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Protein function prediction is gradually emerging as an essential field in biological

and computational studies. Though the latter has clinched a significant footprint, it

has been observed that the application of computational information gathered

from multiple sources has more significant influence than the one derived from a

single source. Considering this fact, a methodology, PFP-GO, is proposed where

heterogeneous sources like Protein Sequence, Protein Domain, and Protein-

Protein Interaction Network have been processed separately for ranking each

individual functional GO term. Based on this ranking, GO terms are propagated to

the target proteins. While Protein sequence enriches the sequence-based

information, Protein Domain and Protein-Protein Interaction Networks embed

structural/functional and topological based information, respectively, during the

phase of GO ranking. Performance analysis of PFP-GO is also based on Precision,

Recall, and F-Score. The same was found to perform reasonably better when

compared to the other existing state-of-art. PFP-GO has achieved an overall

Precision, Recall, and F-Score of 0.67, 0.58, and 0.62, respectively. Furthermore,

we check some of the top-ranked GO terms predicted by PFP-GO through

multilayer network propagation that affect the 3D structure of the genome.

The complete source code of PFP-GO is freely available at https://sites.google.

com/view/pfp-go/.
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Introduction

In recent years, protein function prediction has started using

integrated function predictive information from several sources

(Piovesan et al., 2015) instead of using a single source of

information. These include Protein-Protein Interaction (PPI),

Protein domain, Amino Acid Sequence of protein, Protein’s

structure, Genomic information, etc. Though integrated

information enriched classifiers should perform better than a

single type of feature, the design of such a single classification

system of heterogeneous data sources is challenging for the

Proteomic research community. Moreover, the prediction task

becomesmore challenging as it is characterized by several factors:

1) Any protein may be associated with multiple functions,

i.e., one-to-many relationships, 2) functional groups are

numerous, and 3) their existence is hierarchically structured

and unbalanced.

The functionality of a protein can be attributed to the

physical interactions represented in Protein-Protein

Interactions (PPIs). Using proximity relationships

between connected proteins, computational methods

attempt to propagate the labels of known proteins to

unknown proteins across the network. PPIs are mediated

by their constituent domain-domain interactions

(Chatterjee et al., 2011). Genes evolved from the same

ancestral gene are functionally similar. So, finding

known genes with sufficient sequence similarity is a

powerful way to predict function. These various types of

data individually are not sufficient to annotate functional

groups.

Moreover, a recent trend shows that hierarchical

relationships between functional classes motivate the

development of hierarchy-aware prediction methods, which

are significantly better than hierarchy-unaware “flat”

prediction methods (Pandey et al., 2006). Functional

relationships, e.g., Taxonomy like Gene Ontology (GO)

(Ashburner et al., 2006) or FunCat (Ruepp et al., 2004), can

be exploited to improve the predictive performance of learning

algorithms.

Motivated by the facts mentioned above, here we propose

an integrated approach where their orthogonal methods,

namely, constituent domains of the protein and their

interactions, sequence homology, and protein interaction

data, are used to assign functional GO terms for unknown

proteins and then these prediction decisions are combined

into a consensus decision using n-star approach and

functional enrichment. The following section discusses

the current state of the arts of computational techniques

in the protein function prediction domain based on raw

amino sequence, domain, and protein interaction data.

Sequence-based approaches for protein
function prediction

Genes that evolved through duplication and rearrangement

from single ancestral genes are known to be homologous. The

homologous genes are found at various places in the same

genome. However, duplication is considered paralogous,

whereas some orthologous genes diverge through speciation

events found in different organisms. Inference of functional

terms from sequence similarity is well supported by

Anfinsen’s dogma claiming protein’s sequence determines

protein’s tertiary structure (Anfinsen, 1973). The basic

strategy of the sequence-based prediction method is that

similar known proteins are searched from a database for any

target protein, assigning associated GO terms to that protein of

interest. Local alignment-based tools like SSEARCH (Pearson,

1995) take a target sequence and find top hit sequences along

with their statistically significant score E-value with the Smith-

Waterman dynamic programming algorithm. As it is time-

consuming, FASTA (Pearson and Lipman, 1988) does

pairwise alignments only on highly similar regions using a

lookup table, and BLAST (Altschul et al., 1990) saves time

with the use of pre-computed similar words. However, these

strategies are not sensitive to all protein families with different

conservation degrees. On the other hand, PSI-BLAST (Altschul

et al., 1997) uses sequence profile instead of raw sequence. It

makes a profile of the target sequence and similar sequence at

each iteration and uses a computed profile at the next iteration.

Pre-computed profiles of protein domains or portions of the

conserved region can be used for assigned tasks. BLOCKS

(Pietrokovski et al., 1996), ProDom (Corpet et al., 2000),

Pfam (Finn et al., 2016), and SUPERFAMILY (Pandit et al.,

2002) are datasets of profiles of protein domains, PRINTS

(Attwood, 2002) is collection of protein fingerprints. Here

target sequence and similar sequences are represented in the

profile where the target protein profile is matched against the

database sequence profile.

Sequence-based prediction is easy to use because most

proteins are available with their sequence and functional

annotation. However, limitations to sequence-based methods

arise when 60% of the sequences are similar (Kihara, 2011). A

correlation between structural and functional similarity can be

used in that case. Sequence-based prediction methods are helpful

when only raw protein sequence information is available.

However, sometimes it becomes challenging because wrong

functional annotation may be propagated for functional

assignment, or correct function prediction does not always

take place as important issues are not always considered, like

non-orthologous displacement of genes or proteins has multiple

domains (Chitale et al., 2009; Halder et al., 2019).

Frontiers in Genetics frontiersin.org02

Sengupta et al. 10.3389/fgene.2022.969915

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.969915


Domain-based approaches for protein
function prediction

Protein domains are independent units of protein function

which have unique three-dimensional structures. Protein

functions are collective results of functions of its constituent

domains. So, to predict function, exploiting the domain

architecture of proteins is the need of the hour and their

interaction and cooperation pattern. Some current state-of-the-

art techniques use domain information for function prediction.

Peng et al. (2014) use protein domain information along with

Protein interaction networks and complexes. The domain

combination similarity (DCS) representing the domain

compositions of both proteins and their neighbors is used in

their algorithm. Robert Rentzsch and Christine A Orengo

(Rentzsch and Orengo, 2013) derive a functional family by

combining sequence clustering with supervised cluster

evaluation.

INGA (Piovesan et al., 2015) is another predictor using

domain architecture and transfer annotation from proteins

sharing the same domain pattern. It identifies putative PFAM

domains, and all proteins associated with GO terms from

UniProt are retrieved, and finally, those GO terms are

assigned to the target protein (Piovesan et al., 2015).

Protein interaction network-based
approaches for prediction of protein
function

Protein interactions have great importance in protein

function, so the function of an unknown protein can be

extrapolated from the functional annotation of its interaction

profiles exploiting proximity relationships. There are mainly four

categories of network-based approaches in functional inferences

of protein: Markov random field based, optimization-based,

Clustering based, and neighbor based (Pandey et al., 2006).

The trend also combines decisions about protein functions

obtained through different approaches. Neighborhood-based

approaches are primarily based on the idea that the proteins

closer to the network are more similar in functionality. In prior

studies (Schwikowski et al., 2000; Hishigaki et al., 2001), the

functionality of target proteins is assigned considering the

probability of occurrence of functions among the neighboring

proteins. However, these approaches limited the neighboring

proteins to level-1 of the target proteins in assigning the

functional annotations. In another study (Chen et al., 2007) of

protein function, further advancement has been introduced in

the neighbor-based approach by introducing the network motifs

concept in protein interactome. A global optimization

mechanism was introduced in functional assignments to its

unclassified (target) partners in the PPIN (Vazquez et al.,

2003). In other work (Karaoz et al., 2004), the functional

linkage graphs have been mapped into a variant of a discrete-

state Hopfield network in order to gain the maximally consistent

assignment by minimizing an “energy” function that includes a

heuristic-guided local search mechanism. However, Karaoz et al.

(2004) focused more on the global properties of interaction maps

but not on the local proximity of interacting proteins (Nabieva

et al., 2005). To overcome these above-described issues and

considering the distant effects of annotated proteins, Nabieva

et al. (2005) have introduced a Functional Flow based strategy

using network flow where each protein of known function is

annotated as a “source” of “functional flow.” The work of Deng,

Mehta et al. (2002) and Letovsky and Kasif (2003) are worth

mentioning among probabilistic approaches. Functional module

detection (Bader and Hogue, 2003; Sharan et al., 2007) and graph

clustering methods (Spirin andMirny, 2003; King et al., 2004) are

effective module-assisted approaches.

Integrated approaches based on
sequence, domain, and protein-protein
interaction networks for protein function
prediction

Inference of functional terms from sequence similarity is well

supported by Anfinsen’s dogma claiming protein’s sequence

determines protein’s tertiary structure (Anfinsen, 1973). The

basic strategy of the sequence-based prediction method is that

for any target protein, similar known proteins are searched from

a database using sequence similarity tools, like, PSI-BLAST, and

assign those associated GO terms to that protein of interest. Local

alignment-like tools take top hit sequences with a significant

E-value or Smith-Waterman alignment score. A global or local

alignment algorithm is used to infer homology (Altschul et al.,

1997). DNA binding site prediction is also considered to be

sequence-based function prediction. Sequence information and

various types of sequence-derived features, Physico-chemical

properties (for example, polarity, hydrophobicity), PSSM, the

composition of amino acid, dipeptide composition, structural

features like secondary structure, solvent accessible surface area

are used (Altschul et al., 1997; Halder et al., 2019; Pearson, 1995;

Pearson & Sierk, 2005). Protein subcellular location prediction

(Garg et al., 2005; Sarda et al., 2005), enzyme function prediction

(Wang et al., 2010), and signal peptide prediction (Nielsen et al.,

1997) can also facilitate the prediction of protein function. The

use of machine learning algorithms (Wang and Xiao, 2014; Xiao

et al., 2012) and nearest neighbor classifier (Huang and Li, 2004;

Wang and Yang, 2010) is significant in this regard. Sequence-

based prediction is easy to use because most proteins are available

with their sequence and functional annotation. However,

limitations to sequence-based methods arise if two sequences

have similarities below 60% (Kihara, 2011). A correlation

between structural and functional similarity can be used in

that case.
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Prediction of protein function can also be performed by

domain information of protein. Protein domains are

independent folding units that represent basic functional units

of protein. In another work (Rentzsch and Orengo, 2013), the

function prediction is made using domain families derived

through sequence clustering. Forslund and Sonnhammer

(2008) computationally assign GO terms to unknown proteins

based on the presence of identifiable domains. Rule-based and

probabilistic models investigate the dependence between protein

domain content and function.

Proteins perform their functions through interaction with

each other. Moreover, a protein is associated with multiple

functions. So, inference of function for any unknown protein

can be made from its interaction information with its interacting

partner. Recently, computational function prediction techniques

are gaining importance from PPIN also. Network-based

approaches are classified into the following groups: neighbor-

based (Saha et al., 2014), optimization-based (Chen and Xu,

2004; Deng, Sun, et al., 2002) (Schwikowski et al., 2000), Markov

random field based (Deng, Sun, et al., 2002) and Clustering based

(Dandekar et al., 1998).

Some of the other relevant works of protein function

prediction have been summarized in Table 1. Besides, some

advanced studies use multi-features obtained from protein

and sequence (Bao et al., 2017, Bao et al., 2021, Bao et al.,

2022). Considering all these existing works, it is observed that

there is still a pressing need to explore specific areas where

heterogeneous sources are blended for a common cause of

predicting protein function. This work proposes a

methodology named PFP-GO to capture the protein

functional dependencies on the domain, sequence, and PPI.

The main idea is to embed all available information sources to

consider other essential features rather than using sequence,

domain, or PPI alone. All the source code of PFP-GO is

available on https://sites.google.com/view/pfp-go/.

Methodology

PFP-GO assigns functional groups to target proteins based

on the information integration of sequence similarity, PPI

networks, and domain assignments. This method combines

these orthogonal predictions and derives consensus

predictions for GO terms using functional enrichment. As

different heterogeneous information sources are used,

mapping data from one source to another is essential in this

regard. Protein interaction networks may contain specific false

positive and false negative data. So, finding biologically essential

proteins is challenging as they are promising candidates for

finding drug targets. This work categorizes PFP-GO into four

sections: 1) It identifies the functionally active target proteins

(i.e., proteins associated with frequently occurring GO terms)

whose functional groups are predicted. 2) Each target protein’s

level-2 neighborhood graph is considered, and non-essential

proteins, i.e., shore, bridge, and fjord proteins (Hanna and

Zaki, 2014), are eradicated. 3) Once the refined PPI for each

target protein is obtained, sequence-based, domain-based, and

neighborhood protein interaction-based approaches are applied

to the target and its neighbors to assign GO terms. 4) GO terms

are ranked using a functional enrichment score. 5) Finally,

common GO terms among the sequence-based, domain-based,

and neighborhood protein interaction-based prediction results

are finally transmitted to the target protein following a 3-star

consensus (Chatterjee et al., 2016) approach.

Database

PFP-GO can be centrally categorized into three sections: 1)

Sequence-based prediction, 2) Domain-Domain interaction-

based prediction, and 3) Topology or neighborhood-based

prediction from the PPI network. In topology or

TABLE 1 Current computational methodologies of protein function prediction.

Features used Brief description References

Sequence and
Network

A deep learning framework for gene ontology annotations with sequence- and network-based information F. Zhang et al., (2020)

DeepFunc: A deep learning framework for accurate prediction of protein functions from protein sequences and
interactions

F. Zhang et al., (2019)

Predicting GO annotations from protein sequences and interactions X. Zhang et al., (2021)

GO terms A deep learning framework for predicting protein functions with co-occurrence of GO terms M. Li et al., (2022)

Gene function prediction based on gene ontology hierarchy preserving hashing Zhao et al. (2019)

Gene function prediction based on combining gene ontology hierarchy with multi-instance multi-label learning Z. Li et al., (2018)

Structure Structure-based protein function prediction using graph convolutional networks Gligorijević et al. (2021)

Structure-based function prediction: approaches and applications Gherardini and Helmer-Citterich,
(2008)

prediction of protein function from structure: insights frommethods for the detection of local structural similarities Najmanovich et al. (2005)
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neighborhood-based prediction from PPI networks, String

(Franceschini et al., 2013) and Uniprot (Consortium, 2015)

databases are used to generate PPI network and GO terms,

respectively. In domain-domain interaction-based prediction,

PFAM (Finn et al., 2016) and DOMINE database (Yellaboina

et al., 2011) are used for obtaining the domain-domain

interaction from the corresponding Uniprot ids. GO

Consortium database (Consortium, 2018) also plays an

essential role in this section in including its own GO terms.

While in sequence-based prediction, STRING and Uniprot are

utilized in coordination for protein sequence and GO term

generation.

Identification of functionally active targets

In this section, the STRING database id used to fetch

interactions (Franceschini et al., 2013), and the UniProt

database was used for GO annotations (U. Consortium, 2015).

If direct mapping from STRING ID to UniProt ID is unavailable,

then PFP-GO focuses on identifying a homogenous entry with at

least 90% sequence identity from UniProt. Next, computation of

the frequency of associated GO terms for every protein is

implemented. The top 10 frequently occurring GO terms are

considered based on the frequency of GO terms. The STRING

IDs are fetched from these corresponding GO terms using

UniProt as an intermediary. 20% of these proteins (STRING

IDs) are randomly considered to be functionally active target

proteins. The schematic diagram of selecting active target

proteins is highlighted in Figure 1.

Pruning and filtering of target protein
neighborhood graph

For each target protein, interaction information is retrieved

from the STRING database (Franceschini et al., 2013), and their

neighborhood graph (consisting of level-1 and level-2 proteins) is

formed. To remove non-essential protein, a topology-based

method is considered for testing the target protein neighbor’s

essentiality. In order to assess the essentiality, it is checked

whether any protein in the target’s neighborhood is of bridge

or Fjord or shore protein (Hanna and Zaki, 2014). These

neighbors get ultimately pruned to ensure that their presence

might not affect the prediction accuracy (see Figure 2).

Besides this bridge, fjord and shore proteins, Network

centrality-based Edge Clustering Coefficient (ECC) (Peng

et al., 2012), and edge-weight (S. Wang and Wu, 2013) are yet

another two most effective measures for the identification of

essential proteins. ECCmeasures the degree of closeness between

two nodes in a graph. Those edges with higher ECC values are

more likely to be in a module. In comparison, edge-weight

assigns a weightage to each edge, which signifies the reliability

of the corresponding edge. So double filtering using both ECC

FIGURE 1
Functionally active target protein selection. Two databases: STRING and UniProt, have been used for this purpose.

Frontiers in Genetics frontiersin.org05

Sengupta et al. 10.3389/fgene.2022.969915

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.969915


and edge-weight is also implemented on the pruned target

neighborhood network to ensure the presence of the most

reliable edges. The schematic diagram of this 2-pass filtering

approach has been highlighted in Figure 3. The threshold of both

ECC and edge-weight is calculated by the followingmathematical

equation (Zhang et al., 2016):

Threshold � α + k × σ × (1 − 1
1 + σ2

)

where k ∈ {3} defines high cut-offs. α and σ are considered to be

the mean and standard deviation of ECC/edge weight values.

Once the target neighborhood network is refined by double

filtering, functions of target proteins are predicted using

protein sequence, protein domain, and PPI network

separately, which will be discussed in the upcoming sections.

Sequence-based prediction

In this section, the functions of target proteins are

predicted using protein sequences. Since proteins are

formed of amino acids, protein sequence always plays a

significant role in target protein function prediction.

Sequence-based information is extracted by computing and

assigning a Physico-chemical property score to all proteins in

the target neighborhood graph, including the target itself.

Physico-chemical property score (Jiang and McQuay, 2011)

is the average of the values obtained from various Physico-

chemical properties of protein/amino acid sequence. In this

proposed work, seven Physico-chemical properties are

considered, which are:

• Extinction Coefficient (Eprotein)

• Absorbance (Optical Density)

• Number of Negatively Charged Residues (Nneg)

• Number of Positively Charged Residues (Npos)

• Aliphatic Index (AI)

• IP/mol weight

• Hydrophobicity (Hphb)

Initially, node degree is computed for each member

belonging to the refined neighborhood network for each

target protein. The node degrees are then sorted in

descending order. Now protein clusters are formed for each

target protein. The protein with the highest node degree is

selected as the first seed of the cluster. Then the distance

between the seed and other proteins in the neighborhood of

each target protein is computed based on the Euclidean

distance. The Physico-chemical property score serves as an

input to the Euclidean distance. If the distance is less than a

specific threshold, then the inter-connected protein of the seed

is incorporated in the cluster and is removed from the node

FIGURE 2
Pruning of target neighborhood graphs. Bridge, fjord, and shore proteins are detected and pruned.
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degree list. Then the next node with the highest degree is

considered a seed, and its corresponding clusters are formed

similarly to the previous one. Thus, the clusters created are

validated using inter-cluster and intra-cluster distances so that

no miss classification or overlap is present.

Once the cluster formation in each target protein’s

neighborhood is finished, each cluster’s Physico-chemical

property score is evaluated. Physico-chemical property

score of a cluster is nothing but the average of the earlier

computed Physico-chemical score of each constituent protein

in the corresponding cluster. Then the Euclidean distance of

the Physico-chemical property score between each target

protein and its corresponding neighborhood clusters is

calculated, and the target protein is assigned to the nearest

cluster. Now the cluster contains more than one protein. So, it

is not desirable that the functions of all the existing proteins in

the chosen cluster are assigned to the target since it will

enhance the false positives leading to an abrupt fall in the

prediction accuracy level. Considering this fact, intra-cluster

distance based on the Euclidean distance of the Physico-

chemical property score is computed between the target

and the other remaining proteins in the corresponding

cluster. Functions of the selected protein having the least

distance are assigned to the target protein. The schematic

diagram of the entire sequence-based prediction is shown in

Figure 4.

Domain-domain interaction-based
prediction

Protein domains are the independent units that are

responsible for protein function. The study of domain-domain

interaction may lead to better protein function prediction. So,

this proposed methodology uses PFP-GO protein domains for

target protein function prediction. For each node in the refined

neighborhood graph of the target protein, its STRING-id is

fetched from the STRING database. Each of these STRING-

ids is mapped to the Uniport database to obtain its corresponding

Uniprot-id. These Uniprot-ids are mapped to their respective

PFAM entries (ids), which are used to fetch the PFAM domains

using the PFAM database. These derived PFAM domains of the

neighborhood graph of each target protein are also checked and

validated using the DOMINE database. All the mappings are

considered if the one-to-many mapping occurs during the

linking as mentioned earlier between databases. Once all the

PFAM domains are obtained, the GO terms (protein functions)

corresponding to these interacting domains are deduced from the

GO Consortium database. Each of these GO terms is assigned a

particular ranking based on the frequency of their occurrence.

GO terms with the highest ranking are back propagated from the

bottom to the top and allocated to the target protein. The entire

schematic diagram for this phase has been highlighted in

Figure 5.

FIGURE 3
Double filtering of target neighborhood graph. Edge clustering coefficient and edge weight are computed based onwhich non-essential nodes
are filtered.
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FIGURE 4
Schematic representation of Sequence-based protein function prediction. The essential aspects of this phase are the selection of seeds
followed by the formation of clusters and computation of Physico-chemical properties.

FIGURE 5
Working strategy of Domain-based protein function prediction. Four databases, String, UniProt, PFAM, and DOMINE, are used in this phase.
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Topology or neighborhood-based
prediction from protein-protein
interaction network

The functionality of a protein is governed by its topological

position in the network. The proteins in the densely related

subgraph in the PPI network tend to be more significant in

disease propagation and drug targets. This is the most

important aspect for which the neighborhood graph of each

target protein in PFP-GO gets pruned and filtered before

proceeding with the function prediction of the target

proteins. In this section, at first, Uniprot-id from Uniprot

are fetched from the corresponding STRING-id of each level-1

protein in the pruned neighborhood graph of the target

protein. The associated GO terms and proteins (considered

level-1 of the target) with these Uniprot-ids are derived

from the Uniprot database. The same is also implemented

for level-2 of the target protein (Sengupta et al., 2018). Once

all the GO terms are fetched, each of them is ranked

by computing its enrichment in the PPI network using

the p value with Fisher’s exact test (Piovesan et al., 2015).

Top-ranked GO terms are finally allocated to the

target protein. The schematic diagram for this phase

of PPI network-topology-based prediction is shown in

Figure 6.

Integrated prediction using sequence,
domain, and protein-protein interaction

The consensus technique is more effective if the results from

orthogonal sources are merged to generate consistent results. In

PFP-GO, PPI network, domain, and sequence data are used. For

the final prediction, the n-star consensus method is used. As

discussed earlier, the proposed method uses a 3-star consensus

between three different predictors. 1-star consensus assigns those

GO terms predicted by at least one of the predictors to the target

protein. The 1-star is the least reliable as it gives the maximum

number of GO terms. The 2-star consensus assigns the GO terms

commonly predicted by at least two different predictors to the

target protein. In contrast, the 3-star consensus (Chatterjee et al.,

2016) is the most reliable as it only assigns GO terms commonly

predicted by all three predictors for the target protein.

Results

PFP-GO first selects a functionally active protein set from

the database, considered target proteins. It then predicts the

functions of the target proteins using sequence-based,

domain-based, and neighborhood Protein Interaction based

approaches discussed earlier in the methodology section. The

FIGURE 6
PPI network-based protein function prediction. GO term enrichment with p value is vital in this phase.
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proposed method fetches the proteins in the String database

for the target set selection. These proteins are mapped to the

UniProt database. The STRING database contains

19,247 human proteins mapped to the UniProt database to

retrieve the associated GO terms. PFP-GO utilizes the

mapping of UniProt to retrieve GO terms because String

database entries are not directly associated with GO

annotation. In this proposed work, the human PPI network

of String databases is used because it has 85,

58,002 interactions which is significantly higher than

UniProt, which has only 46,410 interactions. A network

diagram of the Human String database consisting of

2000 nodes is highlighted in Figure 7. Since the mapping

between String and UniProt is one-to-many, each string entry

has one or more UniProt IDs. However, suppose the mapping

is not present for a particular protein. In that case, the

corresponding sequence of String data is fetched, and the

proteins having 90% similarity with it are considered from

the UniProt database. Their corresponding GO terms are also

used for further experimentation. In the UniProt database, out

of 12,366 GO terms, 1547 GO terms fall under the Cellular

Components category, while 4,105 and 11,263 GO terms are

classified under Molecular Function and Biological Process,

respectively. Then the frequency of each GO term is

calculated, and the top 10 GO terms are fetched along with

their UniProt IDs. PFP-GO detects 9,141 proteins associated

with the top 10 GO terms, which is reverse mapped to the

STRING dataset to get 6,999 proteins. Then it selects a random

20% of proteins out of 6,999, which is near about

1,400 proteins. From these 1,400 proteins, 639 unique

proteins are finally filtered out after redundancy removal.

These proteins are ultimately considered functionally active

targets.

The performance measure of PFP-GO is evaluated using

Precision (P), Recall (R), and F-Score (F). PFP-GO is a combined

methodology based on three heterogeneous resources,

i.e., protein sequence, protein domain, and PPI network. It

achieves an overall precision, recall, and F-score of 0.67, 0.58,

and 0.62, respectively. It is initially compared with INGA

(Piovesan et al., 2015), as shown in Table 2, since it uses the

same heterogeneous resources as that PFP-GO. However, INGA

lacks proper filtering and pruning of the neighborhood graph of

the target protein. Besides consideration of Physico-chemical

properties of protein sequence in PFP-GO instead of just

applying sequence comparison algorithm to estimate sequence

similarity is another aspect for outperforming INGA.

The same has also been compared with four of the existing

methods: FunApriori (Prasad et al., 2017), the neighborhood

counting method (Schwikowski et al., 2000), the chi-square

method (Hishigaki et al., 2001), a recent version of the

neighbor relativity coefficient (NRC) (Moosavi et al., 2013),

FS-weight based method (Chua et al., 2006). It should be

noted here that all these methods are based on the PPI

network alone. To remove biases and to compare in a

common field, performance analysis of PFP-GO is estimated

on the prediction of the PPI network only. The performance is

highlighted in Table 3.

The major limitation of the chi-square method is that it is

suitable only for the denser part of the network. Thus, network

sparseness may lead to the degradation of performance

evaluation compared to the others. The inclusion of level-1

and level-2 neighbors increases the accuracy rates in all except

chi-square #1 and FS-weight #1 (using only the first level).

The neighborhood counting method is simple but still lags

more like NRC and FS-weight #1 and #2 (using both levels) as it

fails to differentiate between them. Although NRC and

FunApriori perform better than the other, they fall behind

PFP-GO since it does not focus on eliminating non-essential

proteins from the target neighborhood.

PFP-GO based on only PPI network and sequence is also

tested against similar kinds of existing methodologies like

NAIVE (Murphy, 2006) and BLAST (Mount, 2007) method

as reported in (Piovesan et al., 2015), Multi-Label Protein

Function Prediction (ML_PFP) (Saha, Prasad, et al., 2018)

and DeepGO (Kulmanov et al., 2018). Table 4 highlights the

FIGURE 7
Sample human PPI network from STRING database. It
consists of nodes and interactions between them.

TABLE 2 Performance Analysis of INGA and PFP-GO based on PPI
network, sequence, and domain.

Methodology Precision Recall F-score

PFP-GO 0.67 0.58 0.62

INGA Piovesan et al., (2015) 0.44 0.51 0.47
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entire scenario. Moreover, the prediction performance of PFP-

GO has also been evaluated with INGA separately on GO terms:

Cellular Components (CC), Molecular Functions (MF) and

Biological Process (BP), highlighted in Table 5. FMAX score for

BP, MF and CC has also been taken into account, and the same is

compared with other methods like NetGO 3.0 (You et al., 2019),

DeepGOPlus (Kulmanov and Hoehndorf, 2020), BLAST

(Mount, 2007) and NAÏVE (Murphy, 2006). The result is

displayed in Table 6. None of these methods considers

filtering or including various sequence-derived features like an

aliphatic index, etc., because they fail to perform better than PFP-

GO. Moreover, Moreover, DeepGO cannot predict protein

functions with a sequence length >1,000, which is another

snag. ML_PFP has used protein sequence and PPI network

TABLE 3 Performance analysis of PFP-GO with other methods based on PPI network.

Methodology Precision Recall F-score

PFP-GO 0.74 0.67 0.73

FunApriori Prasad et al., (2017) 0.57 0.61 0.58

Chi square #1and2 Hishigaki et al., (2001) 0.13 0.12 0.12

Chi square #1 Hishigaki et al., (2001) 0.12 0.15 0.13

Neighborhood counting #1and2 Schwikowski et al., (2000) 0.21 0.25 0.18

Neighborhood counting #1 Schwikowski et al., (2000) 0.15 0.21 0.17

Fs-weight #1and2 Chua et al., (2006) 0.24 0.22 0.22

Fs-weight #1 Chua et al., (2006) 0.16 0.19 0.19

Nrc Moosavi et al., (2013) 0.25 0.24 0.22

TABLE 4 Performance analysis of PFP-GO with other methods based on PPI network and sequence.

Methodology Precision Recall F-score

PFP-GO 0.52 0.64 0.56

Deep_GO Kulmanov et al., (2018) 0.48 0.49 0.48

BLAST Mount, (2007); Piovesan et al., (2015) 0.30 0.50 0.37

NAÏVE Murphy, (2006); Piovesan et al., (2015) 0.33 0.31 0.31

TABLE 5 Performance analysis of INGA and PFP-GO separately on CC, MF and BP.

Precision Recall F-score

Methodology BP MF CC BP MF CC BP MF CC

PFP-GO 0.49 0.51 0.48 0.95 0.98 0.95 0.64 0.67 0.64

INGA Piovesan et al., (2015) 0.37 0.53 0.42 0.33 0.63 0.63 0.58 0.57 0.49

TABLE 6 Performance analysis of PFP-GO with other methods based
on Fmax score.

Methodology BP MF CC

PFP-GO 0.65 0.61 0.66

NetGO 3.0 You et al., (2019) 0.64 0.43 0.66

Deep_GO_Plus Kulmanov and Hoehndorf, (2020) 0.57 0.41 0.59

BLAST Mount, (2007); Piovesan et al., (2015) 0.63 0.31 0.56

NAÏVE Murphy, (2006); Piovesan et al., (2015) 0.4 0.23 0.54

TABLE 7 Top-ranked gene ontology terms selected from GGA
validation.

Rank Gene GO-terms

1 ENSG00000123131 GO:0000049

2 ENSG00000123131 GO:0001731

3 ENSG00000123131 GO:0003743

4 ENSG00000130741 GO:0005576

5 ENSG00000130741 GO:0005634

6 ENSG00000130741 GO:0005783
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quite effectively but uses only edge weight as the only parameter

for screening the non-reliable edges in PPIN. In contrast, PFP-

GO uses 2-pass filtering and pruning approach.

To further validate the predicted and ranked Gene

Ontology terms, we used the meta-network created in

(Halder et al., 2020) and (Chiliński et al., 2021) to study

the importance of some of the GO terms in the perspective

of the 3D-structure of the genome. To include this assessment,

we create a Gene-Gene association network following the ideas

presented in the work of Chiliński et al. (2021); Halder et al.

(2020). We derive the Genomic association network from the

3D chromatin structure. After we created the networks, we

mapped the unknown test set to the network and found the

level-1 and level-2 neighboring genes from each target node.

We end up with a similar tree, as shown in Figure 5. However,

here the nodes in the tree are genes. Then we map the genes to

the GO terms from the leaf nodes and propagate them to the

target node (Sengupta et al., 2018). Once all the GO terms are

fetched, each of them is ranked by computing its enrichment

in the PPI network using the p value with Fisher’s exact test

(Piovesan et al., 2015). Top-ranked GO terms are finally

allocated to the target protein. From the ranking, we

obtained the top Gene ontology terms, which are displayed

in Table 7.

Conclusion

From Table 2, Table 3, and Table 4, it can be inferred that our

method PFP-GO outperforms the other methodologies in the

same dataset of humans in terms of precision, recall, and F-score

values due to several reasons: 1) The target set of proteins are

selected from high-ranking GO terms which implies the fact that

only proteins having high connectivity are involved. 2) Pruning

and double filtering of proteins are executed by eliminating

Bridge, Shore, and Fjord proteins (non-essential proteins)

which have not been taken into account by the other

methods, which is the primary cause for the increase in false

rates. 3) Besides consideration of every GO and non-GO term,

prediction provides a proper equilibrium in the proposed

methodology. 4) Moreover, PFP-GO combines prediction

from three orthogonal sources, i.e., sequence-based predictor,

domain interaction network-based predictor, and protein

interaction network-based predictor, to predict the protein’s

function. All these lead to the enhancement of our prediction

accuracy.

Besides, it should be noted that PFP-GO can perform better

whether it considers the PPI network alone, PPI network and

sequence, or the combination of the trio: PPI network, sequence,

and domain. It can also identify functionally active proteins

which may be transmitted in identifying possible drug targets in

the future (Anup Kumar Halder et al., 2018; Saha, Sengupta,

et al., 2018). Recently our work has been limited to human-

specific datasets, which can be extended further to other

organisms. The PFP-GO software package and the complete

source code are available in the public domain for

noncommercial research use at https://sites.google.com/view/

pfp-go/.
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