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The Angora rabbit, a well-known breed for fiber production, has been

undergoing traditional breeding programs relying mainly on phenotypes.

Genomic selection (GS) uses genomic information and promises to

accelerate genetic gain. Practically, to implement GS in Angora rabbit

breeding, it is necessary to evaluate different marker densities and GS

models to develop suitable strategies for an optimized breeding pipeline.

Considering a lack in microarray, low-coverage sequencing combined with

genotype imputation was used to boost the number of SNPs across the rabbit

genome. Here, in a population of 629 Angora rabbits, a total of 18,577,154 high-

quality SNPs were imputed (imputation accuracy above 98%) based on low-

coverage sequencing of 3.84X genomic coverage, and wool traits and body

weight were measured at 70, 140 and 210 days of age. From the original

markers, 0.5K, 1K, 3K, 5K, 10K, 50K, 100K, 500K, 1M and 2M were randomly

selected and evaluated, resulting in 50K markers as the baseline for the

heritability estimation and genomic prediction. Comparing to the GS

performance of single-trait models, the prediction accuracy of nearly all

traits could be improved by multi-trait models, which might because

multiple-trait models used information from genetically correlated traits.

Furthermore, we observed high significant negative correlation between the

increased prediction accuracy from single-trait to multiple-trait models and

estimated heritability. The results indicated that low-heritability traits could

borrow more information from correlated traits and hence achieve higher

prediction accuracy. The research first reported heritability estimation in

rabbits by using genome-wide markers, and provided 50K as an optimal

marker density for further microarray design, genetic evaluation and

genomic selection in Angora rabbits. We expect that the work could provide

strategies for GS in early selection, and optimize breeding programs in rabbits.
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1 Introduction

The Angora rabbit is a well-known breed for fiber production

that provides wool usually chosen for the production of luxury

textile materials. Genetic improvement of wool production and

quality is essential for achieving sustained increase in fiber

production. Genomic selection (GS) is a potential breeding

tool, and has been successfully employed in many farm

animals, such as pigs and dairy cattle (Meuwissen et al., 2013;

Gorjanc et al., 2015; Wiggans et al., 2017; Yang et al., 2020). GS

can reduce the interval of generation, improve the accuracy and

intensity of selection, and contribute to genetic improvement (He

et al., 2019). A number of simulation and empirical studies on GS

has realized impacts on improvement in the animal production

(Solberg et al., 2008; Wiggans et al., 2017; Karimi et al., 2019;

Yang et al., 2020), and GS has been effectively used in animal

breeding programs for more than a decade (Hayes et al., 2009;

Jannink et al., 2010). The exploitation of genome-assisted

approaches could greatly benefit breeding efforts in Angora

rabbits, though rabbits breeding is slower to adopt this

technology. In rabbits, a high-density commercial SNP

microarray (Affymetrix Axiom OrcunSNP Array, around 200k

SNPs) was not available until 2015, and a lack in inexpensive

chips and high genotyping cost by genome sequencing in rabbits

delay genomic selection application; Additional issues such as the

small economic value of paternal rabbits and the short generation

interval are still limiting genomic selection as an evaluating

method (Mancin et al., 2021).

Various factors appear to affect prediction accuracy in

genomic selection (Covarrubias-Pazaran et al., 2018;

Krishnappa et al., 2021). Marker density is a force driving the

prediction accuracies of GS, and has been so far one of the most

studied factors. It is suggested that high density markers can

improve the prediction accuracy (Hickey et al., 2014; Al-

Khudhair et al., 2021), and the consensus is that a higher

number of markers usually yield higher accuracy reaching a

plateau (Wang et al., 2017; Krishnappa et al., 2021). In the

presence of genome resequencing, genome-wide SNPs are

available for rabbits, but what density of markers is optimal

for GS in Angora rabbits, i.e., the density reaching a plateau,

remains obscure, since the efficient SNP number could reduce

the dimensionality of the GS model.

Various studies related to GS have been mostly confined to

single trait in the recent past, although they performed not very

well in cases of pleiotropy, missing data and low heritability

(Boison et al., 2017; Budhlakoti et al., 2019). Gradually, studies

were carried out to explore the possibility of methods for GS

based onmultiple traits that enabled to provide accurate genomic

prediction by exploiting the information of correlated structure

among response (Budhlakoti et al., 2019). In addition, breeders in

animal breeding usually record one trait at multiple times

throughout the lifetime of animals that are often strongly

genetically correlated. The optimal estimation procedure is to

combine information from multiple records of different traits or

different times to obtain genomic estimated breeding values

(GEBV) using the multi-trait models (Okeke et al., 2017;

Covarrubias-Pazaran et al., 2018). In the breeding of Angora

rabbits, we have very little idea about the performance of GS, so

single-trait and multi-trait models should be explored.

In this study, we used the genomic resources of Angora

rabbits in hand to test the usefulness of genomic selection. In

order to maximize genomic prediction accuracy, we focused on

estimating the optimal marker density undergoing a renaissance

thanks to genome resequencing, and comparing the GS

performance between single-trait and multi-trait models for

genomic best linear unbiased prediction (GBLUP). The

research would provide strategies for GS in early selection of

wool production, and optimize breeding programs in Angora

rabbits.

2 Materials and methods

2.1 Animal phenotypes and genotypes

A total of 629 Agora rabbits (298 males and 331 females)

used for this study were from same batch. All rabbits were housed

under the same conditions on a farm, including diet, water and

temperature. In production practice, the rabbits are artificially

inseminated with mixed semen, so there is not a definite pedigree

information for the studied population. The wool is harvested

around every 70 days from 70 days of age, and after the third

shearing, the rabbits are selected for breeding. The associated

wool traits including length of fine wool (LFW), diameter of fine

wool (DFW), coefficient of variation of diameter of fine wool

(CVDFW), length of coarse wool (LCW), rate of coarse wool

(RCW) and weight of sheared wool (WSW) were measured at 70,

140 and 210 days of age. In addition, body weight (BW) was

measured at the same days of age. The descriptive summary was

provided for the traits in Supplementary Table S1.

Ear samples were collected from the individuals. Genomic

DNAwas isolated using the QiagenMinElute Kit. Genomic DNA

from each sample was used to construct a paired-end library

(PE150) with an insert size of ~350 bp. All libraries were

sequenced on the DNBSEQ-T7 platform. By low-coverage

whole genome sequencing (LCS), an average of 3.84X

genomic coverage was sequenced, with the read depth varying

from 1.51X to 8.03X. Read quality was assessed using FastQC

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

Adapters and low-quality bases were removed using

Trimmomatic (Bolger et al., 2014). Sample reads were

mapped to the rabbit reference sequence GCF_000003625.3

(Oryctolagus cuniculus) using BWA-mem (Li and Durbin,

2009). SNPs were called using BaseVar (Liu et al., 2018) and

imputed genotype dosages at missing sites using STITCH (Davies

et al., 2016). The SNPs were filtered for an imputation info
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score >0.4 using Bcftools (Li, 2011), and then with ‘MAF >0.05,
genotype missing rate <0.1 and a Hardy-Weinberg equilibrium

(HWE) p-value > 1E-6’ using PLINK (Chang et al., 2015). The

sites which were missing in 10% of the individuals after STITCH

imputation were then imputed by Beagle v5.1 Beagle v5.1

(Browning et al., 2018). A total of 18,577,154 high-quality

SNPs (imputation accuracy above 98%) were used after

stringent quality control. The manipulation of phenotypes and

genotypes is detailed in the previous study (Wang et al., 2022).

2.2 Models

In our studies, univariate linear mixed models (uvLMM)

were used to analyze the traits measured at three time points,

respectively. The univariate linear mixed models are

formulated as

y � Xb + Zu + e (1)
Here, y is the phenotypic vectors of a specific time point; b is the

vector of fixed effects including population mean, batch and sex;

u is the vector of random genetic effects; e is the vector of random

residuals. X and Z are the corresponding design matrixes. The

distributions of random effects are

u ~ N(0,Gσ2u), e ~ N(0, Iσ2e) (2)

Where, σ2u is the genetic variance; σ
2
e is the residual variance; G is

the genomic relationship matrix built with method of VanRaden

(Vanraden, 2008); I an identity matrix.

To test the performance of GS using multivariate linear

mixed models (mvLMM), we regarded the records from three

time points of one trait as different traits and used mvLMM to

analyze the data. The multivariate linear mixed models are

formulated as

⎡⎢⎢⎢⎢⎢⎣ y1y2
y3

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣X1

X2

X3

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣ b1b2
b3

⎤⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎣Z1

Z2

Z3

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣u1

u2

u3

⎤⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎣ e1e2
e3

⎤⎥⎥⎥⎥⎥⎦ (3)

All symbols have the same meaning with the single-trait

models, and subscripts (i � 1, 2, 3) indicate the ith time point.

The distributions of random effects are

⎡⎢⎢⎢⎢⎢⎣ u1

u2

u3

⎤⎥⎥⎥⎥⎥⎦ ~ N(0, ∑
u

⊗ G), ⎡⎢⎢⎢⎢⎢⎣ e1e2
e3

⎤⎥⎥⎥⎥⎥⎦ ~ N(0, ∑
e

⊗ I) (4)

Where, ∑u and ∑e are a 3 × 3 covariance matrix for the genetic

effects and residual errors.

2.3 Marker densities

To evaluate the influence of marker density on the

heritability estimation and genomic prediction, we

randomly selected 0.5K, 1K, 3K, 5K, 10K, 50K, 100K, 500K,

1M and 2M from the original 18.6M markers. Then, we used

these randomly selected markers to build the genomic

relationship matrix, and estimate heritabilities and genomic

breeding values with univariate linear mixed models. For each

marker density, we repeat this process for 30 times to obtain

stable results.

2.4 Cross-validation

We used 10-fold cross-validation (CV) to assess the

accuracy of the genomic prediction. The 629 individuals

were randomly shuffled and split into 10 groups. One of

them was used as a validation population in turn, and the

remaining nine groups used as a training population. The

accuracy of genomic prediction was assessed by the

correlation between corrected phenotypic values (yc) and

GEBVs in the validation population (ryc,GEBV). Here, the

corrected phenotypic values were calculated with general

linear model, which removed sex and batch effects from

the original phenotypic values. For the three-trait models

analysis, we also compared different leave-out strategies: 1)

leave out the observations of all the three time points; 2) leave

out the observations of the last two time points; 3) leave out

the observations of the last time point. The aim of the three

leave-out strategies was to explore whether and how the

accuracy of the genomic prediction would be improved

with early measured traits. In the study, we used two-

sample t-test to determine whether the prediction

accuracies from two experiments (varied marker densities

or models) were significantly different from each other.

2.5 Implements

The genomic relationship matrix was built with GMAT

(https://github.com/chaoning/GMAT), and uvLMM and

mvLMM were implemented with DMU package (https://dmu.

ghpc.au.dk/dmu/).

3 Results

3.1 50K markers are the baseline to
estimate heritability for angora rabbits

In order to produce different marker densities, we

randomly selected 0.5K, 1K, 3K, 5K, 10K, 50K, 100K, 500K,

1M and 2M from the original sequencing markers and repeat

30 times for each marker density to reduce the sampling error.

We calculated the Pearson correlation coefficients between all

genomic relationship matrixes built from randomly selected
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markers for each maker density. We found that the Pearson

correlation coefficients increased rapidly and the dispersion

degree decreased with the increase of marker density from

0.5K to 50K, and the values tended to be steady with the

minimum value exceeding 0.99 (Figure 1A). We categorized

traits into three categories according to the heritability

estimated with the original sequencing markers: low

heritability (<0.1), medium heritability (0.1–0.3) and high

heritability (>0.3), and showed the average estimated

heritability of 30 random selections for each marker

density in Figures 1B–D. We observed that estimated

heritabilities increased rapidly with the marker density

increasing from 0.5K to 50K, and then maintained steady

when the marker density continued to increase for all levels of

heritability. The heritabilities estimated by the genome

markers of 18.6M were listed in Table 1.

FIGURE 1
Heritability estimation of wool traits and body weight with varied marker densities. (A) Pearson correlation coefficients between all genomic
relationshipmatrixes built from randomly selectedmarkers; The changing estimated heritability for low heritability traits (B), medium heritability traits
(C) and high heritability traits (D). Traits were categorized into three categories according to the heritability estimated with the original sequencing
markers: low heritability (<0.1), medium heritability (0.1–0.3) and high heritability (>0.3).

TABLE 1 Heritability estimated by the genomemarkers of 18.6M in the
single-trait model.

Trait Heritability Trait Heritability

BW70 0.257±0.05367 LFW70 0.214±0.0512

BW140 0.375±0.05271 LFW140 0.045±0.0385

BW210 0.328±0.05272 LFW210 0.129±0.04422

CVDFW70 0.018±0.03479 RCW70 0.024±0.03705

CVDFW140 0.063±0.03697 RCW140 0.02±0.03683

CVDFW210 0.075±0.04199 RCW210 0.196±0.04849

DFW70 0.252±0.04953 WSW70 0.111±0.04758

DFW140 0.303±0.05209 WSW140 0.305±0.05328

DFW210 0.301±0.05111 WSW210 0.242±0.0502

LCW70 0.323±0.05669

LCW140 0.036±0.03552

LCW210 0.162±0.04733
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3.2 50K markers can achieve ideal
prediction accuracy for angora rabbits

We calculated the prediction accuracy for each trait by

averaging the cross-validation results of 30 random selections

(Supplementary Table S2), and showed the changing prediction

accuracy with the increase of marker density in Figure 2. For all

traits, the mean accuracies were lower than 0.3 regardless of

marker density. Similar to the change tendency of estimated

heritability, we found that the prediction accuracy increased

rapidly with the increase of marker density from 0.5K to 50K,

and it improved very little when the marker density continued to

increase. In addition, the significance of the differences between

the prediction accuracies under different marker densities was

listed in Supplementary Table S3. There was no significant

difference between the accuracies under the marker density of

50K and 100K for all the traits, while when comparing 50K–10K,

the difference between the accuracies was significant for several

traits such as BW140, BW210, DFW210, LCW70 and WSW140.

3.3 Multiple-trait models can improve the
prediction accuracy in genomic selection

We applied the multiple-trait models to analyze the records

from three time points of one trait. Compared to the single-trait

models, the prediction accuracy of nearly all traits could be

improved, except that it was slightly decreased for

BW140 which was decreased from 0.292 from 0.288 (Figure 3,

Supplementary Table S4 and S5). The Pearson correlation

coefficient between the increased prediction accuracy from

single-trait to multiple-trait models and estimated heritability

was -0.584 (p = 0.0055), which indicated that the prediction

accuracy of traits with lower heritability can be improved more

with multiple-trait models. For example, CVDFW belonging to

low heritability traits, its estimated heritabilities at three time

points were 0.018, 0.063 and 0.075, respectively, but their

prediction accuracy could be improved by 71.35%, 85.71%

and 68.81%, respectively.

In the cross-validation experiments, if we kept the

observations of early time points in the validation groups, the

prediction accuracy could be further improved by multiple-trait

models; and the more observations of early time points kept, the

higher prediction accuracy could reach for the majority of traits

(Figure 3, Supplementary Table S4 and S5).

4 Discussion

Genomic selection promises to accelerate genetic gain in

animal breeding programs (Meuwissen et al., 2013; Gorjanc et al.,

2015; Yang et al., 2020). Practically, to implement GS in Angora

rabbit breeding, it is necessary to evaluate different marker

densities and GS models to develop suitable strategies for an

optimized breeding pipeline.

Low-coverage sequencing combined with genotype

imputation boosts the number of SNPs across the genome. It

plays out advantages in obtaining genotyping information since

both DNA library and sequencing cost decreased (Nicod et al.,

2016; Meier et al., 2021) especially when lacking in microarray

(Davies et al., 2016; Davies et al., 2021). In this study, we

evaluated different marker densities for heritability estimation

FIGURE 2
Mean prediction accuracies of cross-validation under different marker densities.
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and genomic selection, and provided 50K as an optimal marker

density for further microarray design, genetic evaluation and

genomic selection in rabbits, since the efficient SNP number

could reduce the dimensionality of the calculation model.

The heritability of various traits in rabbits was traditionally

estimated by using pedigree information (Dige et al., 2012; El

Nagar et al., 2020; Montes-Vergara et al., 2021). To our

knowledge, this study was the first report for heritability

estimation in rabbits by using genome-wide markers. What’s

more, for Angora rabbits, little information is available on

heritabilities of production performance and economic traits.

The previous estimation using pedigree information included the

heritability of wool production, coarse wool rate and body weight

of Wan-strain Angora rabbits at 11-month-old (0.33, 0.21 and

0.43, respectively) (Zhao. et al., 2016), and the heritability of

weaning weight, wool yield of first, second and third clips of

Angora rabbits (0.24, 0.22, 0.20 and 0.21, respectively) (Niranjan

et al., 2011). By exploring the influence of marker density on

heritability estimation, we estimated stable heritabilities for wool

and body weight traits of Angora rabbits at the marker density

of 50K.

It becomes clear that the increase in the marker density by

panels and even genome sequencing could not result in

ceaselessly increase in the accuracy of genomic selection

(Chang et al., 2019). In this study, the marker density showed

major effects on the improvement of prediction accuracy below

50K, which showed the accuracy predicted by GS increased as the

marker density increased for all traits in the rabbit population.

However, above a threshold of 50K, the marker density showed

minor effects. 50K is a density of genome markers in common

usage for livestock genetics and breeding (Nandolo et al., 2019;

He et al., 2020; Bhuiyan et al., 2021; Liu et al., 2021; Singh et al.,

2021). Similar phenomenon was found in other species though

the baseline of marker density was different (Spindel et al., 2015;

Wang et al., 2017). The threshold where the plateau takes place

might be associated with the extent of linkage disequilibrium

FIGURE 3
Mean prediction accuracies of cross-validation by different models. uvLMM: univariate linear mixedmodels which analyzed records of different
time points, respectively; mvLMM: multivariate linear mixed models which considered the correlations of different time points and leave out the
observations of all the three time points in the cross-validation experiments; mvLMM23: leave out the observations of the second and third time
points in the cross-validation experiments; mvLMM3: leave out the observations of the third time points in the cross-validation experiments.
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(LD) between genomemarkers and QTLs. At a long extent of LD,

the number of independent segments in the genome is expected

to be small, which means fewer markers are needed to mark all

segments (Wientjes et al., 2013; Wang et al., 2017). In the present

study, the average pairwise LD r2 values decreased to 0.16 at

500 kb and to 0.11 at 1 Mb (Wang et al., 2022), and the

population was considered to have a relatively slow decay of

LD similar to other livestock population, hence 50K, a small

number of markers, was sufficient to produce the accurate

prediction.

A large number of genomic selection studies have focused

on single-trait analyses (Boison et al., 2017; Budhlakoti et al.,

2019). However, many traits are genetically correlated, such as

the Angora wool traits among different shearing times. It has

been shown that a multiple-trait genomic model had higher

prediction accuracy than a single-trait genomic model, and the

use of multiple-trait models is one of the ideas to increase the

predictive ability of GS (Guo et al., 2014; Covarrubias-Pazaran

et al., 2018). In this study, the majority of traits reached higher

accuracy predicted by multiple-trait models than by single-trait

models, because multiple-trait models used information from

genetically correlated traits (Jia and Jannink, 2012).

Furthermore, we observed high significant negative

correlation between the increased prediction accuracy from

single-trait to multiple-trait models and estimated heritability.

The results indicated that low-heritability traits can borrow

more information from correlated traits and hence achieve

higher prediction accuracy. Especially, the prediction

accuracy of BW140 with the highest heritability among the

analyzed traits, was slightly decreased. Since many wool traits

belong to medium and low heritability, this characteristic of

multiple-trait could be very important in Angora rabbits

breeding (Jia and Jannink, 2012).

5 Conclusion

Genomic selection was applied to Angora rabbits based on

low-coverage sequencing combined with genotype imputation. A

total of 18,577,154 high-quality SNPs were obtained with

imputation accuracy above 98%. From the original markers,

0.5K, 1K, 3K, 5K, 10K, 50K, 100K, 500K, 1M and 2M were

randomly selected and evaluated, resulting in 50K markers as the

baseline for the heritability estimation and genomic prediction.

Comparing to the GS performance of single-trait models, the

prediction accuracy of nearly all traits could be improved by

multi-trait models. Furthermore, we observed high significant

negative correlation between the increased prediction accuracy

from single-trait to multiple-trait models and estimated

heritability. The results indicated that low-heritability traits

could borrow more information from correlated traits and

hence achieve higher prediction accuracy. The research first

reported heritability estimation in rabbits by using genome-

wide markers, and provided 50K as an optimal marker

density for further microarray design, genetic evaluation and

genomic selection in Angora rabbits. We expect that the work

could provide strategies for early selection, and optimize

breeding programs in rabbits.
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