection ability and subsequent

diagnostic model building. Specifically, we used four classification

models: Random Forest (RF), Support Vector Machine (SVM),

Logistic Regression (LR), and Deep Neural Network (DNN). When

classifying ourselves, we use ten-fold cross-validation to select the

critical parameters of the classifier. For RF, we set the number of

decision trees between 1 and 200, and the attribute divisionmethods

are Gini and Entropy. For SVM, we set the penalty coefficient

between 0 and 3, and the kernel function is selected from linear

kernel function, polynomial kernel function, radial basis kernel

function, and sigmoid function. For LR, we set the penalty term

selected from l1 and l2. The regularization coefficient is selected

between 0 and 3. For DNN, we set the number of hidden layer

neurons between 10 and 30. The activation function is selected from

ReLU and Tanh, and the optimizer is selected from the stochastic

gradient optimizer and chance stochastic gradient optimizer. The

regularization parameters are chosen between 0.001 and 0.01.We set

the same random seed for the above classifiers. Finally, we evaluate

the classification results of several classifiers on the test set. In

addition, we used DNN, LR, SVM, and RF four classifiers to classify

three etiologies, including tonic cardiomyopathy (166 patients),

hypertrophic cardiomyopathy (28 patients), and perinatal

cardiomyopathy (6 patients). The results show that using the LR

FIGURE 2
Differential expression levels of mRNA and lncRNA in HF. (A,C). Volcano plot of 727 DEmRNAs and 162 DElncRNAs. Up-regulated genes are
indicated in red, and down-regulated genes are indicated in blue. Genes with no significant change are marked as grey dots. (B,D). Expression heat
map of Top 100 DEmRNA and Top 100 DElncRNA. Red means genes are up-regulated, blue means genes are down-regulated.
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classifier for the top 9 features (MIR570, MIR590, MIR4506,

MIR4786, IL1RL1, RNASE2, CD163, ST6GALNAC3, SIGLEC9)

can achieve a classification accuracy of 0.9, which is higher than the

classification results of other classifiers, showing the best

classification performance. We put this part into the

supplementary materials (Supplementary Figure S2).

K value selection

In allmatrix factorizationmodels, dimensionality reduction k is a

critical hyperparameter. If k is set too small, the data does not fit the

model well. On the other hand, overfitting will occur if k is too large.

From the experience of the JDSNMF algorithm, we set the number of

network layers to four. Setting toomany layers can cause the network

to overfit the training data. Conversely, setting too few layers will

result in insufficient network training. Since the smallest feature

dimension in this experiment is 30, the k0 of the first layer is set to 30.

When setting k1 and k2, we tried various cases (k0, k1, and k2 equal

interval/unequal interval decay) Pearson correlation coefficient

between the original data decomposed by the PD-JDSNMF

algorithm the reconstruction matrix. As shown in Table 1, this

indicator is one of the indicators that can best measure the

reconstruction ability of the matrix factorization algorithm.

FIGURE 3
Line graph of the change in Pearson correlation coefficient between the original and reconstructed matrices under different parameter
combinations. (A–C) represent the variation of the Pearson correlation coefficient between Xi and UHi0 under different parameter combinations,
respectively. (D) represents the mean of these three data under different parameter combinations. The circled point in each subplot represents the
maximum value of the Pearson correlation coefficient for the group. (E) represents the changing trend of the algorithm’s objective functionwith
the increase of the number of iterations in the training process under the optimal parameters.
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It can be seen from the above table that there are three sets of

k values that can make the average reconstruction performance

of the algorithm for the three matrices reach 0.85 or more. The

10th group obtained the slightest standard deviation, so we

selected this group of k values for subsequent analysis. This

paper also shows the changing trend of the objective function

with the iterative update of the algorithm under the optimal

parameter combination (Figure 3E). It can be seen that the

algorithm converges very quickly.

Module identification

After performing the PD-JNMF algorithm on the HF

RNA-seq dataset with the optimal parameter combination,

we obtained 30 co-expression modules, each of which

contained an average of 5.47 miRNAs, 118.33 mRNAs, and

28.73 lncRNAs. The mean correlations of the reconstructed

mRNA expression data, lncRNA expression data, and miRNA

expression data with the original data were 0.8362, 0.8758, and

0.8383, respectively.

Significant module analysis

We counted the Pearson correlation coefficients of the original

and reconstructed matrices in all modules, and the Table 2 gives the

details of themodules with the Top 3 Pearson correlation coefficients.

To meet the needs of subsequent analysis, we draw Venn

diagrams for the three elements in these modules, as shown in

Figure 4.

As shown from the Figure 4, miRNAs and mRNAs in module

12 have more intersections with the other two modules, suggesting

that this module is more likely to be involved in complex

mechanisms related to HF. Therefore, further analysis of module

12will be carried out subsequently. In addition, this paper also draws

a heat map of the expression levels of the three RNAs in module

12 on the training and test sets (Supplementary Figure S1).

Biological analysis

Subsequently, to explore the biological functions of genes in

module 12, we perform DO enrichment analysis and KEGG

enrichment analysis on module 12. The results of DO

enrichment analysis show that the genes in module 12 are

mainly associated with cardiovascular diseases, such as

atherosclerosis, arteriosclerotic cardiovascular disease,

arteriosclerosis, myocardial infarction, and coronary artery

disease (Figure 5A). These diseases are risk factors for heart

failure. KEGG enrichment analysis showed that the genes in

module 12 were mainly involved in Complement and

coagulation cascades, Cytokine-cytokine receptor interaction,

Arachidonic acid metabolism, and Leishmaniasis, Phagosome

and Hematopoietic cell lineage (Figure 5B). These pathways are

closely related to HF. Studies have shown that Complement and

coagulation cascades are involved in the post-MI response (Yin

et al., 2022). Many studies have found that Cytokine-cytokine

receptor interaction plays an essential role in the occurrence and

development of acute myocardial infarction andHF (). Danqi Pill

can prevent heart failure by regulating the pathway of

Arachidonic acid metabolism (Wang et al., 2014). The above

results suggest that the genes in module 12 may play an essential

role in the pathological progression of HF.

Next, we constructed a PPI network for the genes in

module 12 and evaluated the network using the

NetworkAnalyzer plugin in Cytoscape (Figure 6A). Next,

we used the MCC method in cytoHubba to identify

important genes in the PPI network, and the top 10 scoring

genes were identified as core genes of module 12 (Figure 6B).

They are VSIG4, IL10, FPR1, FCGR3A, TLR2, ARG1,

CLEC7A, CCR1, S100A9, CD163.

TABLE 1 Reconstruction performance of the algorithm under different k values in the neural network layer.

k1 k2 k3 Corr_1 Corr_2 Corr_3 Corr_mean

k1 = 29 k2 = 28 k3 = 27 0.8170 0.8897 0.8461 0.8509 ± 0.0299

k1 = 29 k2 = 27 k3 = 25 0.8169 0.8892 0.8459 0.8507 ± 0.0297

k1 = 28 k2 = 25 k3 = 21 0.8223 0.8847 0.8507 0.8507 ± 0.0258

k1 = 28 k2 = 26 k3 = 24 0.8165 0.8869 0.8464 0.8499 ± 0.0288

k1 = 27 k2 = 23 k3 = 18 0.8275 0.8813 0.8418 0.8502 ± 0.0227

k1 = 27 k2 = 24 k3 = 21 0.8218 0.8843 0.8434 0.8498 ± 0.0259

k1 = 26 k2 = 21 k3 = 17 0.8306 0.8791 0.8399 0.8499 ± 0.0210

k1 = 26 k2 = 21 k3 = 16 0.8308 0.8783 0.8402 0.8498 ± 0.0205

k1 = 25 k2 = 19 k3 = 12 0.8365 0.8711 0.8354 0.8476 ± 0.0166

k1 = 25 k2 = 20 k3 = 15 0.8362 0.8758 0.8383 0.8501 ± 0.0182
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Discussion

Comparison with other algorithms

Figure 7 presents the reconstruction capability comparison

between the proposed PD-JDSNMF algorithm and the other

three NMF-based algorithms.

As can be seen from Figure 7, the two NMF algorithms based

on nonlinear decomposition strategies achieve more robust

matrix reconstruction performance. The average Pearson

correlation coefficient of the proposed PD-JDSNMF algorithm

is more significant than that of the other three algorithms, which

verifies the effectiveness of the proposed algorithm to a certain

extent.

TABLE 2 Top 3 module details.

Module ID Number
of miRNA members

Number
of mRNA members

Number
of lncRNA members

Correlation

1 5 135 30 0.6851

12 4 144 32 0.4688

30 5 172 32 0.4067

FIGURE 4
Three kinds of members Venn diagrams of the top 3 modules. The intersection of miRNAs (A), mRNAs (B) and lncRNAs (C) in module 1, module
12 and module 30.

FIGURE 5
Enrichment analysis results of module 12 (A). The results of DO enrichment analysis. (B) The results of KEGG enrichment analysis. The size of
circles represented the number of genes enriched.
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Construction of the diagnostic model

In order to evaluate the genes in module 12 as having

diagnostic significance for HF, we first used the RF algorithm

to rank the feature importance in this module. Figure 8 shows the

top 50 elements with solid importance in this module.

Next, based on four classifiers (RF, SVM, LR, and DNN), we

used Top 1 to Top 50 genes inmodule 12 to classify whether there

was HF or not and compared the changes in AUC as shown in

Figure 9.

There are two points marked in each subplot in Figure 9.

The first point of each subgraph represents the case where the

classifier is used to select as few features as possible to

guarantee a high AUC. The second point represents where

the AUC is maximized using this classifier. As can be seen

from the figure, the maximum AUC is achieved with the RF

classifier, which is 0.8824. In addition, when using this

classifier to select the Top 13 features, the AUC can reach

0.8714. Therefore, RF has a better classification effect on this

dataset than the other three classifiers. For the first point of the

four classifiers, we plotted its ROC curve in detail, as shown in

Figure 10.

As can be seen from Figure 10, the four classifiers all have

high classification accuracy at their respective first points. To

further validate that the Top 13 genes have diagnostic

significance for HF, we performed validation using the Top

13 genes in an external validation set. Figure 11 shows the

ROC curve for this external validation set based on the four

classifiers using Top 13 features.

As can be seen from Figure 11, using the Top 13 genes also

obtained better classification accuracy on the external validation

set. Among them, the AUC using the RF classifier reached 0.8329.

This confirms that the Top 13 genes have a robust diagnostic

ability for HF.

FIGURE 6
The results of PPI network. (A). The PPI network were
analyzed using NetworkAnalyzer plugin. (B). The hub genes with
the top 10 scores. The size and color of the nodes represent the
importance of genes in the interaction network. The larger
the node or the darker the color, the more important the
corresponding gene is in the network. The connection between
the nodes represents the interaction between the two genes, and
the wider the connection line, the stronger the interaction
between the two genes.

FIGURE 7
Comparison of reconstruction capabilities of the four
algorithms. (A–C) are histograms of the Pearson correlation
coefficients of the four algorithms between Xi and UHi0 under the
same experimental conditions (D). The histogram of the
mean comparison of the Pearson correlation coefficients in the
first three graphs.
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Biological significance of genes involved
in diagnostic models

This study identified 13 genes (MIR570, MIR590,

MIR4506, MIR4786, IL1RL1, RNASE2, CD163,

ST6GALNAC3, SIGLEC9, VSIG4, NPTX2, BLM, TUBA3E)

that were closely related to HF. Myocardial infarction leads to

the death of cardiomyocytes, leading to cardiac fibrosis,

cardiac remodeling, and heart failure. In a human fibroblast

model, researchers found that MIR590 inhibits cardiac

fibrosis after myocardial infarction (Yuan et al., 2020).

Chronic inflammation and fibrosis in the heart muscle

eventually lead to heart failure. Studies have confirmed that

MIR590 is closely related to myocarditis (Oh et al., 2022).

CircRNA-0068481 can promote the pathological progression

of right ventricular hypertrophy (VH) by regulating the

FIGURE 8
The histogram of the Top 50 genes and their corresponding weights in module 12.

FIGURE 9
Top 1 to Top 50 features to classify whether subjects are sick or not and shows the trend of increasing AUCwith the features used. The classifiers
used by (A–D). RF, SVM, LR, and DNN, respectively.
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FIGURE 10
ROC curves for classifying subjects using Top features (A–D). The classifiers used are RF, SVM, LR, and DNN, respectively.

FIGURE 11
ROC curves for classifying subjects on external validation set using Top 13 features. The classifiers used by (A–D) are RF, SVM, LR, and DNN,
respectively.
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expression of MIR570 (Guo and Liu, 2021). MiRNA-induced

regulation can be propagated through transcription factors

(TFs) (Naeem et al., 2011). STAT1 is one of the transcription

factors of MIR4506. STAT1 can lead to the loss of

cardiomyocytes by increasing apoptosis and reducing

cardioprotective autophagy (Knight et al., 2012). CEBPB is

one of the transcription factors of MIR4786. CEBPB inhibits

cardiomyocyte growth and proliferation in the mammalian

heart, and the reduction of CEBPB is a core signal of

physiological hypertrophy and proliferation (Boström et al.,

2010). Broch et al. (2012) found that L1RL1 can reflect the

activity of the interplay of inflammation and hemodynamic

stress in heart failure and may be a potential therapeutic target

for heart failure. Idiopathic pulmonary arterial hypertension

(IPAH) can lead to heart failure. In the experiment between

IPAH and the control group, the researchers found that

RNASE2 is involved in the pathogenesis of IPAH (Zeng

et al., 2021). It has been reported that

CD163 concentrations are elevated in heart failure patients

compared with healthy controls (Ptaszynska-Kopczynska

et al., 2016). A previous study identified VSIG4 as a right

ventricle-specific myocardial biomarker (di Salvo et al., 2015).

SIGLEC9 negatively regulates inflammatory responses.

Inflammation is an essential factor in the development and

progression of HF (Chaikijurajai and Tang, 2020).

NPTX2 encodes a synaptic protein associated with

C-reactive protein. Several studies have confirmed that

C-reactive protein can effectively predict the occurrence of

HF (Maio et al., 2021). Deletion or mutation of BLM may

result in telomere defects and accelerated telomere shortening

(Callén and Surrallés, 2004). Studies have shown that

cardiomyocyte-specific telomere shortening is a striking

feature of HF (Sharifi-Sanjani et al., 2017). TUBA3E

encodes α-tubulin and is closely associated with

cytoskeletal remodeling. Microtubule accumulation was

found in HF patients, thereby increasing the load on

myocytes and promoting cardiac dysfunction (Hein et al.,

20001072). The above results suggest that these 13 genes may

play essential roles in the occurrence and progression of HF.

Comparison with other algorithms

In order to verify the ability of the proposed algorithm to

reconstruct the original matrix, we use the features selected by the

proposed PD-JDSNMF and the three algorithms of JDSNMF,

MCJNMF, and JNMF, and use four classifiers to compare the

classification accuracy. To fairly compare the feature selection

ability of several algorithms, we first select the module with the

most robust reconstruction performance from all co-expression

modules of several algorithms. Then, 50 features were randomly

selected from the saliency module and repeated ten times to

calculate the AUC for classification using the four classifiers,

respectively, and the following violin plot was drawn as shown in

Figure 12.

As can be seen from Figure 12 the proposed algorithm

achieves higher AUC among the four classifiers, which again

confirms that incorporating prior knowledge into the nonlinear

matrix factorization algorithm can obtain more representative

features.

FIGURE 12
Violin plots for AUC using four classifiers to classify the features of the four algorithms in their respective significant modules. (A–D). The
comparison results obtained using RF, SVM, LR, and DNN.
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Conclusion

This paper proposed a PD-JDSNMF algorithm to integrate prior

information in genetic data, extract nonlinear features in genetic data,

capture the underlying expression patterns of multiple data, mine

heart failure-related biological markers, and build diagnostic models.

Specifically, we identifiedmodule 12 as a keymodule and the genes in

the module as inputs for subsequent analyses through functional

enrichment analysis. Using multiple classifiers, we constructed a

heart failure diagnostic model and validated the diagnostic model on

an external dataset, which achieved an AUC of 0.8329. Compared

with several other NMF-based algorithms, the proposed algorithm

has a stronger matrix reconstruction ability. Furthermore, the PD-

JDSNMF algorithm is confirmed to have a more stronger feature

selection ability by using elements for classification.
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