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The ongoing debate on whether non-alcoholic fatty liver disease (NAFLD) is an

active contributor or an innocent bystander in the development of

cardiovascular disease (CVD) has sparked interests in understanding the

common mediators between the two biologically distinct entities. This

comprehensive review identifies and curates genetic studies of NAFLD

overlapping with CVD, and describes the colinear as well as opposing

correlations between genetic associations for the two diseases. Here, CVD

described in relation to NAFLD are coronary artery disease, cardiomyopathy and

atrial fibrillation. Unique findings of this review included certain NAFLD

susceptibility genes that possessed cardioprotective properties. Moreover,

the complex interactions of genetic and environmental risk factors shed

light on the disparity in genetic influence on NAFLD and its incident CVD.

This serves to unravel NAFLD-mediated pathways in order to reduce CVD

events, and helps identify targeted treatment strategies, develop polygenic risk

scores to improve risk prediction and personalise disease prevention.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is characterised by the condition of

excess fat in the liver in the absence of excessive alcohol consumption (Ludwig et al.,

1980). It is frequently associated with metabolic syndrome, affecting at least a

quarter of the population worldwide (Younossi et al., 2016). NAFLD is a disease

spectrum consisting of non-alcoholic fatty liver (NAFL–i.e., hepatic fat
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accumulation), non-alcoholic steatohepatitis (NASH),

fibrosis and cirrhosis (Kleiner et al., 2005). The main risk

factors for NAFLD include hyperlipidaemia, diabetes mellitus,

hypertension and obesity (Rinella, 2015), which are also key risk

factors for cardiovascular disease (CVD) (Liu and Lu, 2014). The

causal relationship between NAFLD and CVD is therefore of

particular interest, although the pathogenesis of both is widely

agreed to involve the complex interplay between genetic and

environmental factors (Liu and Lu, 2014). Liver fat accumulation

results from an imbalance between the influx of fat which

includes fatty acids from adipose tissue and de novo

lipogenesis from glucose, and fat efflux which involves

oxidation and synthesis of very-low-density lipoprotein

(VLDL) (Brouwers et al., 2020). Even though liver fat

accumulation is the prerequisite for the progression of NASH,

not all NAFL individuals progress through the stages.

Lipotoxicity is a main driver of NASH progression,

determined by the quantity and type of accumulated lipids

and the defensive capabilities of the liver against lipotoxicity

(Donnelly et al., 2005; Machado and Diehl, 2016). Apart from the

natural history of NASH progression, our group was also able to

depict significant improvement in liver histology in the absence

of pharmacological interventions, suggesting that NASH is a

disease that can regress spontaneously over time with even non-

pharmacological measures (Ng et al., 2022).

NAFLD appears to be directly associated with CVD,

independent of traditional cardiovascular confounders such as

age, sex, state of hyperglycaemia and insulin resistance (Stefan

et al., 2016). It is strongly associated with an increased risk of

incident CVD (Targher et al., 2010; Anstee et al., 2013;

Armstrong et al., 2014; Ballestri et al., 2014; Byrne and

Targher, 2015; Lonardo et al., 2015), as well as a 64% higher

risk of developing non-fatal and/or fatal CVD, compared to non-

NAFLD individuals (Ong et al., 2008; Targher et al., 2016).

Unsurprisingly, even though patients with NAFLD are at risk

of end-stage liver disease, the majority of NAFLD patients die

from CVD (Targher et al., 2010; Chalasani et al., 2012; Anstee

et al., 2013).

The ongoing debate of whether NAFLD is an active

contributor or an innocent bystander in the development of

CVD therefore encompasses the appreciation for the common

mediators between the two anatomically distinct entities.

Exemplifying potential shared mediators between NAFLD and

CVD is the pathogenesis of atherosclerotic lesions, which is the

combination of endothelial dysfunction, lipoprotein

accumulation in the vessel wall, inflammatory cell infiltrates,

accumulation of foam cells and proliferation of the smooth

muscle cells resulting in vulnerable plaques that are prone to

rupture (Brouwers et al., 2020). NAFLD could contribute

theoretically to all these pathophysiological stages, through the

development of dyslipidaemia (characterised by elevated plasma

triacylglycerols, low levels of high-density lipoprotein (HDL)

cholesterol, high levels of small-dense low-density lipoprotein

(LDL) particles (Adiels et al., 2006; Adiels et al., 2008; Defilippis

et al., 2013; Do et al., 2013; Holmes et al., 2017; Burgess et al.,

2018), low-grade inflammation (involving IL-1β in the

pathogenesis of NASH and CVD) (Ridker et al., 2017; Mirea

et al., 2018), and thrombogenicity (Alessi et al., 2003; Song et al.,

2017) (with high levels of plasminogen activator inhibitor type-1

[PAI-1] in NASH, that is also an important component in the

fibrinolytic system). Some NAFLD susceptibility genes are

associated with CVD, representing possible components

mediating between both entities. A systematic analysis of the

human genetics for both conditions may therefore offer

important therapeutic strategies to treat NAFLD and offset

the greater CVD risk. Simple steatosis indeed is not as

‘simple’ or benign as its name suggests, with fat accumulation

driving both the overproduction of lipoproteins and

atherosclerosis. Whilst NAFLD and CVD share similar

susceptibility genes, certain genes have displayed opposing

correlations between polymorphism and the 2 different

diseases. For example, as both the phospholipase domain-

containing protein 3 (PNPLA3) and transmembrane

6 superfamily 2 (TM6SF2) regulate VLDL particle production,

the genetic polymorphism can result in increased intrahepatic

triglyceride (TG) with increased risk of NAFLD, but reduced

circulatory cholesterol and LDL which lends protection against

coronary artery disease (CAD) (Liu et al., 2017; Simons et al.,

2017). Delineating these unique pathways will be important in

unravelling NAFLD-mediated pathways in order to reduce CVD

events, and facilitate future studies in identifying targeted

treatment strategies (Brouwers et al., 2020).

This review aims to give insight into the genetic interactions

between CVD and NAFLD, and elaborate on the experimental

evidence that supports a causal relationship between the two

entities. We discuss the clinical implications of the findings,

which may guide future therapeutic trials targeting common

genetic pathways in order to simultaneously lower the risk of

NAFLD and CVD. Here, CVD described in relation to NAFLD

are CAD, cardiomyopathy and atrial fibrillation (AF).

NAFLD and coronary artery disease

Genome-wide genotyping arrays have from the start

contributed to the large spectrum of genetic variants with

subsequent imputation of millions of further variants leading

to a wide breadth of understanding of the genetic architecture of

CAD (Khera and Kathiresan, 2017; Erdmann et al., 2018). Ultra-

large scale genome-wide association studies (GWASs) and meta-

analyses report loci in relation to atherosclerosis, demonstrating

the progressive insights for population-specific and trans-

ancestry risk factors in CAD (Lu et al., 2012; Takeuchi et al.,

2012; Koyama et al., 2020). This is proving utility for polygenic

risk scores in CAD or myocardial infarction (MI), depending on

the accuracy of predicting the effect size of risk alleles that varies
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TABLE 1 Summary of genomic variants identified in both NAFLD and CVD.

Gene Protein function Association with NAFLD Association with cardiovascular
diseases

Apolipoprotein C-3 (APOC3) Lowers lipoprotein lipase activity, inhibits
triglyceride hydrolysis into VLDL particles
and chylomicrons in the plasma, thus
increasing plasma triglycerides → increased
CAD risk

• C482T and T455C variants experience
a 30% higher fasting plasma
APOC3 and 60% higher fasting
plasma triglycerides in the presence of
NAFLD.41

• Rare mutations that disrupt the APOC3
function were associated with 39% lower
levels of plasma triglycerides compared to
noncarriers, and a 40% reduction in CAD
risks.40

• When compared to subjects with the
wild-type allele, 38% of the C482T and
T455C carriers had NAFLD.41

• Heterozygous carriers of the null
mutation of the gene encoding APOC3
expressed half the amount of APOC3 than
noncarriers. Leading to lower fasting and
postprandial serum triglycerides, lower
levels of LDL-cholesterol and higher levels
of HDL-cholesterol. Subclinical
atherosclerosis was less common in
carriers than noncarriers. Lifelong
deficiency of APOC3 has a
cardioprotective impact on carriers.39

Apolipoprotein E (APOE) Plasma lipid transport protein that
facilitates clearance of triglyceride-rich
lipoproteins from bloodstream into the liver.

• Prevalence of the APOE ε3 allele87 is
significantly increased in biopsy-
proven NASH patients

• Hypolipidemic effect of APOE ε2 leads to
lower LDL and higher HDL
concentrations in childhood.82,83

• Occurrence of APOE ε2 allele is
protective against NAFLD.89

• APOE ε4 isoform shown to be an
indicator for CVD risk, with associations
of increased carotid intima-media
thickness, LDL, Lp(a) and apoB levels.84,85

Dysbetalipoproteinemia may arise.

Insulin receptor substrate-1
(IRS-1)

Regulates insulin action downstream, and
maintains vascular smooth muscle cell
differentiation.

• Gly172Arg polymorphism alters the
activity of insulin receptors and
increases the severity of NAFLD in
Caucasians.117

• Genetic variation near IRS-1 results in
decreased IRS-1 expression. This is
associated with impaired metabolic
profile - increased visceral to
subcutaneous fat ratio, insulin resistance,
hyperlipidaemia, decreased adiponectin
levels → enhancing the risk of diabetes
and CAD.109,110

Phosphatidylethanolamine
N-methyltransferase (PEMT)

Catalyses the conversion of
Phosphatidyethanolamine to
phosphatidylcholine. Phosphatidylcholine
contributes to VLDL formation for hepatic
triglyceride secretion.

• The V175Met loss-of-function
mutation confers susceptibility to
NASH,106 in both the Chinese107 and
Japanese population.100

• V175Met is a loss of function mutation,
associated with diminished PEMT
activity, that increases propensity to lipid
accumulation.96

• Val175Met variant allele of the PEMT
gene is significantly more prevalent in
NASH patients.

• Carriers of the PEMT risk allele showed
decreased levels of multiple
glycerophospholipids such as the
cardioprotective lipid species LPC 16:
0 and/or LPC 20:4.95

• In the NASH group, carriers of
Val175Met had significantly lower
body mass index and more non-obese
patients compared to homozygotes of
wild type PEMT.100

TRIB1 Regulatory mechanisms on circulatory
lipids and immune cells. It reduces TG,
maintains steady-state phagocytosis and
M2macrophage differentiation, and inhibits
chemotaxis of inflammatory factors and
vessel wall damage

• TRIB1 knockout reduces expression of
MTTP and APOB (the main
apolipoprotein component of VLDL
and LDL.

• Risk allele at the TRIB1 locus was
associated with higher triglyceride and
lower HDL-cholesterol.51,62,63

• TRIB1 knockout increases expression
of liver C/EBPα protein, thus increases
production and accumulation of
hepatic fat

Tumor necrosis factor-a (TNF-a) Acts as a pro-inflammatory cytokine. It has
a broad role in inflammation,
autoimmunity, tumour apoptosis and
metabolic dysregulation

• Higher prevalence of TNF-α -238
promotor polymorphism in NAFLD/
NASH patients, in Italian,176

Mexican177 and Chinese107,178 cohorts.

• TNF-a/-308 A allele overexpressed in
patients with end-stage non-ischemic
DCM.170

• TNF-α -238 polymorphism associated
with inverse effect on regulation of
glucose and lipid homeostasis,
resulting in increased risk of impaired
insulin sensitivity, but lower LDL-
cholesterol and BMI

• TNF-a/-308 A allele was more prevalent
in Japanese patients with idiopathic
DCM.167

• Frequencies of TNF-a/-238 (G/A) alleles
in the Turkish cohort differed from those

(Continued on following page)
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TABLE 1 (Continued) Summary of genomic variants identified in both NAFLD and CVD.

Gene Protein function Association with NAFLD Association with cardiovascular
diseases

in the France and Northern Ireland
cohorts.170

Interleukin 6 (IL 6) Acts as a pro-inflammatory cytokine • Prevalence of IL6-174C variant was
higher in NASH than NAFLD patients
in a Caucasian population and was
associated with increased insulin
resistance.189

•Interleukin-6 (IL6) is significantly
correlated with increased left atrial size,184 an
important predictor for new onset AF.

• IL6 stimulates matrix metalloproteinase-
2, a molecule implicated in the atrial
remodelling process in AF.185,186

• Polymorphisms in the promotor region of
the IL6 gene correlates with postoperative
AF.187,188

• CC genotype of the IL6–174 G/C IL6
polymorphism showed significant
elevation of IL6 levels and has at least
2 fold increase in AF incidence compared
to GC and GG genotypes.

Patatin-like phospholipase
domain-containing protein 3
(PNPLA3)

Lipid droplet remodelling and VLDL
production. The PNPLA3 protein reduces
hydrolyse activity, leading to impaired
intrahepatic TG breakdown and hampering
VLDL particle production and secretion.

• PNPLA3 rs738409 G allele predisposes
to NAFLD.141,142

• PNPLA3 rs738409 G allele conferred a
modest protection from CAD.141,142

• The I148M variant of PNPLA3
associated with NAFLD severity. It
increases risk of developing NASH,
advanced fibrosis and cirrhosis.146 This
has been observed in the Japanese,
Italians, Malaysians and Americans147-
151 populations.

• Variants in PNPLA3 associated with lower
plasma triacylglycerols and LDL
cholesterol142 → reducing risk of CAD

• PNPLA3 rs738409 G allele encodes
PNPLA3 protein (I148M) which reduces
hydrolyse activity, leading to impaired
intrahepatic TG breakdown, hampers
VLDL particle production and
secretion.144 Therefore, PNPLA3 minor
allele correlated with reduction in plasma
lipids145 → reducing risk of CAD

Transmembrane 6 superfamily 2
(TM6SF2)

Regulates liver fat metabolism, TG secretion
and hepatic lipid droplet content.154 It is
involved in VLDL production.

• The rs5854926 variant reduces
TM6SF2 expression in the liver,
resulting in higher serum alanine
aminotransferase levels and TG
content, and reduced total cholesterol
and LDL.155-158

• TM6SF2 rs58542926 T allele has
cardioprotective effects.141,153

• TM6SF2 rs5854926 variant has been
shown to be an independent risk factor
for liver steatosis.155,156,160

• Variants of the gene associated with
reduced plasma LDL-cholesterol and
triacylglycerols142 → reduces risk of CAD

• TM6SF2 rs5854926 variant
significantly associated with NAFLD
in Asian and Caucasian populations.161

Glucokinase regulatory protein
(GCKR)

•Regulates glucose storage and disposal. • rs1260326-T variant decreases GCKR
ability to inhibit glucokinase →
increased hepatic glucose uptake,
decreased fatty acid oxidation and
enhanced lipogenesis → the
progression of steatosis or levels of
circulating lipids.

• Variants (rs1260326, rs780094, rs780093)
associated with CAD,119 higher serum
triacylglycerols, lower serum HDL
cholesterol and the presence of small
dense LDL particles.118

•Encodes liver-specific glucokinase
regulatory protein (GKRP),
which has role in de novo
lipogenesis.

• rs1260326-T variant increases NAFLD
risks and the concentrations of
apolipoprotein B which contains
lipoprotein particles and TG.127,128

• rs789904-T variant associated with
hepatic steatosis.131

VLDL, Very low-density lipoprotein; LDL, Low density lipoprotein; HDL, High density lipoprotein; TG, Triglycerides; AF, Atrial fibrillation; CAD, Coronary artery disease; CVD,

Cardiovascular disease; NAFLD, Non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis.
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with individual genetics (Gola et al., 2020). More than 200 loci

have been associated with CAD and MI since 2007, with

comprehensive identification of their risk alleles, and allele

frequencies (Erdmann et al., 2018; Kessler and Schunkert,

2022). Initially, the impact of genetic hits lay with traditional

cardiovascular risk factors: hypertension and hyperlipidaemia.

Currently, approximately half of the loci explains the impact on

pathophysiological pathways (such as nitric oxide signalling),

and others are identified as new “drivers” of atherosclerosis and

MI (Wobst et al., 2018; Dang et al., 2020). Several NAFLD

susceptibility genes have a differential effect on plasma lipids

and concurrent CAD risks, suggesting that plasma lipids are

indeed essential mediators between NAFLD and CVD. This may

guide the design of anti-NAFLD drugs targeting lipid metabolism

and CAD risks (Brouwers et al., 2020). A summary of genomic

variants overlapping between NAFLD and CVD is shown in

Table 1.

Apolipoprotein C-3

Lipoprotein lipase (LPL) is an essential enzyme for

metabolising TG-rich lipoproteins. Populations harbouring

common, noncoding, and rare loss of function variants at this

genetic locus, have been associated with elevated CAD risk. In

addition to the LPL gene, crucial endogenous regulators of LPL

activity are associated with CAD, including APOC3 (Pollin et al.,

2008; Willer et al., 2008; Crosby et al., 2014). APOC3, expressed

in the liver, is a key regulator of plasma TG levels, shown to

adversely affect cardiovascular event risks. APOC3 lowers LPL

activity, and inhibits TG hydrolysis into VLDL particles and

chylomicrons in the plasma, increasing plasma TG and the

resultant increased risk of CAD. Rare mutations disrupting

APOC3 function are associated with 39% lower plasma TG

compared to noncarriers, as well as a 40% reduction in CAD

risks (Crosby et al., 2014). 5% of heterozygous carriers of the null

gene APOC3 mutation express half the amount of APOC3 in

noncarriers. Mutation carriers have lower fasting, postprandial

serum TG, as well as lower levels of LDL-cholesterol and higher

HDL-cholesterol. As a result, subclinical atherosclerosis,

determined by coronary artery calcification, were less

common in carriers than noncarriers. This proposes that

lifelong deficiency of APOC3 provides a cardioprotective

impact on carriers (Pollin et al., 2008).

Polymorphisms in APOC3 are also associated with NAFLD

and insulin resistance. In a cohort of Asian Indian men (Cooper,

1985; Weintraub et al., 1987; Petersen et al., 2010), carriers of

APOC3 variant alleles (C-482T, T-455C, or both) demonstrated a

30% increase in fasting plasma apolipoprotein C3 concentration,

compared to wild-type homozygotes.APOC3 variant carriers had

60% increased fasting plasma TG concentration. Increased

plasma APOC3 concentration inhibits LPL and TG clearance,

predisposing to increased fasting and postprandial

hypertriglyceridemia as a result of increased chylomicron-

remnant particles. Elevated concentrations of circulating

chylomicron-remnant particles are taken up by the liver

through a receptor-mediated process, leading to NAFLD and

hepatic insulin resistance. Moreover, increased hepatocellular

diacylglycerol concentrations in NAFLD result in protein kinase

C epsilon isoform activation that reduces insulin signalling and

hepatic insulin resistance (Samuel et al., 2004; Zhang et al., 2007).

38% of subjects with APOC3 variant alleles had NAFLD,

compared to 0% among wild-type homozygotes, and those

with NAFLD had marked insulin resistance. This observation

was also confirmed in a second cohort of non-Asian Indian men

(Petersen et al., 2010). Interestingly, other cohorts of European

ancestry (Kozlitina et al., 2011; Sentinelli et al., 2011; Hyysalo

et al., 2012) did not identify any significant association between

APOC3 polymorphisms, NAFLD and insulin resistance.

In the current therapeutic pipeline, selective antisense

APOC3 inhibitor, Volanesorsen, produces a dose-dependent

31–71% decrease in TG, used for targeting TG reduction in

familial chylomicronemia syndrome (Pollin et al., 2008; Willer

et al., 2008; Crosby et al., 2014; Gaudet et al., 2015). A

randomised, placebo-controlled phase 2 trial demonstrated

dose-dependent and prolonged decrease in levels of plasma

APOC3 when the drug was administered as a monotherapy or

as an add-on to fibrates. Studies are needed to examine whether

TG reduction via antisense APOC3 inhibition translates also to

improved liver-related outcomes given the close links between

hepatic lipoprotein metabolism and NAFLD (Heeren and Scheja,

2021).

TRIB1

The TRIB1 gene encodes for the Tribbles homolog 1 protein,

which is part of a family of phosphoproteins that play a role in

cell function regulation. The single nucleotide polymorphisms

(SNPs) in or near TRIB1 (such as rs17321515) have

demonstrated significant associations with increased

circulatory triglycerides and CAD. Another promising target

with associations for cardiovascular traits is the recently

identified TRIB1 locus (Teslovich et al., 2010; IBC 50K CAD

Consortium, 2011; Deloukas et al., 2013). Regulatory

mechanisms associated with TRIB1 on circulatory lipids and

immune cells support the notion that TRIB1 is associated with

the development of CVD. Atherosclerosis develops from vascular

wall damage, endothelial cell dysfunction or death, inflammatory

cytokine and chemokine production, oxidised LDL particles,

formation of foam cells, and subsequently plaque formation

(Jaipersad et al., 2014; Grootaert et al., 2018). In

atherosclerosis pathophysiology, macrophages undergo M2 to

M1 transdifferentiation (Deloukas et al., 2013). TRIB1 has been

associated withM2macrophage transition, offering an important

role in homeostatic maintenance and repair of damaged tissue
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(Khallou-Laschet et al., 2010; Baitsch et al., 2011; Satoh et al.,

2013). Hence TRIB1 knockout impairs M2macrophagemediated

repair, leading to metabolic disease and CVD. Furthermore,

mitogen-activated protein kinase (MAPK) mediates

inflammatory factor-mediated migration and vascular smooth

muscle cell proliferation. TRIB1 negatively regulates MAPK

activity by binding to MAPK kinase, thus reducing the

chemotaxis of inflammatory factors and inhibiting vascular

smooth muscle cell migration and proliferation (Manichaikul

et al., 2012; Wang et al., 2015; Pan, 2017; Reustle and Torzewski,

2018).

Data from GWA meta-analyses (Zeggini et al., 2008;

Newton-Cheh et al., 2009; Teslovich et al., 2010)

demonstrated that the risk allele at the TRIB1 locus is

associated with higher TG and lower HDL-cholesterol. TRIB1

affects lipid metabolism with an inverse correlation between

hepatocellular TRIB1 expression and lipogenic gene

expression. Thus TRIB1 expression reduces the risk of CVD

through the reduction of TG, maintenance of steady-state

phagocytosis, percentages of M2 macrophages, and inhibiting

the chemotaxis of inflammatory factors and vessel wall damage

(Zhang et al., 2021). Animal studies show that TRIB1

overexpression in wild-type mice lowered circulating TG

levels (Burkhardt et al., 2010); conversely, targeted TRIB1

deletion in mice led to higher circulating TG. The risk of

CAD is thus potentially downstream of TRIB1, which is likely

to be mediated by the regulation of TRIB1 expression resulting in

adverse lipid profiles (The, 2011). A study in the Chinese Han

population (Liu et al., 2019a) demonstrated that TRIB1

rs17321515 AA + GA genotypes were significantly associated

with CAD in the general population as well as in the NAFLD

population, despite adjusting for important confounders.

Moreover, TRIB1 rs17321515-A carriers displayed worse lipid

profiles than non-carriers. TRIB1 rs17321515 GA + AA

genotypes and TRIB1 rs2954029 TA + AA genotypes also

independently increased NAFLD risk in the Chinese Han

population (Liu et al., 2019b).

TRIB1 overexpression in mouse liver decreases plasma

cholesterol, TG and VLDL secretion (Bauer et al., 2015;

Soubeyrand et al., 2016). Together with Sin3A associated

protein 18 (SAP18) and mSin3A, TRIB1 activates the

transcription of microsomal triglyceride transporter protein

(Makishima et al., 2015) (MTTP). Hence TRIB1 knockout in

human hepatic cells reduces the expression of MTTP and APOB

(Burkhardt et al., 2010; Makishima et al., 2015; Nagiec et al.,

2015) (which is the main apolipoprotein component of VLDL

and LDL). Conversely, TRIB1 has a functional role in lipogenesis,

where TRIB1 overexpression downregulates the carbohydrate

response element binding protein (ChREBP), which is a glucose-

sensitive molecule important for hepatic lipogenesis (Iwamoto

et al., 2015; Softic et al., 2017). TRIB1 knockout increases the

expression of liver C/EBPα protein, thus increasing the

production and accumulation of hepatic fat, resulting in liver

cell damage, liver steatosis and NAFLD (Bauer et al., 2015; Kahali

et al., 2015). Further studies on this treatment approach being

transferred to human treatment can be the next important step

(Kessler and Schunkert, 2021).

Apolipoprotein E

Apolipoprotein E (ApoE) is a constituent of lipoproteins with

large variations due to cysteine-arginine exchanges. APOE gene

variants give rise to apoE isoforms with six permutations of the

apoE or ε variants–E2/2, E2/3, E2/4, E3/3, E3/4, E4/4 (Mahley,

2001). Common apoE variants account for approximately 4% of

the variance in plasma cholesterol. Another variant of apoE

(rs35136575) also affects LDL concentrations (Boerwinkle and

Utermann, 1988).

ApoE facilitates the clearance of TG-rich (apoB-containing)

lipoprotein remnants from the bloodstream into the liver. It

affects vascular function through mechanisms such as

inflammatory responses, platelet aggregation and

inflammatory effects involving M2 macrophage phenotype

transformation and proliferation of lymphocytes and T helper

cells (Riddell et al., 1997; Baitsch et al., 2011; Zhang et al., 2011).

As such, the apoE isoforms influence CVD risk from birth–for

example, the hypolipidemic effect of apoE2 can be seen from

childhood with lower LDL and higher HDL concentrations

(Kallio et al., 1997; Isasi et al., 2000). The apoE4 isoform is

associated with increased carotid intima-media thickness, LDL,

Lp(a) and apoB levels (Granér et al., 2008; Luo et al., 2017). The

cardiovascular effect of common variants is observed from its

influence on the lipid profile with the potential of more severe

and pathological sequelae. Dysbetalipoproteinemia arises in

middle-aged males and post-menopausal females, and

remnant lipoproteins accumulate due to impaired clearance or

overproduction of lipoproteins. TG accumulation in

dysbetalipoporteinemia increases overall atherogenicity.

Dominantly inherited mutations offer the diagnosis of familial

hypercholesterolemia (Marais, 2019).

In NASH patients, there was an increased prevalence of the

APOE e3 allele compared to healthy controls: APOE

polymorphism was significantly associated with NASH,

particularly the APOE3/3 genotype (Sazci et al., 2008). In

animal studies, loss of ApoE reduced susceptibility to obesity

and NAFLD (Naik et al., 2013). The APOE e3 allele (Sazci et al.,

2008) is also significantly more prevalent in biopsy-proven

NASH patients compared to controls, whereas the APOE

e2 allele appears protective against NAFLD (Demirag et al.,

2007). Currently, the APOE3/3 genotype is recognised to play

a role in the aetiopathogenesis of NASH (Sazci et al., 2008).

Larger studies are needed to examine this association across

different ethnicities.

Arising from the above, some have proposed genetic testing

of common variants for clinical screening, with apoE2 protective
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against and apoE4 at increased risk of vascular disease (Jacobsen

et al., 2010; Zhao et al., 2017). ApoE may provide novel

therapeutic targets for the treatment of atherosclerosis. The

apoE mimetic peptide EpK enhances cholesterol efflux from

cells and has beneficial effects in animal model of

atherosclerosis (Zhao et al., 2011). Another hepatic-expressed

peptide, hEp, lowers lipoprotein levels and also protects against

atherosclerosis (Xu et al., 2016). An individual’s apoE status may

indeed provide valuable insight into cardiovascular health, on the

backdrop of hyperlipidaemia and CVD. Furthermore, the APOE

genotype may also affect response to statin therapy, with the

largest HDL increase in apoE2 carriers. Fibrates produces the

largest decrease in TG in apoE2 carriers, and the slowest effect in

apoE4 carriers (Buckley et al., 2004).

Phosphatidylethanolamine
N-methyltransferase

Many CAD susceptibility genes are associated with

concentrations of circulating lipid species. One locus,

phosphatidylethanolamine N-methyltransferase (PEMT),

encodes for the enzyme for lipid biosynthesis

(Fernandez et al., 2013). PEMT catalyses all three methylation

steps in the conversion of phosphatidyethanolamine to

phosphatidylcholine, using S-adenosylmethionine as a methyl

group donor. PEMT is largely expressed in the liver and accounts

for 30% of liver phosphatidylcholine production (Vance, 2014). A

functional SNP can lead to the loss of function with amino acid

replacement Val175Met in PEMT which alters the catalytic

function for the conversion of phosphatidyethanolamine to

phosphatidylcholine. Phosphatidylcholine is important for

VLDL formation for hepatic TG secretion. The V175M results

in loss of function, associated with diminished PEMT activity,

with increased propensity to lipid accumulation (Noga et al.,

2002). Carriers of the PEMT risk allele indeed show decreased

levels of multiple glycerophospholipids, such as the

cardioprotective lipid species LPC 16:0 and/or LPC 20:4

(Fernandez et al., 2013). Here, integrative analysis of genomics

with lipidomics advanced the insights for underlying

mechanisms and pathogenesis of CVD.

In the liver, the PEMT catalyses three methylation steps in

the conversion of phosphatidyethanolamine to

phosphatidylcholine (Browning and Horton, 2004). The fast

onset of liver cell damage in a methionine and choline

deficient diet, and liver-specific expression of PEMT may be

attributed to the high demand for choline and

phosphatidylcholine (Browning and Horton, 2004) that is

important for the maintenance of normal liver function

(Vance and Ridgway, 1988; Vance et al., 1997). The PEMT

and CDP-choline pathways are two important regulatory

pathways in maintaining phosphatidylcholine homeostasis in

hepatocytes. Phosphatidylcholine homeostasis is necessary as

it is the primary phospholipid of all classes in humans,

necessary for VLDL secretion (Vance and Vance, 1985; Yao

and Vance, 1988, 1989; Vermeulen et al., 1997; Dong et al., 2007).

The extent and rate of TG accumulation in hepatocytes is

determined by hepatocyte efficacy for excreting VLDL. In

addition, the single nucleotide polymorphism G433T in

microsomal TG transfer protein (MTTP) gene also influences

the degree and rate of fat deposition in hepatocytes (Namikawa

et al., 2004). TG, together with cholesterol and phospholipids,

assemble together to form apolipoprotein B in hepatocytes and is

secreted as VLDL. As such, phosphatidylcholine deficiency and

MTTP activity impairment (Yao and Vance, 1988, 1989; Noga

et al., 2002) adversely affects VLDL secretion from hepatocytes,

causing accumulation in hepatocytes, which is at the core of

NASH pathophysiology. Furthermore, aberrant sterol regulatory

element-binding proteins (SREBPs) activity can lead to excess

stored fat and obesity, through the activation of genes involved in

lipid synthesis, trafficking and homeostasis. A study suggested

that the maturation of nuclear, transcriptionally active SREBP-1

is influenced by phosphatidylcholine (Walker et al., 2011).

Therefore, genetic conditions (such as PEMT Val175Met) that

limit phosphatidylcholine production can in turn activate

SREBP-1, and as a consequence increasing the size and

amount of lipid droplets, and exacerbating the risk of

developing metabolic diseases (Walker et al., 2011). A separate

study revealed that in PEMT knockout mice, the ratio of

phosphatidylcholine/phosphatidylethanolamine is decreased,

leading to loss of membrane integrity, which has important

clinical implications in the progression of NAFLD (Li et al.,

2006). Overall, the V175M loss-of-function mutation in the

human PEMT gene confers susceptibility to NASH (Song

et al., 2005), and this has been shown in both the Chinese

(Zhou et al., 2010) and Japanese population (Dong et al.,

2007). In the NASH group, Val175Met carriers have

significantly lower body mass index (BMI) with more non-

obese patients, compared to homozygotes of wild type PEMT

(Dong et al., 2007). The PEMT Val175Met variant may be a

potential molecular target for novel NASH therapy.

Insulin receptor substrate-1

The insulin receptor substrate-1 (IRS-1) gene encodes a

protein which is phosphorylated by insulin receptor tyrosine

kinase and plays an important role in the insulin-stimulated

signal transduction pathway. Both hyperglycaemia and insulin

resistance can downregulate IRS-1, which is a pivotal

intermediary in insulin/IGF-1 signalling (Xi et al., 2019). IRS-

1 is essential for maintaining vascular smooth muscle cell

differentiation. Hyperglycaemia or insulin resistance-induced

IRS-1 downregulation decreased p53/Kruppel like factor 4

(KLF4) association and increased dedifferentiation and

proliferation of vascular smooth muscle cells. Therefore,
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enhancing IRS-1 dependent p53 stabilisation may retard

atherosclerosis progression, particularly in individuals with

hyperglycaemic or insulin resistance states (Xi et al., 2019).

Conversely, genetic variations near IRS-1 (such as the major

allele of rs2972146 (Teslovich et al., 2010), rs2943641 (Rung

et al., 2009), rs2943634 (Samani et al., 2007)), resulting in

decreased IRS-1 expression, are associated with impaired

metabolic profile, such as an increased visceral to

subcutaneous fat ratio, insulin resistance, hyperlipidaemia,

decreased adiponectin levels, thus enhancing the risk of

diabetes and CAD (Samani et al., 2007; Rung et al., 2009). A

GWA meta-analysis explained that there is reduced IRS-1

expression, associated with the genetic variations near IRS-1,

in major insulin target tissues such as adipose tissue and muscle.

IRS-1 genetic variations have a deleterious effect on insulin

resistance, reduced ability to store subcutaneous fat, and

disrupted insulin signalling in liver and muscle, resulting in

ectopic deposition of lipids (Stumvoll and Jacob, 1999; Arner,

2002).

Insulin resistance, common co-existing with NAFLD, is

contributed by inflammatory factors binding to IRS for

ubiquitin-mediated degradation via the activation of

Suppressors of Cytokine Signalling 3 (SOCS3). This leads to

insulin desensitisation. Studies have shown that the frequency of

the Arg allele of the Gly972Arg polymorphism of IRS-1 gene was

significantly increased in NAFLD. Gly972Arg carriers are at

significantly higher risk of NAFLD (Bhatt and Guleria, 2021).

The association between IRS-1 gene polymorphism and incident

type 2 diabetes has been demonstrated in both the Asian and

Caucasian populations (Dongiovanni et al., 2010; Li et al., 2016).

The IRS-1 (Gly972Arg) polymorphism also affects insulin

receptor activity, predisposing to hepatocyte injury and

decreased hepatic insulin signalling in NAFLD individuals

(Dongiovanni et al., 2010). In terms of treatment, diabetic

NAFLD patients are treated with PPARγ-agonists
thiazolidinedione, which acts as an insulin sensitizer that

reduces lipid release and increases lipid uptake, storage and

reduces hepatic gluconeogenesis (Vanni et al., 2010).

However, polymorphisms in IRS-1 can affect insulin receptor

activity, and can significantly predispose biopsy-proven NAFLD

individuals to worse disease severity (Dongiovanni et al., 2010).

Glucokinase regulatory protein

GCKR is a NAFLD susceptibility gene that encodes liver-

specific glucokinase regulatory protein (GKRP), which plays an

important role in de novo lipogenesis and development of

NAFLD (Donnelly et al., 2005; Brouwers et al., 2015). Several

studies have demonstrated that gene variants (rs1260326,

rs780094, rs780093) are associated with CAD (Simons et al.,

2018), higher serum triacylglycerols, lower serum HDL

cholesterol and the presence of small dense LDL particles

(Sookoian and Pirola, 2011; Brouwers et al., 2015; Tabas et al.,

2015; Lauridsen et al., 2018). This lipid profile is an example of

vertical pleiotropy or mediation, in which the genetic effect on

lipids is via the liver given that this lipid phenotype is reported to

be the consequence of NAFLD (Defilippis et al., 2013; Brouwers

et al., 2015). Furthermore, the metabolic effect of these common

variants ofGCKR can be different in patients with type 2 diabetes,

as glucokinase has been shown to be more active when plasma

glucose levels are within the diabetic range. This may allude to

the difference in effect size of the GCKR allele variant on plasma

TG being more pronounced in diabetic patients compared to

non-diabetic individuals (Agius, 2008; Liu et al., 2012). In fact,

Nynke Simons and colleagues (Simons et al., 2016) have reported

that rs1260326 interacts with indices of glucose metabolism

(such as fasting plasma glucose, Hba1c, glucose tolerance

states) which are prominent components of diabetic

dyslipidaemia (Taskinen, 2003). Those with moderately

controlled diabetes (Hba1c 8.0%) carrying 2 T alleles tended

to have higher plasma TG levels compared to homozygous

carriers of the C allele, whilst no differences were noted in

healthy individuals (Simons et al., 2016).

The molecular pathways that give rise to fatty liver involves

excessive hepatic glucose levels and increased lipogenesis

(Beer et al., 2009). GCKR rs1260326-T associates with

decreased GCKR activity to inhibit glucokinase, leading to

increased hepatic glucose uptake, decreased fatty acid

oxidation and enhanced lipogenesis. Hepatic fatty acids can

either be converted to TG and stored in hepatic lipid droplets,

or secreted in VLDL particles (Beer et al., 2009; Hodson and

Frayn, 2011). Therefore, decreased GCKR activity contributes to

the progression of steatosis or levels of circulating lipids. In line

with this observation, GCKR rs1260326-T increases NAFLD risk

and increases the concentrations of apolipoprotein B which

contains lipoprotein particles and TG. Moreover, GCKR

rs1260326-T is associated with increased glycolysis-related

metabolites, circulating fatty acids and elevated fatty acid

saturation, in combination with the increased overall

glycolytic and lipogenic activities (Beer et al., 2009; Rees et al.,

2012; Santoro et al., 2015). Moreover, in a large GWAS, GCKR

rs789904-T was associated with hepatic steatosis diagnosed by

computed tomography and biopsy-proven NASH involving

lobular inflammation and fibrosis (Speliotes et al., 2011).

Moreover, GCKR rs1260326-T was recognised as an

important factor for inter-individual variation in liver fat

(Santoro et al., 2012; Dongiovanni et al., 2015b; Goffredo

et al., 2016).

There is always a theoretical concern regarding the

development of drugs, with the potential adverse effect of

worsening NAFLD. The common GCKR variant has a more

pronounced effect on hepatic fat accumulation and plasma

triacylglycerols in individuals with obesity (Simons et al.,

2016; Stender et al., 2017) and hyperglycaemia. It is plausible

that individuals with obesity or poorly controlled diabetes may be
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more prone to adverse effects of liver-specific glucokinase

activators, which increase hepatic glucose intake, leading to

increased accumulation of hepatic adiposity through enhanced

de novo lipogenesis (Lloyd et al., 2013; Hodson and Brouwers,

2018; Zhu et al., 2018). Studies are needed to provide greater

clarity on these potential adverse effects due to the intertwined

effects of NAFLD, plasma lipid levels and CAD risks.

Patatin-like phospholipase domain-
containing protein 3

Another NAFLD susceptibility gene PNPLA3 has been

shown to associate with all stages of NAFLD (Romeo et al.,

2008; Sookoian and Pirola, 2011). The common variant PNPLA3

rs738409 was studied in a Mendelian randomisation (MR) study

to evaluate the causal relationship between NAFLD and CAD

(Lauridsen et al., 2018). Several studies demonstrated that the

rs738409-G allele, which predisposes to NAFLD, confers modest

protection from CAD (Liu et al., 2017; Simons et al., 2017). A

plausible explanation for this apparent paradox may be the

function of the gene product. It has been proposed that the

true function of PNPLA3 is in lipid droplet remodelling and

VLDL production (Trépo et al., 2016), and PNPLA3 variants are

associated with lower plasma lipid concentrations for both

triacylglycerols and LDL cholesterol (Liu et al., 2017),

explaining the negative correlation between the polymorphism

and CAD. The rs738409-G polymorphism for PNPLA3

(Ile148Met) reduces hydrolyse activity, impairing intrahepatic

TG breakdown which hampers VLDL particle production and

secretion (Anstee and Day, 2015). Therefore, the PNPLA3minor

allele is correlated with reduced plasma lipids (Tang et al., 2015),

and the negative association between PNPLA3 and CAD.

However as indicated, the same I148M polymorphism is

associated with the risk of developing NASH, as well as advanced

fibrosis and cirrhosis. The possible mechanisms for this

association are that the wild-type PNPLA3 protein hydrolyses

TG and retinyl esters, whilst the rs738409-G variant results in a

loss of function, causing TG accumulation and retinyl esters in

lipid droplets in hepatic stellate cells and hepatocytes (Huang

et al., 2011; Pingitore et al., 2014; Pirazzi et al., 2014). This

predisposes the liver to cellular injury, and hinders extracellular

protein release in the hepatic stellate cells that has beneficial

effects in preventing fibrosis progression, portal hypertension

and tumorigenesis (Pingitore et al., 2016). Moreover, hepatic

stellate cells carrying PNPLA3 variant demonstrated activated

Yap/Hedgehog pathways, enhancing the altered anaerobic

glycolysis and synthesis of Hedgehog and Yap signalling

(Bruschi et al., 2020). PNPLA3 I148M isoform can also

further prevent the binding of α/β hydrolase domain-

containing 5 (ABHD5) and Adipose Triglyceride Lipase

(ATGL) as it escapes ubiquitylation, that plays a role in TG

hydrolysis (Basu Ray, 2019). With PNPLA3-I148M

overexpression, the lysophosphatidic acid acyl transferase

activity increases, suggestive of a gain-of-function mutation

that promotes lipid synthesis (Mcmahon et al., 2014). This

variant has also been positively correlated with alcoholic liver

diseases, chronic hepatitis C-related cirrhosis and hepatocellular

carcinoma (Bruschi et al., 2017). The significant association

between PNPLA3 rs738409-G and NAFLD was first reported

by Romeo et al. (2008). The frequency of PNPLA3 I148M is

higher in the Hispanic population, and lower in European

Americans and African Americans (Bruschi et al., 2017). It is

also associated with hepatic fat, independently replicated in

several studies of various ancestries and geographical disparate

cohorts (Trépo et al., 2016). Sookoian and colleagues confirmed

the strong link between I148M PNPLA3 and NAFLD severity,

determined by liver biopsy, after adjusting for important

confounders such as body mass index, age, sex and insulin

sensitivity. This genetic variant was not only associated with

the increased risk of simple steatosis, but also NASH, advanced

fibrosis and cirrhosis in the Japanese, Italians, Malaysians and

Americans populations (Valenti et al., 2010a; Valenti et al.,

2010b; Hotta et al., 2010; Rotman et al., 2010; Zain et al.,

2012). A further interesting observation was that the

recurrence of NASH post-transplantation was significantly

linked to the donor genotype, rather than the host. With

higher prevalence of NASH recurrences in liver recipients

who received the homozygous I148M allele, this suggests that

PNPLA3 exerts its core physiological function primarily in the

liver (Miyaaki et al., 2018). Reports also highlight differences in

the lipid profiles between “metabolic NAFLD” and “PNPLA3

NAFLD”, with higher levels of polyunsaturated TGs in the

genetic “PNPLA3 NAFLD” compared to the metabolic-related

NAFLD, thus proposing that these two entities may be distinct

drivers of fatty liver diseases.

Transmembrane 6 superfamily 2 gene

The rs58542926-T allele of the TM6SF2 gene has

cardioprotective effects (Dongiovanni et al., 2015a; Simons

et al., 2017). TM6SF2 is involved in VLDL production, and

variants of the gene are associated with reduced plasma LDL-

cholesterol and triacylglycerols (Liu et al., 2017). Similar to the

PNPLA3 polymorphism, the TM6SF2 SNP has a negative

relationship with CAD.

Previous GWAS reported TM6SF2 SNPs associated with

increased risk of NAFLD. TM6SF2 acts as a liver fat

metabolism regulator, affecting TG secretion and hepatic fat

droplet contents (Mahdessian et al., 2014). The TM6SF2

rs5854926 coding variant (TM6SF2 E167K) is associated with

reduced TM6SF2 expression in the liver, higher serum alanine

aminotransferase levels and TG content, as well as reduced total

cholesterol and LDL (Holmen et al., 2014; Kozlitina et al., 2014;

Dongiovanni et al., 2015b; Grandone et al., 2016). As NAFLD is
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caused by hepatic accumulation of TG, its elevated levels in the

liver likely mediates the increased risk for the rs58542926-T allele

(E167K) (Donnelly et al., 2005). Indeed, this allele is also an

independent risk factor for liver steatosis (Kozlitina et al., 2014;

Sookoian et al., 2015; Grandone et al., 2016). A meta-analysis

revealed that the TM6SF2 rs5854926 was significantly associated

with NAFLD in both the Asian and Caucasian populations (Chen

et al., 2019).

Cardiomyopathy

Tumour necrosis factor

The tumour necrosis factor-α (TNF-a) encodes a

multifunctional proinflammatory cytokine that is part of the

TNF superfamily. Its encoding gene is located in the short arm of

chromosome 5 in the major histocompatibility complex class III

region. Mostly secreted by macrophages, TNF is involved in the

regulation of a large range of biological processes such as cell

proliferation, differentiation, apoptosis and lipid metabolism (El-

Tahan et al., 2016). The role of TNF-a in the pathophysiology of

congestive heart disease (Levine et al., 1990; Mcmurray et al.,

1991; Dutka et al., 1993; Katz et al., 1994). Has been reported in

several studies. As genetic polymorphisms in TNF locus is related

to inflammatory disease processes, the TNF-a gene

polymorphisms and their associations with dilated

cardiomyopathy (DCM) are of emerging interest (Kubota

et al., 1998; Ito et al., 2000; Tiret et al., 2000). However, to

date, there are conflicting data on the association between TNF-a

polymorphisms and DCM. Alikasifoglu et al. (2003) examined

Turkish patients with DCM but was not able to demonstrate any

associations between TNF-a/-238 and -308 (G/A)

polymorphisms and DCM, in parallel with several other

findings (Kubota et al., 1998; Tiret et al., 2000). There were

also no associations between TNF-a polymorphisms and

ischemic heart disease (Herrmann et al., 1998). On the

contrary, a recent study reported that the TNF-a promoter

variant 2 (TNF2) (TNF-a/-308 A allele) was enriched in

patients with end-stage non-ischemic DCM (Densem et al.,

2002). Another report on heart transplant patients with severe

symptomatic myocardial dysfunction found a higher proportion

of TNF2 allele carriers in those with non-ischemic aetiologies,

compared to those with ischemic cardiomyopathy. Those with

non-ischemic cardiomyopathy had higher prevalence of TNF2

compared to healthy individuals (Densem et al., 2002). These

preliminary findings propose a genetic predisposition in a small

subgroup of patients who may potentially respond favourably to

anti-TNF-a therapy (Densem et al., 2002).

A postulated reason for this discrepancy may be the different

inclusion criteria of cardiomyopathy, with several studies that

reported the lack of association between TNF-a polymorphisms

and DCM mainly included patients with New York Heart

Association (NYHA) class II or III, with only a small number

of patients with end-stage heart failure. Moreover, due to the high

mortality associated with end-stage heart failure, a sizeable

proportion of patients may not have reached the hospital and

therefore opportunities were lost in screening for the TNF-a

polymorphism (Alikasifoglu et al., 2003). Another explanation

may be the variability of TNF-a polymorphisms associated with

DCM genesis in the different ethnic cohorts. For instance, Ito and

colleagues reported that the TNF-a/-308 A allele was more

prevalent in Japanese patients with idiopathic DCM (Ito et al.,

2000), which was not found in the Turkish cohort (Alikasifoglu

et al., 2003). Similarly, TNF-a/-238 (G/A) allele frequencies in the

Turkish cohort differed from those in the France and Northern

Ireland cohorts (Herrmann et al., 1998). Ethnic factors may have

an important role in the variability of results, and further studies

are needed to clarify this hypothesis.

Increased levels of TNF-α have also been associated with

increased risk of NAFLD progression to NASH (Antuna-Puente

et al., 2008; Marra and Bertolani, 2009), due to its correlation

with insulin resistance and inflammatory milieu. The cytokine

has a broad role in inflammation, autoimmunity, tumour

apoptosis and metabolic dysregulation (Pfeffer, 2003).

Candidate gene studies have identified several polymorphisms

in the TNF-α gene promotor (Qidwai and Khan, 2011). The

higher prevalence of the TNF-α/-238 promotor polymorphism in

NAFLD or NASH patients, compared to controls, are reported in

the Italian (Valenti et al., 2002), Mexican and Chinese (Hu et al.,

2009; Zhou et al., 2010; Trujillo-Murillo et al., 2011) cohorts. In

the Japanese, two other polymorphisms have instead been

identified, -1031C and -863A (Tokushige et al., 2007). Of

interest, there was an inverse effect on regulation of glucose

and lipid homeostasis associated with the TNF-α/-

238 polymorphism, demonstrating increased risk of impaired

insulin sensitivity, but lower LDL-cholesterol and BMI (Naik

et al., 2013). A genomic meta-analysis of 8 studies also confirmed

the association between -238 polymorphisms in the TNF-α gene

and NAFLD (Wang et al., 2012). The difference in the prevalence

of various polymorphisms across the unique cohorts are likely

underpinned by ethnic differences, the frequency of variations or

lack of statistical power across different studies (Wong et al.,

2008). Furthermore, TNF-a mRNA overexpression was also

more prominent in patients with more significant fibrosis,

compared to those with mild or non-existent fibrosis, thus

elucidating the important role of the TNF-a system in the

pathogenesis of NASH (Crespo et al., 2001).

Atrial fibrillation

IL 6

The interleukin-6 (IL6) gene encodes a cytokine that plays an

important role in inflammation and the maturation of B cells.
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The encoded protein is an endogenous pyrogen that is primarily

produced in areas at acute and chronic inflammation. The

functioning of this gene is implicated in a large range of

inflammatory diseases (Marcus et al., 2008). In fact, the

mechanism by which inflammation and stimulation of

C-reactive protein secretion occurring in AF remains unclear.

Nevertheless, animal studies have suggested that IL6 stimulates

matrix metalloproteinase-2, mediating atrial remodelling in AF

(Xu et al., 2004; Luckett and Gallucci, 2007). IL6 has reported

significant correlation with increased left atrial size (Psychari

et al., 2005), an important predictor for new onset AF. Moreover,

polymorphisms in the promotor region of IL6 correlated with

postoperative AF (Gaudino et al., 2003; Bittar et al., 2005).

Cohort studies have shown that the CC genotype of the

IL6–174 G/C IL6 polymorphism is associated with at least

2 fold increase in AF incidence, compared to GC and GG

genotypes. Moreover, the same genotype (CC) is correlated

with significant elevation of IL6 levels.

The IL6–174C genetic polymorphism was more prevalent in

NAFLD, compared to controls. C carriers in NAFLD patients

had higher homeostatic model assessment for insulin resistance

(HOMA-IR) and fasting insulin compared to G carriers. Cohort

studies of a Caucasian population demonstrated that the

prevalence of IL6-174C variant was higher in NASH than

NAFLD patients, and was associated with increased insulin

resistance (Carulli et al., 2009). This is in line with several

reports that support the association of the C allele with

diabetes, insulin resistance and other manifestations of

metabolic syndrome (Carulli et al., 2009). This provides a

better understanding of the genetic susceptibility and

pathogenesis of NASH, with the IL6-174C polymorphism

being an independent predictor of both NAFLD and NASH,

and also involved in inflammation and insulin resistance (Carulli

et al., 2009).

Interactions of genetic and
environmental risk factors

The knowledge of genetic CVD risk may offer preventive

and treatment strategies to targeted patient groups.

Individuals with high genetic risks can have substantial risk

reduction through pre-emptive improvement in lifestyle

measures with regular moderate exercise, healthy diet and

abstinence from smoking (Khera et al., 2016). The UK

Biobank which examined individuals with a poor lifestyle,

showed that those with higher genetic risk had more than 4-

fold increase in CAD risk, compared to those with lower

genetic risk. Importantly, those with high genetic risk but

healthy lifestyle had lower CAD risk compared to those with

low genetic risk but poor lifestyle (Said et al., 2018). Similarly,

in the case of NASH, not all obese individuals with fatty liver

progress to NASH, whilst conversely, some lean individuals

with fatty liver do progress to NASH, emphasizing the

important interactions between environmental risk factors

and heritable factors (Younossi et al., 2016). However, the

beneficial influence that genetic risk scores has on behavioural

modifications remains lacking, as reported by a study that

genetic risk information failed to influence smoking, cessation

physical activity or dietary habits (Hollands et al., 2016; Jouni

et al., 2017). Future prospective studies are warranted to

investigate whether the knowledge of genetic risk can be

translated to decrease CVD risks (Kessler and Schunkert,

2021). Figure 1 represents the interactions between

environmental factors, the individual’s metabolic profile,

and the genetic predisposition for NAFLD and CVD.

Obesity and genetic risk factors

Obesity exposes the association of PNPLA3 I148M to

elevated hepatic fat levels and risk of NASH, with more

pronounced impact of hepatic injury in obese individuals

compared to lean individuals, and confers genetic

susceptibility from a young age (Romeo et al., 2010a; Romeo

et al., 2010b; Giudice et al., 2011; Palmer et al., 2012). The effect of

the PNPLA3 I148M allele on hepatic fat levels also drastically

increase in patients with high visceral abdominal fat levels (Graff

et al., 2013) and BMI (Stender et al., 2017). The effect of high BMI

in enhancing NASH risk in PNPLA3 I148M carriers may be

mediated by insulin resistance (Barata et al., 2019). The

prevalence of NASH ranged from 9% in lean 148-Ile

homozygotes to 84% in obese 148-Met homozygotes (Stender

et al., 2017). The obesogenic environment transforms PNPLA3

I148M into a major determinant in NAFLD and NASH

pathophysiology, predisposing these individuals to CVD

events. Evidence also suggests that PNPLA3 I148M may

modify treatment response, with an effect on body weight and

liver fat reduction in NAFLD patients (Carlsson et al., 2020)

(i.e., lifestyle modification, bariatric surgery, omega-3 fatty acids).

The interactions between obesity and TM6SF2 E167K and GCKR

have also been described (Azuma et al., 2009; Stender et al.,

2017).

Insulin resistance and genetic risk factors

Insulin resistance and type 2 diabetes, important risk

factors for both CVD and NASH, have interactions with

gene function that associate with different lipid profiles.

NAFLD associated with PNPLA3 I148M had higher levels

of hepatic polyunsaturated triacylglycerols, compared to

NAFLD associated with insulin resistance which had

higher levels of saturated and mono-unsaturated

triacylglycerols, free fatty acids and ceramides. This can

lead to different lipid compositions in the liver, especially
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in PNPLA3 I148M carriers, with reduced polyunsaturated

triglyceride levels in VLDL particles.

PNPLA3 I148M carriers also have an increased risk of type

2 diabetes, as reported in a large GWAS study and fine-mapping

meta-analysis (Fuchsberger et al., 2016; Dongiovanni et al., 2018;

Mahajan et al., 2018). In a MR study, the genetic risk score for

hepatic fat accumulation revealed a casual relationship with

insulin resistance, but the relationship was no longer present

when the model was adjusted for liver fibrosis (Dongiovanni

et al., 2018). With these findings, the authors proposed that

insulin resistance is not determined by the genetically-associated

high hepatic fat levels per se, but rather the insulin resistance

develops as a consequence of the progression of liver disease,

which may be mediated by the inflammatory and pro-fibrotic

environment (Dongiovanni et al., 2018). The causes and

consequences of hepatic steatosis and inflammation in NASH

patients may differ between PNPLA3 I148M carriers and those

without the variant (Carlsson et al., 2020).

Interactions of cardiovascular disease and
NAFLD

The genetic cross-talk between CVD and NAFLD is

therefore best exemplified with the example of the PNPLA3

I148M polymorphism. Despite epidemiological data that

advanced NAFLD is associated with increased risk of CAD,

there is little evidence that hepatic fat accumulation causes

FIGURE 1
Interactions between environmental factors, metabolic profiles, and an individual’s genetic predisposition for NAFLD and CVD. The Venn
diagram demonstrates the interactions between NAFLD and CVD susceptibility genes. HDL, high-density lipoprotein cholesterol; LDL, low-density
lipoprotein cholesterol; LPL, lipoprotein lipase; NAFLD, non-alcoholic fatty liver disease; TG, triglyceride; VLDL, very low-density lipoprotein
cholesterol.
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atherosclerosis (Santos et al., 2019). The PNPLA3 I148M

variant correlates to only a small reduction in ischemic

heart disease risk (Liu et al., 2017; Lauridsen et al., 2018)

but was strongly associated with liver-related and all-cause

mortality (Unalp-Arida and Ruhl, 2020). Moreover,

circulating TG and LDL cholesterol concentrations can be

lower or unchanged in PNPLA3 I148M carriers compared to

noncarriers (Speliotes et al., 2010; Hyysalo et al., 2014; Liu

et al., 2017; Sliz et al., 2018). Nonetheless, NAFLD in itself

bears increased mortality (Stender and Loomba, 2020).

Therefore, the complex interplay between NAFLD and

CAD is ultimately a combination of shared underlying risk

factors, and putative overlapping genetic background that

determines the cause and consequence of NAFLD on CVD

outcomes (Carlsson et al., 2020).

Potential targeted therapeutic
approach

The progressive role of genetics in CVD and NAFLD has

added knowledge to the pathophysiology of the disease entities,

and offers novel therapeutic targets. It also offers the chance of

identifying individuals at risk with greater precision than relying

only on conventional risk scores. Polygenic risk scores have the

ability of predicting those at risk in early stages before other risk

factors or imaging modalities can be applied effectively. Genetics

may guide prevention strategies before the development of

conventional risk factors or the disease manifestation (Kessler

and Schunkert, 2021). Polygenic risk scores, calculated as the

summation of the number of genetic variants weighted for their

effect estimate, can also be used to study the inter-relationship

between the various CVD and NAFLD, and perhaps help to

predict NAFLD individuals who will progress to develop CVD

manifestations. Polygenic risk scores have indeed performed

better for predicting CAD or MI, compared to traditional risk

factors (such as smoking or hyperlipidaemia) in cohorts of

various ancestry (Tada et al., 2015; Inouye et al., 2018; Khera

et al., 2018; Khera et al., 2019; Wang et al., 2020).

There are several challenges with polygenic risk scores

which include the transferability of results from individuals of

European ancestry to other ethnicities. The concept of

“missing heritability” in CVD remains an important issue,

with the heritability of CAD that can be explained by

currently recognised risk variants, believed to be less than

approximately 30%. The feasibility of identifying variants that

can explain the large portion of heritability of complex traits

is still unclear. The genetic basis of complex CVD may be seen

as probabilistic rather than deterministic. Moreover, the risk

of CVD that is often thought to be determined by monogenic

risk variants, is likely modulated by polygenic risk (Fahed

et al., 2020). Guidelines on genetic risk scores in the

prevention and treatment of CVD is needed to address the

indication, implementation and adequate genetic counselling

before these scores can be used routinely in the clinical

setting.

Moreover, the potential impact of genetic variants on the

treatment of NASH can be encapsulated by the example of

PNPLA3 I148M variant and the response to treatment (Sanyal

et al., 2015; Wattacheril et al., 2018). At present, there are no

pharmacological therapies for NASH treatment, but guidelines

recommend weight reduction through lifestyle measures.

However, lifestyle interventions are often limited, short-term

and ineffective (Baran and Akyüz, 2014; Gitto et al., 2015).

Metabolic bariatric surgery decreases hepatic steatosis,

steatohepatitis and fibrosis (Laursen et al., 2019; Lee et al.,

2019). Hence, it has been noted that PNPLA3 I148M carriers

had more effective reduction in hepatic fat levels with lifestyle

interventions and bariatric surgery, compared to non-carriers

(Shen et al., 2015; Krawczyk et al., 2016a; Krawczyk et al., 2016b).

However, omega-3 fatty acid treatment was reportedly less

effective in reducing hepatic fat levels in PNPLA3 I148M

carriers, compared to noncarriers in randomised trials (Nobili

et al., 2013; Scorletti et al., 2015; Eriksson et al., 2018; Oscarsson

et al., 2018).

Overall, genetic information is key for precision medicine.

The goal of polygenic risk scores is to assist individuals with

changing their lifestyle and modifiable behaviour, as well as to

make informed decisions on preventive pharmacological (e.g.,

lipid-lowering) or surgical (e.g., bariatric) therapy in the effort for

primary prevention (Kessler and Schunkert, 2021).

Conclusion

Over the past decade, tremendous effort has been taken to

elucidate the genetics of CVD and NAFLD. This has provided

exciting insights to CVD and NAFLD pathophysiology, and

the increasing awareness of the genetic cross-talk between

the two pathologies. Indeed our understanding of the overlap

remains incomplete. More novel ground-breaking treatment

targets such as proprotein convertase subtilisin/kexin type 9

(PCSK9) may be forthcoming, and a breakthrough in NAFLD

and/or CVD prevention and reduction will be the next

important milestone. The emergence of polygenic risk

scores reflects the anticipation surrounding the power of

genetics and precision medicine, in improving risk

prediction, personalising prevention and treatment

strategies.

Key points

• There are several non-alcoholic fatty liver disease

(NAFLD) susceptibility genes that have colinear

correlations with cardiovascular diseases including
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coronary artery disease, cardiomyopathy and atrial

fibrillation

• Certain NAFLD susceptibility genes, such as

phospholipase domain-containing protein 3 and

transmembrane 6 superfamily 2 that regulate VLDL

particle production, have cardioprotective effects for

coronary artery disease.

• Genetic and environmental risk factors have complex

interactions that lead to disparity in genetic

influence on NAFLD and incident cardiovascular

disease.
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