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Background: Previous studies have suggested that patients with lung

adenocarcinoma (LUAD) will significantly benefit from epidermal growth

factor receptor tyrosine kinase inhibitors (EGFR-TKI). However, many LUAD

patients will develop resistance to EGFR-TKI. Thus, our study aims to develop

models to predict EGFR-TKI resistance and the LUAD prognosis.

Methods: Two Gene Expression Omnibus (GEO) datasets (GSE31625 and

GSE34228) were used as the discovery datasets to find the common

differentially expressed genes (DEGs) in EGFR-TKI resistant LUAD profiles.

The association of these common DEGs with LUAD prognosis was

investigated in The Cancer Genome Atlas (TCGA) database. Moreover, we

constructed the risk score for prognosis prediction of LUAD by LASSO

analysis. The performance of the risk score for predicting LUAD prognosis

was calculated using an independent dataset (GSE37745). A random forest

model by risk score genes was trained in the training dataset, and the diagnostic

ability for distinguishing sensitive and EGFR-TKI resistant samples was validated

in the internal testing dataset and external testing datasets (GSE122005,

GSE80344, and GSE123066).

Results: From the discovery datasets, 267 common upregulated genes and

374 common downregulated genes were identified. Among these common

DEGs, therewere 59 genes negatively associatedwith prognosis, while 21 genes

exhibited positive correlations with prognosis. Eight genes (ABCC2, ARL2BP,

DKK1, FUT1, LRFN4, PYGL, SMNDC1, and SNAI2) were selected to construct the

risk score signature. In both the discovery and independent validation datasets,

LUAD patients with the higher risk score had a poorer prognosis. The

nomogram based on risk score showed good performance in prognosis

prediction with a C-index of 0.77. The expression levels of ABCC2, ARL2BP,

DKK1, LRFN4, PYGL, SMNDC1, and SNAI2 were positively related to the

resistance of EGFR-TKI. However, the expression level of FUT1 was favorably

correlated with EGFR-TKI responsiveness. The RF model worked wonderfully

for distinguishing sensitive and resistant EGFR-TKI samples in the internal and
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external testing datasets, with predictive area under the curves (AUC) of

0.973 and 0.817, respectively.

Conclusion: Our investigation revealed eight genes associated with EGFR-TKI

resistance and provided models for EGFR-TKI resistance and prognosis

prediction in LUAD patients.

KEYWORDS

drug resistance, EGFR-TKI, LUAD, nomogram, prognosis prediction

1 Introduction

Lung cancer is one of the most common diseases since more

than 2 million new cases are detected globally every year (Ren

et al., 2021; Sung et al., 2021). Based on cell type, lung cancer

could be split into small-cell (15%) and non-small-cell (NSCLC,

75%) (Li et al., 2021). According to histological categorization,

NSCLC is often separated into lung adenocarcinoma (LUAD),

lung squamous cell carcinoma (LUSC), and large cell carcinoma

(Nasim et al., 2019). LUAD comprises about 50% of all lung

cancer cases (Ren et al., 2022), and the majority of LUAD cases

are diagnosed in the late stages of cancer (Al-Dherasi et al., 2021).

Despite advances in cancer treatment, including the use of

PD1 antibodies, only 15% of LUAD patients could survive

more than 5 years (Ma et al., 2020).

Despite the fact that the efficiency of therapy for advanced

LUAD is still unsatisfactory, the prognosis of LUAD is starting to

improve due to the emergence of novel molecular targeting

therapies. The effective treatment of EGFR-TKI for EGFR

mutation patients is virtually a breakthrough in personalized

medicine (Wang et al., 2022). EGFR-TKI has been regarded as

the first-line therapy for LUAD individuals with EGFR

mutations. According to the findings of a meta-analysis, first-

line EGFR-TKI substantially increased progression-free survival

(PFS) when compared with chemotherapy (Lee et al., 2017). Most

LUAD patients treated with EGFR-TKI will develop disease

progression and resistance within a year (Wu et al., 2018).

The mechanisms of EGFR-TKI resistance have not been fully

investigated, and a lack of resistance-related biomarkers exists.

As a result, novel indicators and models for predicting EGFR-

TKI resistance are urgently required.

Here, we acquired EGFR-TKI resistance and sensitive data

from online databases, and multiple datasets were analyzed to

identify common genes related to EGFR-TKI resistance.

Moreover, we constructed the risk score for prognosis

prediction of LUAD by LASSO and Cox analysis. The

associations of the risk score with clinical features and tumor

microenvironment (TME) compositions were investigated. The

capabilities of the risk score for the prediction of EGFR-TKI

resistance and prognosis were validated in the independent

datasets. Our study provides possible targets for EGFR-TKI

resistance as well as models for predicting EGFR-TKI

resistance and LUAD prognosis.

2 Materials and methods

2.1 Data acquisition

GEO, one of the largest public gene expression data

resources, contains the gene expression data of resistant and

sensitive cells to EGFR-TKI, such as gefitinib, erlotinib, and

afatinib. We searched the potential datasets on GEO by

keywords (gefitinib, erlotinib, afatinib, and epidermal growth

factor receptor tyrosine kinase). The potential datasets were then

filtered by the following requirements: 1) the expression data

should come from human NSCLC cells or samples; 2) the dataset

should contain at least 3 sensitive and 3 resistant NSCLC cells/

samples without genetic manipulation such as knockdown of a

specific gene; 3) the mRNA expression matrix should be available

on the GEO platform. Among the 34 available datasets from

search results for “gefitinib”, GSE34228 and GSE123066 were

selected by the criteria. Among the 39 available datasets from

search results for “erlotinib”, GSE80344 was selected by the

criteria. Among the 8 available datasets from search results for

“afatinib”, none were selected. Among the 4 available datasets

from search results for “epidermal growth factor receptor

tyrosine kinase”, GSE122005 and GSE31625 were selected by

the criteria. The searching and filtering results were provided in

Supplementary Table S1.

Among these five datasets, the discovery datasets were

GSE31625 (28 erlotinib-resistant and 18 erlotinib-sensitive

samples) (Balko et al., 2006) and GSE34228 (26 gefitinib-

resistant and 26 gefitinib-sensitive samples) (Nakata et al.,

2015). The discovery datasets were used for identifying

resistance-related genes and constructing the model for

predicting the resistance of a sample by expression data.

Three independent datasets (GSE122005, GSE80344, and

GSE123066) were used to validate the diagnosis abilities of

selected genes and the model for predicting the resistance.

GSE122005 contains 3 gefitinib-sensitive and 3 gefitinib-

resistant lung cancer cell samples (Wu et al., 2019).

GSE80344 contains 4 erlotinib-sensitive and 12 erlotinib-

resistant lung cancer cell lines (Fustaino et al., 2017).

GSE123066 contains 3 gefitinib-sensitive samples and

3 gefitinib-resistant cells.

In order to construct the risk score model for predicting the

prognosis of LUAD patients, RNA-seq expression values (level 3,
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raw count) and clinical records were retrieved from the TCGA-

LUAD database by the TCGAbiolinks package (Colaprico et al.,

2016). An independent dataset (GSE37745) was randomly

selected as the testing dataset for validating the risk score

model. GSE37745 contained 226 lung cancer samples with

expression values and clinical records (Botling et al., 2013).

2.2 Differentially expressed genes

The expression data of discovery datasets (GSE31625 and

GSE34228) was downloaded by

“GSE31625_series_matrix.txt.gz” and

“GSE34228_series_matrix.txt.gz” from the package of

GEOquery (Davis et al., 2007). Then, the expression data

from these two datasets was annotated with ‘GPL96. soft’ and

‘GPL4133. soft’, respectively. The gene expression value was

retained by the probe with the highest expression. DEGs were

determined by analyzing the sensitive and resistant gene

expression patterns using the edgeR (Robinson et al., 2010).

The cut-off values for DEGs were set to p-values<0.05 and |

log2FC|>0.5. DEGs with log2FC>0.5 were defined as upregulated
DEGs, and genes with log2FC<-0.5 were defined as

downregulated DEGs in resistant profiles. The important

DEGs were shown as a heatmap and a volcano plot,

respectively. The shared DEGs in these two discovery datasets

were obtained by Wayne analysis.

2.3 Functional enrichment analyses

Gene ontology (GO) analysis is a common technique for

studying the biological function of genetic data. It usually contains

biological process (BP), cellular component (CC), and molecular

function (MF). KEGG and Hallmark include a large number of well-

defined pathways and their correspondent genes. To obtain

functional annotations, we subsequently uploaded the common

upregulated and downregulated DEGs (dDEGs) to Enrichr

(https://maayanlab.cloud/Enrichr/) to process the GO, KEGG, and

Hallmark signal pathway analysis (Kuleshov et al., 2016). As a result,

p-value< 0.05 was considered statistically significant.

2.4 Construction of the signature

Based on the survival data and expression profiles from the

TCGA-LUAD dataset, we calculated the p-value for commonDEGs

and selected the significant survival-related DEGs (p-value<0.05). In
previous studies, the optimal prognostic biomarkers were selected by

multivariate Cox proportional hazard models (Chen et al., 2019;

Yuan, Ren, & Wang et al., 2021) or stepwise regression with

backward selection (Wang et al., 2020). To minimize the

possibility of overfitting as much as possible, we used LASSO

Cox regression analysis to identify the appropriate genes. LASSO

is a compression estimation method that can compress the

regression coefficients by constructing a penalty function for

selecting variables (Z. Yu et al., 2022). By LASSO, the genes with

the non-zero coefficient after the shrinking process were selected to

construct the prognostic model. The advantages of LASSO include

avoiding overfitting, automatic feature selection, and short

processing time. A previous study, containing the comparison of

models, showed the performance of LASSO is better than stepwise

regression (Kumar et al., 2019). Using the glmnet package

(Friedman et al., 2010), the LASSO has been successfully applied

for survival prognosis in many application areas, including oncology

(Yuan, Ren, & Li et al., 2021; Zhang et al., 2020).

2.5 Validation of the signature

Risk scores of TCGA-LUAD samples were generated by the

expression of genes and the corresponding coefficient, which was

calculated by univariate Cox analysis. Relying on the median

value, TCGA-LUAD individuals were then split evenly into high-

and low-risk groups. Additionally, we built the risk score to

anticipate the prognosis of TCGA-LUAD. In addition, in order to

test the accuracy, we constructed calibration curves and

calculated the AUC. Calculations were made to determine the

degree of connection between risk score and clinicopathological

characteristics. Following that, univariate and multivariate Cox

regression analyses were carried out with the goal of determining

whether or not the risk score was an independent risk factor. An

independent dataset (GSE37745) was randomly selected as the

testing dataset for validating the risk score model.

2.6 Construction and validation of the
nomogram

A nomogram was created relying on the risk score and the

clinicopathological features, including age, AJCC tumor stage (I,

II, III, IV), and gender. The calibration curve was plotted to

estimate the model’s effectiveness. The discrimination capacity

was then computed using the concordance index (C-index). The

C-index runs between 0.5 and 1.0, with 0.5 suggesting a useless

model whatsoever and 1.0 suggesting an excellent model.

2.7 Construction and validation of the
random forest model to distinguish
sensitive and resistant EGFR-TKI patients

In order to combine the expression data of discovery datasets

(GSE31625 and GSE34228) and three independent datasets

(GSE122005, GSE80344, and GSE123066) and remove the

batch effect, the following steps were adopted. 1) the
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expression data profiles of these five datasets were normalized by

the method of “min-max normalization”which scaled data in the

range (0, 1). 2) The expression data profiles of these five datasets

were combined, and then we used “ComBat” function from the

“sva” package to remove the batch effect (Leek et al., 2012). The

‘sva’ package and “ComBat” function were used in multiple

studies to eliminate the batch effects (Li et al., 2020; Tang

et al., 2020; J. Yu et al., 2022). We evaluated the batch effect

by the principal component analysis (PCA) before and after

using the “sva” package. In the expression data after the batch

effect correction, the expression values of eight risk score genes

were used in model construction and evaluation.

Firstly, the expression data of samples from discovery datasets

(GSE31625 and GSE34228) was used in model construction. This

data was then randomly and evenly divided into the training dataset

(50%) and the internal testing dataset (50%). The expression data of

three independent datasets (GSE122005, GSE80344, and

GSE123066) were used as the external testing dataset. Then,

based on the eight genes, we constructed a random forest model

by the “caret” R package (Kuhn, 2008) to distinguish sensitive and

resistant EGFR-TKI patients on the training dataset. The model was

trained with 3-fold cross-validation, which is adopted by studies to

get the optimal characteristics (Zhang et al., 2020). ROC plots and

AUC values were obtained to evaluate the performance of the

constructed model in the internal and external testing datasets.

2.8 Estimation of tumor
microenvironment

ESTIMATE was utilized to estimate the status of immune

and stromal cell infiltration in each cancer tissue (Yoshihara

et al., 2013). The relative abundance of immune cells in each

LUAD patient was determined by converting the expression

levels of genes into the fraction of immune cells. This was

accomplished using the R package ‘CIBERSORT’ and the

deconvolution-based CIBERSORT method (Chen et al., 2018).

The link between risk score and immune cells in LUAD patients

was studied in the TCGA dataset. The expression levels of

immune checkpoint genes were extracted, including PD-L1

(CD274), PD1 (PDCD1), CTLA-4 (CTLA4), TIM3

(HAVCR2), LAG3, and TIGIT. The comparison analysis was

conducted on the LUAD patients from the TCGA dataset.

3 Results

3.1 Detection of differentially expressed
genes in EGFR-TKI sensitive and resistant
cells

GSE31625 (erlotinib) and GSE34228 (gefitinib) datasets were

selected for detection of EGFR-TKI resistance-related DEGs. A

volcano and a heatmap plot from GSE31625 were shown in

Supplementary Figure S1A,B. Among 3579 DEGs from

GSE31625, there were 1703 highly elevated DEGs and

1876 significantly dDEGs. Similarly, a volcano and a heatmap

plot from GSE34228 were shown in Supplementary Figure

S2A,B. Among 4144 DEGs from GSE34228, there were

2026 highly elevated DEGs and 2118 significantly dDEGs. In

total, 267 shared upregulated genes (Figure 1A) and 374 shared

downregulated genes (Figure 1B) were discovered by Wayne

analysis of the two datasets.

3.2 Function enrichment analysis

These DEGs were then used for GO, KEGG, and Hallmark

enrichment analyses, and the top 10 enrichment terms were

shown in Supplementary Table S2–6. In the BP (Supplementary

Table S2), uDEGs were enriched in cold-induced thermogenesis

(GO:0120162), bone resorption (GO:0045780), and

neuromuscular junction development (GO:0007528). In the

CC (Supplementary Table S3), the uDEGs were mainly

enriched in the mitochondrial matrix (GO:0005759),

neuromuscular junction (GO:0031594), and mitochondrial

inner membrane (GO:0005743). In the MF category

(Supplementary Table S4), the uDEGs were enriched in

NADPH binding (GO:0070402), oxidoreductase activity (GO:

0016628), and ribose phosphate diphosphokinase activity (GO:

0004749). In the KEGG analysis (Supplementary Table S5),

uDEGs were primarily involved in oxytocin, apelin, and

GnRH signaling pathways. In the Hallmark enrichment

analysis (Supplementary Table S6), uDEGs were primarily

involved in epithelial mesenchymal transition (EMT), fatty

acid metabolism, and adipogenesis.

Similarly, in the BP (Supplementary Table S2), dDEGs were

enriched in defense responses to symbiont (GO:0140546),

defense responses to virus (GO:0051607), and cytokine-

mediated signaling pathways (GO:0019221). In the CC

(Supplementary Table S3), the dDEGs were mainly enriched

in bounding membrane of organelle (GO:0098588), cytoplasmic

FIGURE 1
Wayne diagram showing common upregulated DEGs
(uDEGs) (A) and common downregulated DEGs (dDEGs) (B) in the
EGFR-TKI resistant LUAD cells.
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vesicle membrane (GO:0030659), and cornified envelope (GO:

0001533). In the MF (Supplementary Table S4), the dDEGs were

enriched in hydrolase activity (GO:0016813), protein-arginine

deiminase activity (GO:0004668), and arachidonic acid binding

(GO:0050544). In the KEGG (Supplementary Table S5), dDEGs

were primarily involved in coronavirus disease, Hepatitis C, and

estrogen signaling pathways. In the Hallmark enrichment

analysis (Supplementary Table S6), dDEGs were primarily

involved in interferon gamma response and interferon alpha

response.

3.3 Calculation of the risk score

Among the 267 common uDEGs, 59 genes with HR>1 and
p-value<0.05 were defined as risky genes. Similarly, among

374 common dDEGs, 21 genes with HR<1 and

p-value<0.05 were defined as the protective genes. The

LASSO Cox regression algorithm was used to additionally

pick these 80 genes in order to create a prognosis signature.

Consequently, we identified an 8-gene signature according to

the optimal λ value (Figures 2A,B). Furthermore, we used the

following equation to compute the risk scores of TCGA-

LUAD patients: score= (0.16683) * expressionABCC2 +

(0.6072) * expression ARL2BP + (0.19634) * expressionDKK1

+ (-0.5254) * expressionFUT1 + (0.36419) * expressionLRFN4 +

(0.35000) * expressionPYGL + (0.7995) * expressionSMNDC1 +

(0.34562) * expressionSNAI2. Following the median risk score,

all LUAD individuals were further separated into low-risk and

high-risk groups (Figure 2C). In the TCGA-LUAD dataset, the

high-risk group experienced higher fatalities (Figure 2C). The

mRNA expression of these eight genes in high- and low-risk

individuals was compared in Figure 2D. Furthermore, AUC

values showed that this risk score predicts prognosis with

satisfactory accuracy (3-year: 0.70; 5-year: 0.71; 10-year: 0.69)

(Figure 2E). Consistently, the high-risk group of LUAD

patients had a lower survival rate than the low-risk

(Figure 2F, p-value<0.001).

3.4 Validation of the risk score

Following the median risk score, all LUAD individuals

from GSE37745 were further separated into low-risk and

high-risk groups (Figure 3A). The high-risk group

experienced higher fatalities (Figure 3A). The mRNA

expression of these eight genes in high- and low-risk

individuals was compared in Figure 3B. Furthermore, AUC

FIGURE 2
Construction of a risk score in the TCGA-LUAD cohort. The LASSO Cox regression analysis. (A) Coefficient values of genes. (B) The coefficient
plot was plotted against the log(lambda) values. (C) Distribution of risk scores and survival summary. (D) Heatmap illustrating the expression of the
genes in groups with low and high risk. (E) The risk score for predicting survival was assessed by AUC values. (F) There was a reduced overall survival
among individuals in the high-risk group compared to patients in the low-risk group.
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values showed that this risk score predicts prognosis with

satisfactory accuracy (3-year: 0.67; 5-year: 0.63; 10-year: 0.62)

(Figure 3C). Consistently, the high-risk group of LUAD

patients had a lower survival rate than the low-risk cohort

(Figure 3D, p-value = 0.039).

3.5 Risk score and clinicopathological
indicators

Subsequently, the correlation between clinical features and

risk score was determined. The risk score did not correlate

substantially with the age of LUAD patients (Supplementary

Figure S3A). Positive correlations between risk score and

AJCC stages (Supplementary Figure S3B), T

(Supplementary Figure S3C), N (Supplementary Figure

S3D). Male patients were found to be correlated with

increased risk score (Supplementary Figure S3F). In

contrast, the correlation of the risk score with M

(Supplementary Figure S3E) was not significant.

3.6 Independent prognostic role of the risk
score

Univariate Cox revealed that a higher risk score was strongly

connected with poorer survivability (Figure 4A, HR = 1.6, 95%

CI: 1.4–1.7) dataset. Similarly, themultivariate Cox indicated that

the risk score is an independent predictor of survival when

utilizing the TCGA-LUAD (Figure 4B, HR = 1.5, 95% CI:

1.3–1.7) dataset. These findings imply that the risk score has a

predictive impact independent of other variables.

3.7 Nomogram development and
validation

In the TCGA-LUAD cohort, 1-, 3-, and 5-year OS were

predicted using a nomogram that was constructed by variables:

risk score, age, gender, AJCC stages, T, N, and M (Figure 5A).

The C-index of the nomogram was 0.77. The calibration plot for

the chance of surviving one, three, or five years demonstrated a

FIGURE 3
Validation of the risk score in the GSE37745 cohort. (A) Distribution of risk scores and survival summary. (B)Heatmap illustrating the expression
of the genes in groups with low and high risk. (C) The risk score for predicting survival was assessed by AUC values. (D) There was a reduced overall
survival among individuals in the high-risk group compared to patients in the low-risk group.
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strong connection between the nomogram’s forecast and actual

observation (Figures 5B–D).

3.8 Assessing the ability of the risk score to
distinguish sensitive and resistant
EGFR-TKI samples

As described in the method section, the expression data

from the discovery datasets (GSE31625 and GSE34228) and

three independent datasets (GSE122005, GSE80344 and

GSE123066) were normalized and combined, and then their

batch effects were eliminated. Before the batch effect

elimination, the heterogeneity of responsive and resistant

samples was not found (Supplementary Figure S4A).

However, clear batch effects were found among datasets

(Supplementary Figure S4B). After the batch effect

elimination, responsive samples were separated from

resistant samples (Supplementary Figure S4C), and the batch

effects among datasets were significantly eliminated

(Supplementary Figure S4D). Based on the expression data

after the batch effect elimination, training, internal testing,

and external testing datasets were defined, respectively.

Random forest (RF) was used to construct the prediction

model with data from the training dataset, using mRNA

expression data of eight genes (ABCC2, ARL2BP, DKK1,

FUT1, LRFN4, PYGL, SMNDC1, and SNAI2). In the internal

testing dataset, RF model reached an overall predictive AUC of

0.973 (Figure 6A). In the external testing dataset (GSE122005,

GSE80344 and GSE123066), the RF model worked wonderfully,

with an overall predictive AUC of 0.817 (Figure 6B).

3.9 The correlation of risk score with
immune status

In order to assess the immunity status of LUAD patients in

the low- and high-risk classes, two distinct techniques were used.

According to the ESTIMATE methodology, the stromal score

was considerably greater in the high-risk instances (Figure 7A).

However, the immune score did not show a significant difference

between two groups (Figure 7A; p = 0.679). To further investigate

the link between risk score and various immune cells, we

measured the number of immune cells by CIBERSORT. The

low-risk group had considerably more naive B cells, plasma cells,

Tregs, activated NK cells, and resting dendritic cells (Figure 7B).

On the other hand, more activated CD4 memory cells and

macrophages (M0, M1, M2) were present in the high-risk

group (Figure 7B). Besides, higher immune checkpoint genes,

including PD-L1 (CD274), PD1 (PDCD1), CTLA-4 (CTLA4),

TIM3 (HAVCR2), LAG3, and TIGIT were present in the high-

risk group (Supplementary Figure S5).

3.10 Survival analysis of selected genes

Six of the eight genes (ABCC2, ARL2BP, DKK1, LRFN4,

PYGL, and SMNDC1) were related to worse overall survival

FIGURE 4
The risk score is an independent predictive factor for LUAD patients in the TCGA cohort, as shown by univariate andmultivariate Cox regression
analysis (A,B).
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FIGURE 5
The construction and validation of the nomogram for OS. (A) The designed nomogram was used to assess OS. (B–D) The calibration curves
demonstrated good congruence between the observed likelihood of 1-, 3-, and 5-year survival and the forecast of the nomogram.

FIGURE 6
ROC curve validated the sensitivity and specificity of random forest model for distinguishing EGFR-TKI resistant and sensitive samples in the
internal testing (A) and the external testing (B) datasets.
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FIGURE 7
Evaluation of the association of TME compositions with the risk score. (A) Inside the high-risk group, the stromal score was greater. (B)
Inflammatory cells infiltrating ratios in risk groups. */**/****: statistically significant.

FIGURE 8
Survival analyses of genes. Prognostic values of (A) ABCC2, (B) ARL2BP, (C) DKK1, (D) FUT1, (E) LRFN4, (F) PYGL, (G) SMNDC1, and (H) SNAI2.
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(Figures 8A–H). Conversely, FUT1 was related to improved

overall survival (Figure 8D). We also evaluated the expression

values of these genes between two EGFR-TKI groups. In

GSE31625, five (ABCC2, ARL2BP, PYGL, SMNDC1, SNAI2)

of eight genes were significantly higher in the EGFR-TKI

resistant group (Supplementary Figure S6A). In GSE34228,

seven (ABCC2, ARL2BP, DKK1, LRFN4, PYGL, SMNDC1,

SNAI2) of eight genes were significantly higher in the

EGFR-TKI resistant group (Supplementary Figure S6B). It

should be noted that FUT1 was significantly higher in the

EGFR-TKI sensitive group by expression from

GSE31625 and GSE34228.

4 Discussion

LUAD is the most prevalent subtype of NSCLC,

accounting for nearly fifty percent of lung malignancies

(Jordan et al., 2017). Current therapy for LUAD consists

of surgery and pharmaceutical drugs. Currently, three

generations of EGFR-TKI have been approved for use.

These three generations of EGFR-TKI include erlotinib/

gefitinib (first generation), afatinib/dacomitinib (second

generation), and osimertinib (third generation).

Compared with standard chemotherapy, the EGFR-TKI

significantly improved clinical outcomes (Del et al.,

2019). Most patients treated with EGFR-TKI will acquire

resistance, which significantly restricts the clinical use of

EGFR-TKI.

The main purposes of this study include: 1) identifying

potential EGFR-TKI resistance-related biomarkers; 2)

providing models to distinguish sensitive from resistant

EGFR-TKI samples; 3) providing models to predict the

prognosis of LUAD. Eight genes (ABCC2, ARL2BP, DKK1,

FUT1, LRFN4, PYGL, SMNDC1, and SNAI2) were identified

by bioinformatics analysis. We constructed a RF model by these

genes to distinguish sensitive and resistant EGFR-TKI samples,

and the model reached predictive AUCs of 0.973 and 0.817 in

the internal and external testing dataset. We also constructed a

risk score model by these genes to predict the LUAD prognosis,

and it performed with satisfactory accuracy with an AUC of

0.67 on 3-year prognosis prediction in the independent dataset

(GSE37745). Recently, constructing prognostic models by

mRNA expression data has become prevalent in many

cancer studies. Using 16 metabolic genes, a previous study

constructed a prognostic model for LUAD and it reached an

AUC value of 0.638 on 3-year prognosis prediction in the

independent dataset (GSE37745) (He et al., 2020). Another

study provided a risk score model for LUAD by six genes, and it

reached an AUC value of 0.66 on 3-year prognosis prediction in

GSE37745 (Jiang et al., 2022). In a LUAD prognosis model

constructed by 27 hypoxia-related genes, it showed AUC values

of 0.65 and 0.66 in the validation datasets (Ouyang et al., 2021).

Together, these findings imply that our risk model is more

accurate, stable, and capable of accurately reflecting the

prognosis of LUAD patients.

The data in GSE31625 and GSE34228 datasets were

extracted to compare gene expression between EGFR-TKI

sensitive and resistant cell samples, and the common DEGs

were screened out. Enrichment analysis indicated that the

majority of commonly up-regulated DEGs were enriched in

pathways associated with EMT, fatty acid metabolism, and

adipogenesis. During EMT, epithelial cells transform into

mesenchymal cells. Studies have been developed to show

that EMT is engaged in the metastasis, related with the

growth of many different types of malignancies, and

connected with chemoresistance (Xiao et al., 2010), such as

resistance to EGFR-TKI (Clement et al., 2020; Thomson et al.,

2005). There is a correlation between the expression of

mesenchymal markers and a poor prognosis as well as a

suboptimal response to EGFR-TKIs in NSCLC. This is

because mesenchymal markers contribute to a resistant

phenotype (Jakobsen et al., 2016).

According to the findings of this investigation, the levels of

expression of seven genes—ABCC2, ARL2BP, DKK1, LRFN4,

PYGL, SMNDC1, and SNAI2—were higher in resistant

samples than in sensitive ones. Previous research indicated

that EGFR-TKI-resistant cells had higher levels of

ABCC2 expression. (Hamamoto et al., 2017). One of the

studied inhibitors of canonical Wnt signaling is a protein

called DKK1 (Chu et al., 2021). DKK1 is found to be

substantially more expressed in lung cancer tissues than

normal controls. In addition, a number of recent studies

have shown that DKK1 is positively correlated with lung

cancer stage and tumor metastasis, and that it may

promote lung cancer invasion and proliferation (Song

et al., 2019).

The limitations of the present study should be

mentioned. 1) The available public expression datasets are

quite limited. We have combined the gene expression data

from three independent datasets to validate the performance

of the model on distinguishing EGFR-TKI resistant and

sensitive samples. However, the sample size is still limited

and a new cohort with more samples should be used to

validate the model. 2) These eight genes have a high

association with EGFR-TKI resistance in different

datasets. However, the mechanism of these eight genes

affecting EGFR-TKI resistance should be investigated by

further experiments.

5 Conclusion

In conclusion, the eight genes linked to EGFR-TKI resistance

were significantly connected with the prognosis of LUAD. The

machine learning model based on these eight genes showed high
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accuracy in distinguishing EGFR-TKI resistant and sensitive

samples. The risk score and the nomogram based on these

eight genes showed high accuracy in predicting the survival

outcome. Through our research, we were able to find eight

genes that are linked to EGFR-TKI resistance and provide

models that can predict EGFR-TKI resistance and the

prognosis for LUAD patients(Yu and Ouyang, 2022).

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.968376/full#supplementary-material

References

Al-Dherasi, A., Huang, Q. T., Liao, Y., Al-Mosaib, S., Hua, R., Wang, Y., et al.
(2021). A seven-gene prognostic signature predicts overall survival of patients with
lung adenocarcinoma (LUAD). Cancer Cell Int. 21 (1), 294. doi:10.1186/s12935-
021-01975-z

Balko, J. M., Potti, A., Saunders, C., Stromberg, A., Haura, E. B., and Black, E. P.
(2006). Gene expression patterns that predict sensitivity to epidermal growth factor
receptor tyrosine kinase inhibitors in lung cancer cell lines and human lung tumors.
BMC Genomics 7, 289. doi:10.1186/1471-2164-7-289

Botling, J., Edlund, K., Lohr, M., Hellwig, B., Holmberg, L., Lambe, M., et al.
(2013). Biomarker discovery in non-small cell lung cancer: Integrating gene
expression profiling, meta-analysis, and tissue microarray validation. Clin.
Cancer Res. 19 (1), 194–204. doi:10.1158/1078-0432.CCR-12-1139

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A.
(2018). Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol.
Biol. 1711, 243–259. doi:10.1007/978-1-4939-7493-1_12

Chen, Z., Liu, G., Hossain, A., Danilova, I. G., Bolkov, M. A., Liu, G., et al. (2019).
A co-expression network for differentially expressed genes in bladder cancer and a
risk score model for predicting survival.Hereditas 156, 24. doi:10.1186/s41065-019-
0100-1

Chu, H. Y., Chen, Z., Wang, L., Zhang, Z. K., Tan, X., Liu, S., et al. (2021).
Dickkopf-1: A promising target for cancer immunotherapy. Front. Immunol. 12,
658097. doi:10.3389/fimmu.2021.658097

Clement, M. S., Gammelgaard, K. R., Nielsen, A. L., and Sorensen, B. S.
(2020). Epithelial-to-mesenchymal transition is a resistance mechanism to
sequential MET-TKI treatment of MET-amplified EGFR-TKI resistant non-
small cell lung cancer cells. Transl. Lung Cancer Res. 9 (5), 1904–1914. doi:10.
21037/tlcr-20-522

Colaprico, A., Silva, T. C., Olsen, C., Garofano, L., Cava, C., Garolini, D., et al.
(2016). TCGAbiolinks: An R/Bioconductor package for integrative analysis of
TCGA data. Nucleic Acids Res. 44 (8), e71. doi:10.1093/nar/gkv1507

Davis, S., and Meltzer, P. S. (2007). GEOquery: A bridge between the gene
expression Omnibus (GEO) and BioConductor. Bioinformatics 23 (14), 1846–1847.
doi:10.1093/bioinformatics/btm254

Del, R. M., Crucitta, S., Gianfilippo, G., Passaro, A., Petrini, I., Restante, G., et al.
(2019). Understanding the mechanisms of resistance in EGFR-Positive NSCLC:
From tissue to liquid biopsy to guide treatment strategy. Int. J. Mol. Sci. 20 (16),
E3951. doi:10.3390/ijms20163951

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33 (1), 1–22. doi:10.
18637/jss.v033.i01

Fustaino, V., Presutti, D., Colombo, T., Cardinali, B., Papoff, G., Brandi, R., et al.
(2017). Characterization of epithelial-mesenchymal transition intermediate/hybrid
phenotypes associated to resistance to EGFR inhibitors in non-small cell lung
cancer cell lines. Oncotarget 8 (61), 103340–103363. doi:10.18632/oncotarget.21132

Hamamoto, J., Yasuda, H., Aizawa, K., Nishino, M., Nukaga, S., Hirano, T., et al.
(2017). Non-small cell lung cancer PC-9 cells exhibit increased sensitivity to
gemcitabine and vinorelbine upon acquiring resistance to EGFR-tyrosine kinase
inhibitors. Oncol. Lett. 14 (3), 3559–3565. doi:10.3892/ol.2017.6591

He, J., Li, W., Li, Y., and Liu, G. (2020). Construction of a prognostic model for
lung adenocarcinoma based on bioinformatics analysis of metabolic genes. Transl.
Cancer Res. 9 (5), 3518–3538. doi:10.21037/tcr-20-1571

Jakobsen, K. R., Demuth, C., Sorensen, B. S., and Nielsen, A. L. (2016). The role of
epithelial to mesenchymal transition in resistance to epidermal growth factor
receptor tyrosine kinase inhibitors in non-small cell lung cancer. Transl. Lung
Cancer Res. 5 (2), 172–182. doi:10.21037/tlcr.2016.04.07

Jiang, Z., Luo, Y., Zhang, L., Li, H., Pan, C., Yang, H., et al. (2022). A novel risk
score model of lactate metabolism for predicting over survival and immune
signature in lung adenocarcinoma. Cancers (Basel) 14 (15), 3727. doi:10.3390/
cancers14153727

Jordan, E. J., Kim, H. R., Arcila, M. E., Barron, D., Chakravarty, D., Gao, J., et al.
(2017). Prospective comprehensive molecular characterization of lung
adenocarcinomas for efficient patient matching to approved and emerging
therapies. Cancer Discov. 7 (6), 596–609. doi:10.1158/2159-8290.CD-16-1337

Kuhn, M. (2008). Building predictive models in R using the caret package. J. Stat.
Softw. 28 (5). doi:10.18637/jss.v028.i05

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang,
Z., et al. (2016). Enrichr: A comprehensive gene set enrichment analysis web server
2016 update. Nucleic Acids Res. 44 (W1), W90–W97. doi:10.1093/nar/gkw377

Kumar, S., Attri, S. D., and Singh, K. K. (2019). Comparison of Lasso and stepwise
regression technique for wheat yield prediction. J. Agrometeorol. 21 (2), 188–192.

Lee, C. K., Davies, L., Wu, Y. L., Mitsudomi, T., Inoue, A., Rosell, R., et al. (2017).
Gefitinib or erlotinib vs chemotherapy for EGFR mutation-positive lung cancer:
Individual patient data meta-analysis of overall survival. J. Natl. Cancer Inst. 109 (6).
doi:10.1093/jnci/djw279

Frontiers in Genetics frontiersin.org11

Zhuge et al. 10.3389/fgene.2022.968376

https://www.frontiersin.org/articles/10.3389/fgene.2022.968376/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.968376/full#supplementary-material
https://doi.org/10.1186/s12935-021-01975-z
https://doi.org/10.1186/s12935-021-01975-z
https://doi.org/10.1186/1471-2164-7-289
https://doi.org/10.1158/1078-0432.CCR-12-1139
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1186/s41065-019-0100-1
https://doi.org/10.1186/s41065-019-0100-1
https://doi.org/10.3389/fimmu.2021.658097
https://doi.org/10.21037/tlcr-20-522
https://doi.org/10.21037/tlcr-20-522
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.3390/ijms20163951
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18632/oncotarget.21132
https://doi.org/10.3892/ol.2017.6591
https://doi.org/10.21037/tcr-20-1571
https://doi.org/10.21037/tlcr.2016.04.07
https://doi.org/10.3390/cancers14153727
https://doi.org/10.3390/cancers14153727
https://doi.org/10.1158/2159-8290.CD-16-1337
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1093/jnci/djw279
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.968376


Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., and Storey, J. D. (2012). The
sva package for removing batch effects and other unwanted variation in high-
throughput experiments. Bioinformatics 28 (6), 882–883. doi:10.1093/
bioinformatics/bts034

Li, H., Lu, H., Cui, W., Huang, Y., and Jin, X. (2020). A TP53-based immune
prognostic model for muscle-invasive bladder cancer. Aging (Albany NY) 13 (2),
1929–1946. doi:10.18632/aging.202150

Li, N., Wang, J., and Zhan, X. (2021). Identification of Immune-Related gene
signatures in lung adenocarcinoma and lung squamous cell carcinoma. Front.
Immunol. 12, 752643. doi:10.3389/fimmu.2021.752643

Ma, B., Geng, Y., Meng, F., Yan, G., and Song, F. (2020). Identification of a
sixteen-gene prognostic biomarker for lung adenocarcinoma using a
machine learning method. J. Cancer 11 (5), 1288–1298. doi:10.7150/jca.
34585

Nakata, A., Yoshida, R., Yamaguchi, R., Yamauchi, M., Tamada, Y., Fujita, A.,
et al. (2015). Elevated beta-catenin pathway as a novel target for patients with
resistance to EGF receptor targeting drugs. Sci. Rep. 5, 13076. doi:10.1038/
srep13076

Nasim, F., Sabath, B. F., and Eapen, G. A. (2019). Lung cancer. Med. Clin. North
Am. 103 (3), 463–473. doi:10.1016/j.mcna.2018.12.006

Ouyang, W., Jiang, Y., Bu, S., Tang, T., Huang, L., Chen, M., et al. (2021). A
prognostic risk score based on hypoxia-immunity-and Epithelialto-
Mesenchymal Transition-Related genes for the prognosis and immunotherapy
response of lung adenocarcinoma. Front. Cell Dev. Biol. 9, 758777. doi:10.3389/
fcell.2021.758777

Ren, J., Wang, A., Liu, J., and Yuan, Q. (2021). Identification and validation of a
novel redox-related lncRNA prognostic signature in lung adenocarcinoma.
Bioengineered 12 (1), 4331–4348. doi:10.1080/21655979.2021.1951522

Ren, J., Zhang, H., Wang, J., Xu, Y., Zhao, L., and Yuan, Q. (2022).
Transcriptome analysis of adipocytokines and their-related LncRNAs in lung
adenocarcinoma revealing the association with prognosis, immune infiltration,
and metabolic characteristics. Adipocyte 11 (1), 250–265. doi:10.1080/21623945.
2022.2064956

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). EdgeR: A
bioconductor package for differential expression analysis of digital gene
expression data. Bioinformatics 26 (1), 139–140. doi:10.1093/bioinformatics/
btp616

Song, Z., Wang, H., and Zhang, S. (2019). Negative regulators of Wnt signaling in
non-small cell lung cancer: Theoretical basis and therapeutic potency. Biomed.
Pharmacother. 118, 109336. doi:10.1016/j.biopha.2019.109336

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71 (3),
209–249. doi:10.3322/caac.21660

Tang, C., Ma, J., Liu, X., and Liu, Z. (2020). Identification of four immune
subtypes in bladder cancer based on immune gene sets. Front. Oncol. 10, 544610.
doi:10.3389/fonc.2020.544610

Thomson, S., Buck, E., Petti, F., Griffin, G., Brown, E., Ramnarine, N., et al.
(2005). Epithelial to mesenchymal transition is a determinant of sensitivity of non-
small-cell lung carcinoma cell lines and xenografts to epidermal growth factor
receptor inhibition. Cancer Res. 65 (20), 9455–9462. doi:10.1158/0008-5472.CAN-
05-1058

Wang, F., Tang, C., Gao, X., and Xu, J. (2020). Identification of a six-gene
signature associated with tumor mutation burden for predicting prognosis in
patients with invasive breast carcinoma. Ann. Transl. Med. 8 (7), 453. doi:10.
21037/atm.2020.04.02

Wang, Z., Zhang, L., Xu,W., Li, J., Liu, Y., Zeng, X., et al. (2022). TheMulti-Omics
analysis of key genes regulating EGFR-TKI resistance, immune infiltration, SCLC
transformation in EGFR-Mutant NSCLC. J. Inflamm. Res. 15, 649–667. doi:10.
2147/JIR.S341001

Wu, S. G., Chang, T. H., Tsai, M. F., Liu, Y. N., Hsu, C. L., Chang, Y. L., et al.
(2019). IGFBP7 drives resistance to epidermal growth factor receptor tyrosine
kinase inhibition in lung cancer. Cancers (Basel) 11 (1), E36. doi:10.3390/
cancers11010036

Wu, S. G., and Shih, J. Y. (2018). Management of acquired resistance to EGFR
TKI-targeted therapy in advanced non-small cell lung cancer. Mol. Cancer 17 (1),
38. doi:10.1186/s12943-018-0777-1

Xiao, D., and He, J. (2010). Epithelial mesenchymal transition and lung cancer.
J. Thorac. Dis. 2 (3), 154–159. doi:10.3978/j.issn.2072-1439.2010.02.03.7

Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune cell
admixture from expression data. Nat. Commun. 4, 2612. doi:10.1038/
ncomms3612

Yu, J., Mao,W., Sun, S., Hu, Q., Wang, C., Xu, Z., et al. (2022). Characterization of
an Autophagy-Immune related genes score signature and prognostic model and its
correlation with immune response for bladder cancer. Cancer Manag. Res. 14,
67–88. doi:10.2147/CMAR.S346240

Yu, Z., and Ouyang, L. (2022). Identification of key prognostic genes in ovarian
cancer usingWGCNA and LASSO analysis. All life (Online) 15 (1), 728–744. doi:10.
1080/26895293.2022.2087107

Yuan, Q., Ren, J., Li, L., Li, S., Xiang, K., and Shang, D. (2021). Development
and validation of a novel N6-methyladenosine (m6A)-related multi- long
non-coding RNA (lncRNA) prognostic signature in pancreatic
adenocarcinoma. Bioengineered 12 (1), 2432–2448. doi:10.1080/21655979.
2021.1933868

Yuan, Q., Ren, J., Wang, Z., Ji, L., Deng, D., and Shang, D. (2021). Identification of
the real hub gene and construction of a novel prognostic signature for pancreatic
adenocarcinoma based on the weighted gene co-expression network analysis and
least absolute shrinkage and selection operator algorithms. Front. Genet. 12, 692953.
doi:10.3389/fgene.2021.692953

Zhang, F., Liu, Y., Yang, Y., and Yang, K. (2020). Development and validation of a
fourteen- innate immunity-related gene pairs signature for predicting prognosis
head and neck squamous cell carcinoma. BMC Cancer 20 (1), 1015. doi:10.1186/
s12885-020-07489-7

Frontiers in Genetics frontiersin.org12

Zhuge et al. 10.3389/fgene.2022.968376

https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.18632/aging.202150
https://doi.org/10.3389/fimmu.2021.752643
https://doi.org/10.7150/jca.34585
https://doi.org/10.7150/jca.34585
https://doi.org/10.1038/srep13076
https://doi.org/10.1038/srep13076
https://doi.org/10.1016/j.mcna.2018.12.006
https://doi.org/10.3389/fcell.2021.758777
https://doi.org/10.3389/fcell.2021.758777
https://doi.org/10.1080/21655979.2021.1951522
https://doi.org/10.1080/21623945.2022.2064956
https://doi.org/10.1080/21623945.2022.2064956
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1016/j.biopha.2019.109336
https://doi.org/10.3322/caac.21660
https://doi.org/10.3389/fonc.2020.544610
https://doi.org/10.1158/0008-5472.CAN-05-1058
https://doi.org/10.1158/0008-5472.CAN-05-1058
https://doi.org/10.21037/atm.2020.04.02
https://doi.org/10.21037/atm.2020.04.02
https://doi.org/10.2147/JIR.S341001
https://doi.org/10.2147/JIR.S341001
https://doi.org/10.3390/cancers11010036
https://doi.org/10.3390/cancers11010036
https://doi.org/10.1186/s12943-018-0777-1
https://doi.org/10.3978/j.issn.2072-1439.2010.02.03.7
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.2147/CMAR.S346240
https://doi.org/10.1080/26895293.2022.2087107
https://doi.org/10.1080/26895293.2022.2087107
https://doi.org/10.1080/21655979.2021.1933868
https://doi.org/10.1080/21655979.2021.1933868
https://doi.org/10.3389/fgene.2021.692953
https://doi.org/10.1186/s12885-020-07489-7
https://doi.org/10.1186/s12885-020-07489-7
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.968376

	Construction of the model for predicting prognosis by key genes regulating EGFR-TKI resistance
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition
	2.2 Differentially expressed genes
	2.3 Functional enrichment analyses
	2.4 Construction of the signature
	2.5 Validation of the signature
	2.6 Construction and validation of the nomogram
	2.7 Construction and validation of the random forest model to distinguish sensitive and resistant EGFR-TKI patients
	2.8 Estimation of tumor microenvironment

	3 Results
	3.1 Detection of differentially expressed genes in EGFR-TKI sensitive and resistant cells
	3.2 Function enrichment analysis
	3.3 Calculation of the risk score
	3.4 Validation of the risk score
	3.5 Risk score and clinicopathological indicators
	3.6 Independent prognostic role of the risk score
	3.7 Nomogram development and validation
	3.8 Assessing the ability of the risk score to distinguish sensitive and resistant EGFR-TKI samples
	3.9 The correlation of risk score with immune status
	3.10 Survival analysis of selected genes

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


