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Background: Accurate evaluation of human epidermal growth factor receptor 2

(HER2) status is of great importance for appropriate management of advanced

gastric cancer (AGC) patients. This study aims to develop and validate a CT-

based radiomics model for prediction of HER2 overexpression in AGC.

Materials and Methods: Seven hundred and forty-five consecutive AGC

patients (median age, 59 years; interquartile range, 52–66 years; 515 male

and 230 female) were enrolled and separated into training set (n = 521) and

testing set (n = 224) in this retrospective study. Radiomics features were

extracted from three phases images of contrast-enhanced CT scans. A

radiomics signature was built based on highly reproducible features using

the least absolute shrinkage and selection operator method. Univariable and

multivariable logistical regression analysis were used to establish predictive

model with independent risk factors of HER2 overexpression. The predictive

performance of radiomics model was assessed in the training and testing sets.

Results: The positive rate of HER2 was 15.9% and 13.8% in the training set and

testing set, respectively. The positive rate of HER2 in intestinal-type GC was

significantly higher than that in diffuse-type GC. The radiomics signature

comprised eight robust features demonstrated good discrimination ability

for HER2 overexpression in the training set (AUC = 0.84) and the testing set

(AUC = 0.78). A radiomics-based model that incorporated radiomics signature

and pathological type showed good discrimination and calibration in the

training (AUC = 0.85) and testing (AUC = 0.84) sets.

Conclusion: The proposed radiomics model showed favorable accuracy for

prediction of HER2 overexpression in AGC.
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Introduction

Gastric cancer (GC) is the fifth common malignancy and the

fourth reason of cancer-related death (Sung et al., 2021). In addition,

GC is the most common and fatal cancer in men in several South-

Central Asian countries (Sung et al., 2021). Attributed to the

endoscopic screening, the mortality of GC decreased in some

courtiers. However, given low screening rates in China, majority

of the GC patients are identified at advanced stage with poor

prognosis. Human epidermal growth factor receptor 2 (HER2) is

a crucial therapeutic target for various types of solid tumors,

including GC. The overexpression of HER2 associates with an

unfavorable prognosis and plays a crucial role of tumorigenesis

in GC (Wang et al., 2018; Luo et al., 2019). Trastuzumab, a

monoclonal antibody targeting HER2, can inhibit tumor cell

proliferation through blocking downstream signal transduction

pathway. The ToGA (Trastuzumab for Gastric Cancer) trail

demonstrated that anti-HER2 monoclonal antibody Trastuzumab

with chemotherapy prolonged survival of HER2 positive advanced

gastric cancer (AGC) patients (Bang et al., 2010). For AGC patients

with HER2 overexpression, Trastuzumab is recommended as the

first-line target therapy by National Comprehensive Cancer

Network (NCCN) guidelines. However, GC is a highly

heterogenous disease (Nishida et al., 2015; Wakatsuki et al.,

2018). Although multi-regional sampling was used to determine

HER2 status, the histological examination of surgical resection or

biopsy samples only reveals a fraction of tumors. Thus, conventional

HER2 testing for GC patients still has a high risk of false negative of

HER2 overexpression. Patients with incorrect test results may lose

the opportunity of targeted therapy. Therefore, an accurate

evaluation of HER2 status is of particular significance for GC

patients.

AI techniques provide new methods to process images and

translate them into quantitative data, allowing the identification

of microscopic features of tumor that invisible by human eyes (Bi

et al., 2019). Accumulating evidence shows that radiomics can be

applied in various aspects including diagnosis, prediction of

metastasis risk, survival and treatment response for GC

patients (Ma et al., 2017; Li et al., 2019). Previous studies

have reported that gene mutation status could also be

predicted by radiomics features (Zhao et al., 2019; Cui et al.,

2020). Besides, radiomics analysis combined with 3 dimensions

(3D) reconstruction technology allows the extraction of image

features from the whole volume of the lesions, providing more

FIGURE 1
Flowchart of study design.
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comprehensive information of intratumor heterogeneity (Bi

et al., 2019). Therefore, the radiomics method can serve as a

robust and noninvasive biomarker in the evaluation of tumor

gene expression. Nevertheless, few studies have explored the

clinical application potential of radiomics method for

evaluation of HER2 status in AGC (Wang et al., 2021).

Therefore, in the current study, we established and validated

a multiphase contrast-enhanced CT (CECT)-based radiomics

model for predicting HER2 overexpression in AGC patients.

Materials and methods

Study population

Seven hundred and forty-five consecutive AGC patients

including 515 males (median age, 61 years; interquartile range,

54–66 years) and 230 females (median age, 57 years; interquartile

range, 49–64 years) were consecutively enrolled from July

2015 to December 2017. According to the time of diagnosis,

all patients were separated into training (n = 521) and testing set

(n = 224) at a ratio of 7:3. The inclusion criteria: (Sung et al.,

2021) patients received radical gastrectomy or endoscopic

biopsy; (Wang et al., 2018) AGC diagnosis was confirmed

pathologically; (Luo et al., 2019) abdominal CECT scans were

performed within 2 weeks before biopsy or surgery; (Bang et al.,

2010) HER2 status was available; (Nishida et al., 2015) Imaging

quality meet the requirements of analysis: 1) gastric cavity was

sufficiently distend; 2) images without sever peristaltic and

respiratory artifacts. The exclusion criteria: (Sung et al., 2021)

lack of complete clinical records; (Wang et al., 2018) patients

received any treatment prior to CT scan; (Luo et al., 2019)

patients suffered from other malignant disease.

This retrospective was conducted under the approval of our

institutional ethical review board. The requirement for informed

consent was waived.

The clinical and pathological information of all patients were

obtained. Pathologic staging was determined in accordance to the

eighth edition AJCC staging system. The patient’s recruitment

flow chat is illustrated in the Supplementary Figure S1.

Human epidermal growth factor receptor
2 status assessment

The HER2 status was assessed according to NCCN guidelines

(Ajani et al., 2022). HER2 testing was performed as previously

descripted (Bang et al., 2010). Immunohistochemistry (IHC) and

Fluorescence in-situ hybridization (FISH) were used to

determine HER2 status. IHC staining score of 3+ were

considered positive. IHC staining score of 2+ with FISH+

were also deemed positive. Patients with IHC score of 0, 1+

or 2+ with FISH− were considered negative.

Lesion segmentation and feature
extraction

Abdominal CECT images in arterial phase (AP), portal phase

(PP) and delay phase (DP) were analyzed. 3D Slicer software was

used for constructing volume of interest (VOI) of lesions. The

VOIs of each lesion of three phases were manually delineated

along the margin of tumor. The adjacent fluid or air were

carefully avoided into contours and reconstructed sagittal and

coronal images were used as reference. The procession of the

segmentation was done under the consensus of 2 radiologists

(XJG and TTM, with 7 and 10 years of interpretation experience

in abdominal CT imaging). Feature extraction was implemented

through utilizing an open-source platform (PyRadiomics 2.2.0)

(Gao et al., 2021). A total of 859 features were extracted and

grouped into four types: size and shape, first-order statistical,

textural features, and wavelet features. The Details of the CT

scanning protocol, image pre-processing and radiomic features

are shown in the Supplementary methods and Supplementary

Table S1.

Radiomics signature establishment

The flowchart of overall radiomics analysis is shown in

Figure 1. In order to ensure the reliability of the selected

features, we assessed the intra- and inter-observer agreement

using intra- and interclass correlation coefficients. We randomly

chosen 120 patients from the training set and the VOI

segmentation were independently performed by 2 readers.

Reader 1 repeated the procedure 2 weeks later. The features

were regarded as stable if the intra- and interclass correlation

coefficients values were higher than 0.85. Then, the patients were

divided into HER2+ and HER2−groups. The Mann-Whitney U

test was used to identify features that differed significantly

between the 2 groups. Bonferroni correction was used to limit

type 1 errors, and features with FDR adjusted p < 0.05 were

selected for further analysis. The least absolute shrinkage and

selection operator (LASSO) model was subsequently utilized to

build a radiomics signature with non-zero coefficients. The 10-

fold cross-testing was employed to identify the optimal

regularization parameter λ. The radiomics scores (R-score)

were calculated based on the fitting formula of the radiomics

signature for all patient (Huang et al., 2016). The predicting

accuracy of radiomic signature were evaluated in both sets.

Nomogram establishment and validation

Univariable and multivariable logistic regression model were

utilized to identify independent risk factors of

HER2 overexpression in the training set. Then, a radiomics

model was established and represented as a nomogram.
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Statistical analysis

All statistical analyses were performed using R (version 3.4.2)

with packages including “glmnet,” “pROC” and “Survminer.”

Differences between categorical variables were compared with

chi-squared test or Fisher’s exact test. Differences between

continuous variables were compared with the student’s t-test

or the Mann-Whitney test. The Dice similarity coefficient was

used for evaluation the inter-observer reproducibility of lesion

segmentation. The discrimination ability of the radiomics

signature was determined with the receiver operating

characteristic (ROC) curve. Maximized Youden index was

used to find the best cutoff threshold of R-score for classifying

patients into low- and high risk of HER2 overexpression.

Calibration of the nomogram was evaluated by Hosmer-

Lemeshow test.

Results

Analysis of clinical information

The training set contained 83 (15.9%)HER2+ patients, while the

testing set contained 31 (13.8%)HER2+ patients. The positive rate of

HER2 in intestinal-type GC was significantly greater than that in

diffuse-type GC. No significant differences were showed in HER2+

TABLE 1 Characteristics of the study population.

Variable Training set (n = 521) Testing set (n = 224)

HER2− (n =
438)

HER2+ (n =
83)

P HER2− (n =
193)

HER2+ (n =
31)

P

Age 0.86 0.26

<60 217 (49.5) 42 (50.6) 91 (47.2) 18 (58.1)

≥60 221 (50.5) 41 (49.4) 102 (52.8) 13 (41.9)

Gender 0.12 0.10

Male 306 (69.9) 60 (72.3) 127 (65.8) 22 (71.0)

Female 132 (30.1) 23 (27.7) 66 (34.2) 9 (29.0)

Tumor Site 0.38 0.91

Upper 135 (30.8) 27 (32.5) 71 (36.8) 11 (35.5)

Middle 66 (15.1) 15 (18.1) 42 (21.7) 5 (16.1)

Lower 183 (41.8) 27 (32.5) 59 (30.6) 10 (32.3)

Overlap 54 (12.3) 14 (16.9) 21 (10.9) 5 (16.1)

Pathologic T stage 0.69 0.53

T2 125 (28.5) 27 (32.5) 39 (20.2) 9 (29.0)

T3 40 (9.1) 9 (10.8) 26 (13.5) 4 (12.9)

T4 273 (62.3) 47 (56.6) 128 (66.3) 18 (58.1)

Pathologic N stage 0.22 0.30

N0 140 (32.0) 33 (39.8) 70 (36.3) 10 (32.3)

N1 75 (17.1) 18 (21.7) 28 (14.5) 2 (6.5)

N2 91 (20.8) 12 (14.5) 38 (19.7) 5 (16.1)

N3 132 (30.1) 20 (24.1) 57 (29.5) 14 (45.2)

Pathologic TNM stage 0.07 0.58

I 64 (14.6) 12 (14.5) 29 (15.0) 5 (16.1)

II 120 (27.3) 34 (41.0) 59 (30.6) 6 (19.4)

III 230 (52.5) 32 (38.6) 98 (50.8) 18 (58.1)

IV 24 (5.5) 5 (6.0) 7 (3.6) 2 (6.5)

Pathologic Type <0.01
Intestinal 238 (54.3) 58 (69.9) 99 (51.3) 23 (74.2) 0.02

Diffuse 200 (44.7) 25 (30.1) 94 (48.7) 8 (25.8)

Differentiation 0.44 0.91

Well-Moderate 109 (24.8) 24 (28.9) 58 (30.0) 9 (29.0)

Poor 329 (75.1) 59 (77.8) 135 (70.0) 22 (71.0)

Data are number of patients; data in parentheses are percentage unless otherwise indicated.
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and HER2−groups in both sets in terms of age, gender, TNM stage,

tumor sites and differentiation status. The clinicopathological

characteristics of all patients are shown in Table 1.

Segmentation reproducibility

The Dice similarity coefficient of inter-observer

segmentation was 0.91, which indicated a favorable agreement

between readers.

Radiomics feature extraction and
signature establishment

Of 2,577 features extracted from the VOIs of three phases

images of the training set, 1836 features with intra- and interclass

correlation coefficients <0.85 were excluded. Ninety-six

significantly differentially changed features of the retained

741 features were identified between the HER2−and HER2+

groups and were brought into LASSO algorithm. Then, the

radiomics signature was constructed based on 8 features with

non-zero coefficients (Figure 2), include 3 features from AP,

4 features from PP, and 1 features from DP. The R-score

calculation formula is presented in Supplementary formula.

The distributions of R-scores are shown in Supplementary

Figure S2.

The evaluation of predictive performance
of radiomics signature

The R-scores of HER2+ patients were significantly higher

than those of HER2−patients in the training (p < 0.001,

Figure 3A) and the testing sets (p < 0.001, Figure 3B). The

radiomics signature demonstrated favorable performance in the

training and the testing sets with AUCs of 0.84 (95% confidence

interval (CI): 0.79–0.89, Figure 3C) and 0.78 (95% CI: 0.69–0.88,

Figure 3D), respectively.

Nomogram establishment and validation

The uni- and multivariable logistic regression model were

conducted to assess the association of HER2 status with R-score

and the clinicopathological parameters in the training set. The

radiomics signature and intestinal-type GC were demonstrated

to be independent predictors for HER2 overexpression (Table 2).

A nomogram was developed with the two factors (Figure 4A).

The AUC of the nomogram in the training set was 0.85 (95%

CI: 0.80–0.90; Figure 4B), which was higher than that of the

radiomics signature and pathological type only. The testing set

confirmed this result, with an AUC of 0.84 (95% CI: 0.75–0.93;

Figure 4C). The calibration curve reflected a good fit for the

nomogram in both the training (p = 0.71, Figure 4D) and the

testing sets (p = 0.63, Figure 4E).

FIGURE 2
Feature selection using least absolute shrinkage and selection operator (LASSO) logistic regression. (A) Selection of tuning parameter (λ) in the
LASSOmodel via 10-fold cross-testing based onminimum criteria. The AUC curve was plotted against log (λ). Dotted vertical lines were drawn at the
optimal values by using the minimum criteria and the 1 standard error of the minimum criteria (the 1- standard error criteria). (B) LASSO coefficient
profiles of the 96 selected features. A vertical line was plotted at the optimal λ value, which resulted in eight features with nonzero coefficients.
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FIGURE 3
Comparison of radiomics score between human epidermal growth factor receptor 2 (HER2)—and HER2 + groups in the training (A), and testing
(B) sets. The ROC curves of the radiomics signature in the training (C), and testing (D) sets.

TABLE 2 Risk factors of HER2 overexpression in advanced gastric cancer.

Variable Univariate logistic regression Multivariate logistic regression

OR (95% CI) p Value OR (95% CI) p Value

Gender 1.17 (0.75–1.80) 0.48

AGE (<60 vs. ≥ 60) 0.86 (0.58–1.28) 0.45

Tumor site 0.78 (0.84–1.24) 0.78

TNM stage 0.94 (0.72–1.17) 0.48

T stage 0.86 (0.69–1.07) 0.18

N stage 0.94 (0.80–1.01) 0.42

Pathological type 2.14 (1.39–3.31) <0.01 1.92 (1.23–6.12) 0.02

Differentiation 0.88 (0.75–1.05) 0.12

Radiomics signature 8.72 (4.25–18.41) <0.01 6.13 (3.97–13.23) <0.01

OR, odd ratio; CI, confidence interval.
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Discussion

In the current study, we proposed amulti-phase CECT-based

radiomics model incorporated with radiomics signature and

pathological type as a noninvasive image biomarker for

predicting HER2 overexpression in AGC patients. The model

showed accurate discrimination power in both the training and

testing sets. The radiomics signature may help clinician in the

FIGURE 4
Nomogram developed with ROC and calibration curves. (A) A radiomics nomogram was developed in the training set with radiomics signature
and pathological type incorporated. ROC curves of the radiomics nomogram and pathological type for the prediction of HER2 status in the training
(B), and testing (C) sets. Calibration curves of the nomogram in the training (D), and testing (E) sets.
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detection of patients with high risk of false results of

HER2 overexpression due to tumor heterogeneity. In negative

result from pathological examination, HER2 status need to be

reevaluated if high-risk of HER2 overexpression suggested by

radiomics model.

The ToGA trial firstly demonstrated that HER2+ AGC

patients could benefit from trastuzumab treatment (Bang

et al., 2010). After that, two phase II studies also showed that

Trastuzumab could prolong the overall survival for Chinese

HER2-positive AGC patients (Qiu et al., 2014; Gong et al.,

2016). Based on these results, trastuzumab with chemotherapy

is now the first-line treatment for patients with HER2+ AGC.

However, compared to breast cancer, HER2 expression exhibits

more heterogeneity in GC (Valtorta et al., 2015). The

upregulation of HER2 induces the cell proliferation,

migration, invasion and angiogenesis, which contribute to

significantly increased heterogeneity in GC (Ciesielski et al.,

2018). Accumulating evidence reveals that increased

intratumoral heterogeneity of HER2 expression is associated

with poor prognosis (Lee et al., 2013; Motoshima et al., 2018).

For GC patients, the heterogeneity of HER2 status not only

influences the accurate interpretation of HER2 status, but also

associates with the treatment efficacy of anti-HER2 therapy

(Wakatsuki et al., 2018; Yagi et al., 2019). The traditional

biopsy-based assays maybe a barrier of personalized therapy

as the detected gene amplification or mutations does not always

reflect the full landscape of tumor cells. Therefore, there is still a

need to find effective way of estimating clinical outcomes of

HER2-targeted therapy.

The radiomics approach has been widely applied in the

prediction of treatment efficacy in various types of tumors (Liu

et al., 2019; Mattonen et al., 2019). Additionally, a growing body

evidence demonstrates that the radiomicsmethod can quantify the

intratumoral heterogeneity. The high-dimensional radiomics

features, which can hardly be visualized using human eyes,

provide more details about intratumoral environment such as

cell density, hypoxia, microvessel density (Ganeshan et al., 2012a;

Ganeshan and Miles, 2013; Zhang et al., 2013). Moreover, the

radiomics features extracted from the 3-dimensional lesions

represent the entire landscape of tumor bulk (Mei et al., 2018).

Previous study has revealed that texture features such as

uniformity and entropy were correlated with worse survival of

lung, esophageal, and head and neck squamous cell cancer

(Ganeshan et al., 2012a; Ganeshan et al., 2012b; Zhang et al.,

2013). Recently, Waugh et al. reported that CT texture features

such as higher entropy were associated with increased

intratumoral heterogeneity in HER2 positive breast cancer

(Waugh et al., 2016). Sung et al.,2021 assessed the association

of CT texture with outcome of GC patients received Trastuzumab

treatment. However, this study only investigated the texture

features extracted from the largest cross-sectional area of lesions

(Yoon et al., 2016). In line with previous reports, we found that

entropy was a crucial feature for prediction of HER2 status

(Waugh et al., 2016). In addition, Grey Level Nonuniformity,

which was selected in our signature, was suggested to be an

important feature for measuring intratumoral heterogeneity

(Aerts et al., 2014). These results revealed that the radiomics

signature might provide insight into tumor heterogeneity and

improved the explainability of our radiomics signature for

prediction of HER2 status.

With the advancement of high-throughput sequencing

techniques, several genomic classification systems, which

reflecting the complicated genomic mechanisms underlying

GC, have been proposed (Cancer Genome Atlas Research,

2014; Cristescu et al., 2015). The complicated alternation of

signaling pathway induced by HER2 overexpression underlies

the treatment efficacy of anti-HER2 therapy (Chen et al., 2012).

Thus, further radiogenomics analysis which links radiomics

features with genomic profile is warranted in future researches.

This study has some limitations. Firstly, although the radiomics

analysis with volumetric features represented the status of the whole

tumor bulk, bias may still be introduced as the test results of the

specimens may not reflect the actual status of HER2 expression.

Secondly, this retrospective study was conducted in a single center.

Thirdly, due to the low positive rate of HER2 in GC in the Chinese

population, our study only enrolled 114 HER+ patients Therefore,

larger prospective multicenter studies are warranted to assess the

generalizability of the radiomics signature.

In summary, we established and validated a multiphase

CECT radiomics model which showed favorable prediction

accuracy of HER2 in AGC patients and may improve

confidence in clinical decision-making.
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