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Estimating the relationships between individuals is one of the fundamental

challenges in many fields. In particular, relationship.ip estimation could provide

valuable information for missing persons cases. The recently developed

investigative genetic genealogy approach uses high-density single

nucleotide polymorphisms (SNPs) to determine close and more distant

relationships, in which hundreds of thousands to tens of millions of SNPs are

generated either by microarray genotyping or whole-genome sequencing. The

current studies usually assume the SNP profiles were generated with minimum

errors. However, in the missing person cases, the DNA samples can be highly

degraded, and the SNP profiles generated from these samples usually contain

lots of errors. In this study, a machine learning approach was developed for

estimating the relationships with high error SNP profiles. In this approach, a

hierarchical classification strategy was employed first to classify the

relationships by degree and then the relationship types within each degree

separately. As for each classification, feature selection was implemented to gain

better performance. Both simulated and real data sets with various genotyping

error rates were utilized in evaluating this approach, and the accuracies of this

approach were higher than individual measures; namely, this approach was

more accurate and robust than the individual measures for SNP profiles with

genotyping errors. In addition, the highest accuracy could be obtained by

providing the same genotyping error rates in train and test sets, and thus

estimating genotyping errors of the SNP profiles is critical to obtaining high

accuracy of relationship estimation.
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Introduction

DNA-based relatedness estimation is essential for identifying

missing persons and human remains. The current standard

genotyping technology used in missing person cases (i.e., capillary

electrophoresis) measures the lengths of a set of pre-selected short

tandem repeat (STR) markers. The major forensic commercial STR

kits (e.g., GlobalFiler™ PCR Amplification Kit) usually contain 20 to

25 STR markers, including the core markers defined by the FBI’s

National DNA Index System (CODIS) (Hares, 2015). Close

relationships (e.g., parent-child and full-sibling) can be determined

with high accuracy with this limited number of markers, but not for

more distant relationships (i.e., 2nd or higher degrees) (Ge et al., 2011;

Ge et al., 2011; Ge and Budowle, 2020). The recently developed

investigative genetic genealogy (IGG) approach uses high-density

single nucleotide polymorphisms (SNPs) to determine more

distant relationships. In this approach, hundreds of thousands to

tens of millions of SNPs are generated either by microarray

genotyping or whole-genome sequencing (WGS). With the

massive number of variants, the distant relationships can be

determined with much higher accuracies (Li et al., 2014).

Hundreds of missing persons and cold cases have been solved

with IGG (Greytak et al., 2019; Tillmar et al., 2021).

The methods to determine relationships with SNPs can be

generally classified into three main categories: Hidden Markov

Model (HMM) based likelihood ratio methods (LRs) (Boehnke

and Cox, 1997; Epstein et al., 2000; Heinrich et al., 2017; Kling,

2019; Galván-Femenía et al., 2021), genome-wide relatedness

methods (namely, statistics based on individual SNPs) (Purcell

et al., 2007; Manichaikul et al., 2010), and identity-by-descent

(IBD) segment detection methods (Gusev et al., 2009; Browning

and Browning, 2011; Qiao et al., 2021). The LR methods calculate

the likelihoods of the given hypotheses, and the relationship is

determined by the maximum likelihood. The LR methods require

all loci to be in linkage equilibrium (namely, only a few thousand

SNPs may be used) and allele frequencies of each locus are known.

The genome-wide relatedness methods summarize the statistic

measures from individual markers, and the calculations of these

measures are very fast. With a sufficient number of markers, the

accuracies are high enough to estimate close relationships (i.e., up

to 3rd degree relationships). The IBD segment detection methods

use the positions and/or linkage disequilibrium (LD) between

markers that the genome-wide relatedness methods ignore and

detect the identical haplotype segments shared between profiles,

which provide the highest accuracies in estimating relationships,

particularly distant relationships. All themethods presume that the

SNP calling is accurate with negligible errors (Conomos et al.,

2015; Korneliussen and Moltke, 2015; Nøhr et al., 2021; Pew et al.,

2015; Shcherbina et al., 2016a; Sherry et al., 2017; Staples et al.,

2014; Stevens et al., 2011;Waples et al., 2019). In addition, many of

these methods also require allele frequencies or even population

admixture ratios in their calculations (Alexander et al., 2009;

Thornton et al., 2012; Morrison, 2013; Moltke and Albrechtsen,

2014; Conomos et al., 2015; Conomos et al., 2016).

In missing persons cases, the samples (e.g., bones) can be highly

degraded. Thus, the genotyping error rates (GERs) of these samples

could be high (e.g., the GER could be 5–10% or higher depending on

the quality filtering of the data), and precise allele frequency data are

not available. The genome-wide relatedness methods may be more

robust to genotyping errors, as the errors at individual markers may

not impact the measures of the other markers. However, genotyping

errors at one or a few loci can easily interrupt the IBD segments.

Thus, the IBD segment detection methods are more sensitive to

errors, and their performancemay substantially decay as genotyping

errors increase. A recent study (Turner et al., 2022) evaluated the

impact of GERs on genome-wide relatedness methods and IBD

segment methods. The results showed that the overall relationship

classification accuracies of different methods were similar if GER is

of a low level (GER = 0); however, the accuracies of the IBD segment

methods drop quickly when GER is higher than 1% (e.g., the

accuracy of hap-IBD (Zhou et al., 2020) approaches to random

guessing when GER ≥1%), whichmeans the IBD segments methods

are very sensitive to high GERs and require high-quality genotype

data. The genome-wide relatedness method (KING) (Manichaikul

et al., 2010) had slightly lower accuracies than those of the IBD

segment method (IBIS) (Seidman et al., 2020) when GERs were at

low-level (i.e., 0 and 0.01). The accuracies of both genome-wide

relatedness method and the IBD segment methods, such as IBIS and

hap-IBD (Zhou et al., 2020), decreased with higher GERs

(i.e., 0.05 and 0.1). However, the accuracies of KING were less

impacted by GERs. Thus, more robust methods are needed for

missing person samples with high genotyping error. In this study, a

supervised machine learning approach was developed for classifying

different degrees of relationships and relationship types within the

same degrees based on SNP profiles with high genotyping errors.

This approach combined 17 genome-wide relatedness measures to

train classifiers aiming to reduce the effect of genotyping error and

improve the accuracy of relationship estimation.

TABLE 1 The list of 10 relationship types in Supplementary Figure S1.

Relationship type Relationship degree

Unrelated N/A

Parent-child 1

Full-sibling 1

Grandparent 2

Half-sibling 2

Uncle-nephew 2

First-cousin 3

Grand-uncle 3

Half-uncle 3

Great-grandparent 3
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Methods

Simulation data

Family-based genotype data were simulated to train and test

the machine learning classifiers. A large pedigree was designed for

simulation, which includes ten various relationships from 1st to

3rd degrees and unrelated individuals (Supplementary Figure S1

and Table 1). This designed pedigree was simulated using Ped-sim

(Caballero et al., 2019) with the default setting, except that the

GERs were specified (i.e., 0, 0.01, 0.03, 0.05, 0.07, and 0.1). GERs

larger than 0.1 were not included in the simulation, as the GERs

usually could be reduced to below 0.1 with proper quality control

and data cleaning, although fewer SNPs would survive (Wall et al.,

2014). We first randomly sampled founders and simulated

offspring’s genotype data using these founders’ genotype data.

In total, 10,000 families were simulated using the pedigree defined

in Supplementary Figure S1 (supplementary material). Next, in

each simulated family, one pair of each relationship type were

sampled (Table 1), and thus the numbers of each relationship in

the final dataset were balanced (i.e., each relationship type has the

same number of pairs in the training set). The final simulated

dataset included 100,000 pairs of individuals with 4 different

degrees and 10 different relationship types (including unrelated

relationships). Each relationship type has 10,000 instances in the

dataset. The simulation adopted 503 unrelated European ancestry

(EUR) samples from the 1,000 genomes project sequencing data

(30X coverage) (Auton et al., 2015) as founders. For each founder,

582K autosomal biallelic SNPs from Illumina GSA (Global

Screening Array) panel were extracted from the 1,000 genomes

project and used in the simulation. The GSA panel was selected

because most profiles in the genealogy databases (e.g., GEDmatch;

https://www.gedmatch.com) were generated by microarray, and

GSA is one of the most widely used panels.

Real data

Eight Utah European descendant samples (Dausset et al.,

1990) (Figure 1) were selected. Among these samples, there

were 28 pairs of relationships, including 11 unrelated, 7 1st

degree, 8 2nd degree, and 2 3rd degree relationships. These

samples were genotyped using Illumina Infinium Omni5-4 Kit,

containing 4.3 million autosomal biallelic SNPs. Each sample was

genotyped three times with various input DNA (i.e., 50 ng, 500 pg,

and 100 pg). In total, 4,198,873 SNPs were called by Genome

Studio, in which 418,513 SNPs were overlapped with the SNPs in

the GSA panel. These ~419 K autosomal biallelic SNPs were

extracted and used to test the performance of the trained classifiers.

For the classification with these real data, the simulated

datasets with different genotyping errors were used as the

training datasets to test the effect of the consistency of the

GERs between the reference datasets (assumed to be minimum

errors) and the test datasets. For each pair of individuals in the test

FIGURE 1
The relationships among the 8 UTAH/CEPH cell line samples (filled in with blue color).
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dataset of classification, a sample containing 50 ng DNA was

considered as the reference sample, and another sample

containing 500 pg or 100 pg was used as a case sample.

Feature extraction

For each pair of profiles, either simulated or real data,

17 measures were extracted as features to describe the

relationships between individuals (Supplementary Table S1).

These measures included KING-homo (K0) (Manichaikul

et al., 2010), KING-robust (K1) (Manichaikul et al., 2010),

IBS = 0, IBS = 1, IBS = 2, the union of IBS = 0 and IBS = 1

(Stevens et al., 2011), the union of IBS = 1 and IBS = 2, the union

of IBS = 0 and IBS = 2, and nine allele combinations of a pair of

individuals (j1—j9) (Waples et al., 2019). These features were

solely based on the genotypes. Measures with allele frequencies

and IBD segments were not included, considering that the allele

frequencies of certain populations may not be accurate or even

available. In addition, the IBD segment estimation is inaccurate

with high error sequence or genotype data generated from

degraded samples (e.g., DNA extracted from human bones).

Classification algorithms selection and
hierarchical classification strategy

First, two strong classification algorithms, Random Forest (RF)

and Support Vector Machine (SVM), which have different underline

learning mechanisms, were compared using 10-fold cross-validation

with simulation data to select an algorithm for high classification

accuracy and high robustness with noisy data. The higher-performing

algorithmwould be used for all feature selections and classification. The

classification accuracy was determined by 10-fold cross-validations.

The accuracy of determining the relationship degree is usually

much higher than those of determining the relationships within

the 2nd or 3rd degrees. The best features to differentiate

relationship degrees and relationship types within various

degrees may also be different. Thus, a hierarchical classification

strategy was implemented to first determine the relationship

degree (one classifier) and then determine the relationship type

within the same degrees (three classifiers for 1st, 2nd, and 3rd,

respectively; Figure 2). In total, there are four classifiers.

For each classifier, forward feature selection was implemented to

seek the best performing sets of features for classifications, in which the

top-performing (i.e., the highest classification accuracy with 10-fold

cross-validation) features among all available features (that have not

been selected) were iteratively added to the best performing set using a

greedy algorithm.The selected features for a particular classifiermay vary

with different genotyping errors, as the features may have different

degrees of robustness to genotyping errors. Themost commonly selected

features across all genotyping errors (i.e., the features with the highest

robustness and/or the highest classification accuracies) were decided as

the final set of selected features. In both real data (i.e., dilution series) and

simulation data classifications, the train datasets were the simulated

datasets with GER = 0, and the test datasets had various error rates.

Results

Supervised classification algorithms
comparison

Based on the results of feature selection and classification

(Figure 3), in general, the classification accuracies with RF were

higher than those with SVM, except for the classifications of

relationship types within 2nd and 3rd degrees with very high GER

(i.e., 0.1). For the classification of degrees, both RF and SVM could

achieve close to 100% accuracy with the top-performing features, but

RF was much more robust. For the classification within the 1st degree

relationship, 100% or close to 100% accuracies were obtained with top-

performing features across all GERs using SVM (Figure 3). If more

than 10 features were selected, the accuracy of RF drops quickly when

GER was higher than 0.03, implying that SVM was more robust than

RF within the 1st degree. For 2nd and 3rd degree relationships, when

the GERs were low (e.g., 0.01), RF could achieve higher accuracies for

all three classifications. For example, for relationship type within the

2nddegree, ~77%accuracywithRFwas obtained by the best 8 features,

while ~50% accuracy with SVMwas obtained by the best 7 features. In

the subsequent analysis, RF with 10-fold cross-validation was

employed to conduct forward feature selections and classifications.

Feature selection

Different top-performing features might be selected with data

simulated using different genotyping errors. For the classification

of relationship degrees (Figure 4A), the top 7 features of each given

GER would obtain 100% accuracy across all genotyping errors

(Figure 4A), and adding additional features would lead to lower

accuracies. In total, 42 (= 6 × 7) features were selected across

6 different errors. Figure 4B summarizes the counts of these

42 selected features (14 unique features). K1, j4 and j7 were

selected across five genotyping errors, some features were

commonly selected (e.g., K0, IBS0, j6, and j8 etc.), and some

features were never selected (e.g., j2, j5, and IBS12).

Since the actual genotyping errors of the forensic samples

are unknown or hard to estimate, it might not be appropriate

in practice to select different features for different genotyping

errors. Thus, feature selection was further conducted by the

order of the counts in Figure 4B (i.e., similar fashion as the

forward feature selection, but by the ranking of the order of

counts) to decide the top-performing set of features that are

accurate and improve the robustness across all GERs

(Figure 5). For relationship degree classification, the top

7 features (i.e., red dash line in Figure 4B decided by
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Figure 5A), including K1, j4, j7, K0, IBS0, j6 and j8, were

selected as the final feature set because these 7 features had

the highest accuracy among all the GERs.

Similar feature selections were conducted for classifying the

relationship types within the 1st degree, the 2nd degree, and the

3rd degree (i.e., the ranking and counts in Figures 6D–F decided

by Figures 6A–C). Figures 6D–F summarized the top features

across different GERs (the red dash line in Figures 6D–F decided

by Figures 5B–D). To balance the classification accuracy and

robustness to genotyping errors, we selected the top 3 features for

relationship types in the 1st degree, top 13 features for

relationship types in the 2nd degree, and top 10 features for

relationship types in the 3rd degree (Figures 5, 6).

Plain classification and hierarchical
classification

For relationship degree classification, with the selected 7 top-

performing features (i.e., K1, j4, j7, K0, IBS0, j6 and j8), close to

100% classification accuracies were obtained with various GERs

(e.g., 99.02% with GER = 0 and 95.24% with GER = 0.1), which

was much higher and robust compared with using a single feature

K1 (e.g., 95.74% with GER = 0 and 75.45% with GER = 0.1;

Figure 4). Apparently, in addition to K1, the other four features in

the final feature set substantially improved the accuracy and

robustness of the relationship degree classification.

The classification was employed for further classifying the

relationship types within each classified relationship degree. The

accuracies of classifying the relationship types within the 1st

degree were almost 100% with the selected 3 features across all

genotyping errors (Figure 6). In contrast, the method suggested

in (Manichaikul et al., 2010) to differentiate parent-child and

full-sibling (e.g., K1+IBS0) performed very well when genotyping

errors were low (e.g., GER ≤0.03), but not for higher GERs (e.g.,
only 59.9% accuracy with GER = 0.05).

As expected, the classification accuracies within the 2nd

degree and 3rd degree were much lower and were

substantially affected by the GERs (Figures 5, 6). For the 2nd

degree relationship types, the final 13 features together can reach

FIGURE 2
Experimental design andworkflowof the whole study. The hierarchical classificationwas implementedwith the simulation data, but not the real
data, as the sample size of the real data was too small.

Frontiers in Genetics frontiersin.org05

Huang et al. 10.3389/fgene.2022.971242

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.971242


FIGURE 3
Classification algorithm comparisons between Random Forest (RF) and Support Vector Machine (SVM). Two algorithms (left four plots for RF;
right four plots for SVM)were employed to conduct forward feature selectionwith 10-fold cross-validation for relationship degree, relationship types
within the 1st degree, relationship types within the 2nd degree, and relationship types within the 3rd degree. Different genotyping error rates were
presented with different colors. The x-axis is the number of selected measures (or features) in each step of the forward selection. GER =
genotyping error rate of the test dataset.
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77.5% accuracy with GER = 0, which was much higher than

K1 alone (i.e., 33.3%). The accuracy differences between the final

13 feature set and K1 decreases with increasing GERs (e.g., 32.1%

with the final feature set vs. 31.0% with K1 alone, when GER =

0.1). Thus, selecting and combining multiple features could

improve the accuracy and robustness, particularly with lower

GERs, for classifying relationship types within the 2nd degree.

For the 3rd degree relationships (Figures 5, 6), the

accuracies with the final 10 features were higher with

different GERs than those with K1 alone. When the GER

was low (e.g., GER≤0.05), the final 10 features performed

better than K1 alone (e.g., 33.3% with the final feature set

vs. 25.2% with K1 alone, when GER = 0). With the GER

increasing, the accuracy of the final 10 features could decrease

quicker than that with K1 alone (e.g., 24.6% with the final

feature set vs. 25.5% with K1 alone, when GER = 0.1). With

4 relationships within the 3rd degree and equal sample size for

all relationships, the accuracy with random guessing among

the 3rd degree relationships is 0.25. When the GER is high, the

selected 10 features perform similar to random guessing.

Overall, the accuracy of classifying relationships within each

degree and the robustness to genotyping errors were improved by

selecting appropriate features, although the improvement

decreases with more distant relationship degrees. As expected,

the classifications within the 2nd and the 3rd degree relationships

were still challenging. Better features, which contain more than

only genotypes, may be needed to improve the accuracy, such as

features with allele frequencies in populations.

Effect of missing data

To evaluate the impact of marker density on the classification

accuracy, 50, 75, and 90% SNPs were randomly deleted from the

419 K SNPs, and the same analysis as above was conducted on

these reduced datasets. Figure 7 compares the accuracies of using

7 top-performing features (Figure 4B) or using K1 only. The

accuracies were the average of 10 different runs. Similar to the

above analysis, the top-performing features substantially

outperformed K1 alone for high genotyping errors. However,

the missing data only changed the accuracies when GER is

extremely high (e.g., accuracy = 83.7% with ~42 K SNPs and

GER = 0.1), which was consistent with the results in

(Manichaikul et al., 2010) and implied that our method is

sensitive to SNP density only when GER is very high.

Effect of various genotyping error rates in
the training dataset

In the above studies, the true GERwas assumed unknown, and

the simulated data with no genotyping error was used as the

training dataset. However, if the GERs are known or may be

precisely estimated, more appropriate training datasets, which

have the same or similar GERs as the test sets, may be used to

train the classifiers, and higher accuracies may be obtained.

Figure 8 shows the accuracies of classifying relationships

within the same degrees with various genotyping errors in the

FIGURE 4
Feature selection for classifying relationship degrees using data simulated with various genotyping errors. (A) the accuracies by the forward
feature selectionwith various genotyping errors, in which the ranking of the features for different genotyping error rates (GERs) was different (e.g., the
first features were K1 and j7 with GER = 0 and 0.1, respectively), and (B) the counts of the commonly selected features across all genotyping errors
(e.g., K1 was selected in the feature selections with all six genotyping errors). The features on the left of the red dash line were selected as final
features. Final = classification with the selected top-performing features; GER = genotyping error rate of the test dataset.
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training dataset and test set. For the 1st degree relationships, all

accuracies were close to 100%, and no impact could be observed.

For the 2nd and 3rd degree relationships, the highest

classification accuracy always is presented when the train

datasets and test datasets have the same GER. Therefore,

correctly estimating the GER of a sample could substantially

increase the relationship estimation accuracy.

Relationship degree classification with
real data

The classifiers, trained by the simulation data with various

GERs, were used to classify the pairs in the real samples into

degrees, with 50 ng, 500 pg or 100 pg DNA, and ~4M or 419 K

SNPs (Figure 1). K1 with the cutoff thresholds defined in

(Manichaikul et al., 2010) was used as the baseline to evaluate

performance improvement. In general, the highest accuracies

were achieved with close to the true GERs of the test sets (Figure 9).

With 50 vs. 50 ng (i.e., both reference and test samples were

genotyped with 50 ngDNA), the highest accuracy was 100% (= 28/

28) with test sets’GERs ranging from 0.05 to 0.07with 419 K SNPs,

or accuracy was 96.4% (= 27/28) withGERs from 0 to 0.01with 4M

SNPs. K1 alone achieved 100% accuracywith both 419 K SNPs and

4M SNPs (Figure 9).

With 50 ng vs. 500pg, which may reflect more realistic

scenarios in many missing persons cases, the highest

accuracies were 92.9% (GER = 0.3) and 89.3% (GER = 0.07)

with 419 K or 4M SNPs, respectively. In contrast, the K1 alone

only achieved 67.9 and 57.1% with 419 K or 4M SNPs,

respectively. Our approach outperformed K1 for high GER

profiles generated from low-quality samples. Similar patterns

were observed with 50 ng vs. 100pg, in which the highest

accuracies were achieved with GER of 0.5 for 419 K SNPs

(i.e., 71.4%) and with GER of 0.3 for 4M SNPs (i.e., 60.7%),

respectively. The accuracy with K1 alone was only 39.3%.

FIGURE 5
Classification accuracies with the selected features ranked as in Figures 3, 5 for relationship degree and types using data simulated with various
genotyping errors. GER = genotyping error rate of the test dataset. (A) the accuracies by the forward features selection for the relationship degrees,
(B) the accuracies by the forward features selection for the 1st degree relationships, (C) the accuracies by the forward features selection for the 2nd
degree relationships, (D) the accuracies by the forward features selection for the 3rd degree relationships.
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Therefore, higher kinship estimation accuracies could be

achieved with our machine learning approach.

In addition, the GERs of these diluted samples might be

roughly estimated, as the highest accuracies are likely obtained

when the train and test sets share the same genotyping errors

(Figure 8). The samples with 50 ng might have a GER lower than

0.03, the GERs of the samples with 500 pg might range from

0.05 to 0.07 if the test with 4M SNPs was considered to be more

reliable, and the GERs of the samples with 100 pg might range

from 0.2 to 0.3.

To further evaluate the performance of the IBD segment

method in real data, we uploaded these 28 SNPs profiles (with

~4 million SNPs) to GEDmatch. GEDmatch only takes SNPs in

the GSA panel in calculation, thus only ~419 K SNPs were used

in calculation. As expected, the accuracy of GEDmatch for

profiles generated with 50 ng DNA was 100% (Figure 9 &

Supplementary Table S2), as these profiles had minimum

genotyping errors. However, the accuracies of GEDmatch

were much lower for profiles with 500 and 500 pg DNA,

compared with the machine learning approach. For example,

the total IBD segments between samples 13,047 and

7,046 dramatically decreased with the reduction of DNA

concentration (i.e., 3,571.1 cM with 50ng, but 0 cM with

500 and 100 pg). With 500pg, 15 related pairs (out of 17)

were determined as unrelated (i.e., 0 cM), one 1st degree pair

was determined as 3rd degree, and 1st degree pair was

determined as 8th degree. With 100 pg, 16 related pairs were

determined as unrelated, and one 1st degree pair was

determined as 3rd degree. If unrelated pairs were excluded

in comparisons, the accuracies of GEDmatch for profiles with

FIGURE 6
Forward feature selections and classification accuracies for relationship types using data simulated with various genotyping error rates. (A) the
accuracies for the 1st degree relationships, (B) the accuracies for the 2nd degree relationships, (C) the accuracies for the 3rd degree relationships, (D)
the counts of the selected features for the 1st degree relationships across all genotyping errors (e.g., K1 and K0were selected in the feature selections
with all six genotyping errors), (E) the counts of the selected features for the 2nd degree relationships across all genotyping errors, and (F) the
counts of the selected features for the 3rd degree relationships across all genotyping errors. The features on the left of the red dash line were
selected as final features. Final = classification with the final features; GER = genotyping error rate of the test dataset.
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500 and 100 pg were 0%. Thus, for profiles with high

genotyping errors, GEDmatch may not be a good tool to

search the true relatives.

Discussion

This study developed a novel machine learning approach

for estimating the relationship types with high error SNP

profiles. In this approach, a hierarchical classification

strategy was employed first to classify the relationships by

degree and then the relationships within each degree

separately. For each classification, feature selection was

implemented to gain better performance. Both simulated and

real data sets were utilized in evaluating this approach, and the

accuracies of this approach were higher than K1 alone (the most

commonly used measure) and also other individual measures;

namely, this approach was more robust than individual

measures for SNP profiles with genotyping errors. In

addition, the highest accuracy could be obtained by

providing the same GERs in the train and test sets, and thus

estimating genotyping errors of the SNP profiles is critical to

obtaining high accuracy of relationship estimation.

The accuracy for estimating the degrees of the relationships

was close to 100% using simulation data, which showed that the

feature selection could be helpful in improving the robustness of

classification. K1 was sensitive to genotyping errors, particularly

when the GER was higher than 0.07 (Figure 4). Adding more

features could substantially improve the accuracy (i.e., close to

100%) and the robustness to errors, which implies that most of

the errors in kinship estimation due to genotyping errors could

be corrected by adding other features.

The accuracy of estimating the degrees of the relationships

obtained from the real data was much lower than the

simulated data, which indicated that the simulation model

used in Ped-sim might not precisely reflect the genotyping

errors in the real data, and thus may result in overfitting in the

training dataset. Better genotyping error models (de Vries

et al., 2022; Nagraj et al., 2022) need to be developed to

simulate SNP profiles that better approximate real SNP

profiles generated from low-quality samples. However, in

the simulations, the most important issue may be “what

error rate should we assign to each type of error defined in

the model?” As far as we know, limited studies have been done

FIGURE 7
The impact of missing data on relationship degree
classification. The label of the x-axis represents missing rates with
two different sets of features (top-performing features vs. K1).
GER = genotyping error rate of the test dataset.

FIGURE 8
The effect of genotyping error rate of the training dataset in relationship type classification. (A) the accuracies with the final selected features for
the 1st degree relationships in the training and test datasets with different genotyping error rates, (B) the accuracies with the final selected features for
the 2nd degree relationships in the training and test datasets with different genotyping error rates, (C) the accuracies with the final selected features
for the 3rd degree relationships in the training and test datasets with different genotyping error rates. The labels of the x-axis (A–C) represent the
different genotyping error rates of the test dataset. The labels of the y-axis (A–C) represent classification accuracy. GER-train = genotyping error rate
of the training dataset.
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to generate empirical data for estimating the error rates (or the

range of the error rates) for different types of genotype errors,

nor which model best fits the real WGS data generated from

the missing persons samples. Thus, the commonly adopted

simulation tool, Ped-Sim was used, which a pragmatic solution

with one single parameter and the simulations could be better

controlled on a reasonable scale. Nevertheless, the classifier

trained by the simulated data still outperformed the individual

measures. The more sophisticated simulation methods will be

tested in future studies.

It is relatively easy to differentiate parent-child and full-

sibling within the 1st degree. The combination of IBS0 and

K1 could reach 100% accuracy when GERs were less than

0.05. But it dropped quickly when the GER was higher than or

equal to 0.05 (Figure 6A). With the selected features, the

classification accuracy could reach 100% across all the

genotyping error levels. However, the accuracies for

estimating the relationship within the 2nd and 3rd degrees

were much lower, which was consistent with previous studies

(Epstein et al., 2000; Huff et al., 2011; Henn et al., 2012;

Ramstetter et al., 2017). In particular, the accuracies of

estimating relationships could be equivalent to random

guessing (i.e., 33 and 25% within the 2nd and 3rd degree,

respectively), if the genotyping errors in the training dataset

and the test set were largely different (e.g., 0 for the training

dataset and 0.1 for the test set). With more accurate

genotyping error estimations, the classifier can be trained

with more proper data (i.e., the data with the same GERs as

the test set), and the classification accuracy could be

improved.

The genotyping errors could come from every step of the

genotyping or sequencing process, including the polymerase

chain reaction (PCR), sequencing chemistry, hybridization,

signal detection, data collection, base-calling, sequence

alignment, variant calling, etc. The GER would depend on the

quantity and quality of the samples, the genotyping or

sequencing protocols, and the bioinformatics analysis

pipeline(s). Data cleaning in the bioinformatics analysis (e.g.,

removing sequence reads with low-quality scores) could reduce

the GER with the cost of losing variants. Fortunately, our study

and Shcherbina’s study (Shcherbina et al., 2016a; Shcherbina

et al., 2016a) showed that losing 90% of the SNPs in the GSA

panel did not affect the estimation accuracy. Thus, a stringent

data cleaning process could be implemented to remove low-

quality data and lower the GERs. In addition, a method to

precisely estimate the GER of a SNP profile, or at least a

range of the GERs with confidence levels, would have

practical value (but is yet to be developed).

In this study, two strong classifiers, RF and SVM, were tested.

However, more recently developed classification algorithms, such

as XGBoost (Chen & Guestrin, 2016) and deep learning (LeCun

et al., 2015), may further improve the performance with proper

parameter tuning. It is also worth noting that feature selection is

very important to increase classification accuracy. The

17 features listed in Supplementary Table S1 were collected

from previous literature, and some of these features might be

FIGURE 9
The accuracies of classifying relationship degrees with the UTAH family in Figure 1. The accuracies were estimated with the final selected
features for the relationship degrees in the simulated training and real test datasets (UTAH family) with different genotyping error rates. (A) test
dataset with 419K SNPs, (B) test dataset with 4M SNPs. The labels of the x-axis (A,B) represent the different genotyping error rates of the training
dataset. The labels of the y-axis (A,B) represent classification accuracy. In the legend, GER denotes genotyping error rate of the test dataset. The
GERs of the test datasets were represented using different colors and icons. GEDmatch denotes the accuracies obtained fromGEDmatchwebsite. K1
denotes the accuracies obtained from KING-robust.
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noisy for certain relationships or relationship degrees. Using the

feature selection in relationship degree as an example, when the

features were added one by one, the accuracy experienced three

stages, raising, platform, and falling. It showed that some features

increased the classification accuracy, but some features may be

irrelevant, noisy, and even reduce the accuracies for certain

relationship degrees or types, partially due to the genotyping

errors.

This current method does not require allele frequencies

as input, which is the case for many missing person cases.

Additional features based on allele frequencies (e.g., the

cumulative likelihood of observing a SNP profile given a

specific population) may be included in a future study, as

allele frequencies of the SNPs could provide more

information than just SNP genotypes, and thus higher

accuracy could be achieved by combining the features

based on genotypes and features based on allele

frequencies. However, the effect of inaccurate allele

frequencies (e.g., use of African frequencies for Hispanic

samples) is yet to be investigated. The features on IBD

segments (e.g., the average length of the IBD segments,

the total length of the IBD segments, etc.) (Hill & White,

2013; Ramstetter et al., 2018) may not work well with high

genotyping errors, as the segments could be easily interrupted

by the errors. However, those IBD segment features could be

included for cases with negligible errors (i.e., cases with high

quality and quantity samples). The GEDmatch results of real

data showed that the total length of IBD segments could

accurately identify 1st, 2nd, and 3rd pedigree degrees using

the samples with low-level genotyping errors (i.e., samples

with 50 ng DNA). However, the majority of the related pairs

were not detected with GEDMatch when the genotyping error

rates were high (i.e., samples with 500 and 100 pg DNA). In

addition, in many missing persons cases, the samples’ ancestry

information may not be available or precisely determined. If

the sample is admixed or belongs to an admixture population,

the genome-wide relatedness methods such as KING will lead

to bias estimation (Thornton et al., 2012; Conomos et al.,

2016). The performance of this machine learning approach has

not been tested in the admixed population as only European

samples were involved in our study. The effect of the

admixture population will be considered in our future

method development.

To summarize, a novel machine learning-based approach

was developed in this study to combine multiple measures and

estimate the relationships for profiles with high GERs.

Substantial accuracy increase and robustness improvement

were observed in determining both relationship degrees and

relationship types, which imply that the machine learning

approach can increase the robustness of relationship

estimations. Further improvement may be conducted by

combining more features based on allele frequencies and

IBD segments.
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