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Background: A high mortality rate makes hepatocellular carcinoma (HCC) one

of the most common types of cancer globally. 5-methylcytosine (m5C) is an

epigenetic modification that contributes to the prognosis of several cancers,

but its relevance to HCC remains unknown. We sought to determine if the

m5C-related regulators had any diagnostic or prognostic value in HCC.

Methods: M5C regulatory genes were screened and compared between HCC

and normal tissue from The Cancer Genome Atlas (TCGA)and Gene Expression

Omnibus (GEO) databases. Least absolute shrinkage and selection operator

method (LASSO) and univariate Cox regression analysis of differentially

expressed genes were then performed to identify diagnostic markers. A

LASSO prognostic model was constructed using M5C regulatory genes with

prognostic values screened by TCGA expression data. HCC patients were

stratified based on risk score, then clinical characteristics analysis and

immune correlation analysis were performed for each subgroup, and the

molecular functions of different subgroups were analyzed using both Gene

Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA). The

prognostic model was evaluated using univariate and multivariate Cox analyses

as well as a nomogram. Molecular typing was performed according to m5C

regulatory genes and immune checkpoint genes expression respectively, and

clinical characterization and immune correlation analysis were performed for

each subgroup.

Results: M5C regulatory genes are expressed differently in HCC patients with

different clinical and pathological characteristics, and mutations in these genes

are frequent. Based on five m5C regulators (NOP2, NSUN2, TET1, YBX1, and

DNMT3B), we constructed a prognostic model with high predictive ability. The

risk score was found to be an independent prognostic indicator. Additionally,

risk scores can also be applied in subgroupswith different clinical characteristics

as prognostic indicators.

Conclusion: The study combined data from TCGA and GEO for the first time to

reveal the genetic and prognostic significance of m5C-related regulators in
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HCC, which provides new directions for identifying predictive biomarkers and

developing molecularly targeted therapies for HCC.
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Introduction

Hepatocellular carcinoma (HCC) ranks sixth in the

cancer incidence worldwide and ranks third in cancer-

related deaths (de Martel et al., 2020), and it is a major

public health issue. Despite significant advancements in

therapy, the 5-year survival rate for advanced HCC is still

dismal due to the cancer’s late detection, susceptibility to

metastasis, and high recurrence rate. Although some

biomarkers, including alpha-fetoprotein (AFP) and heat

shock protein 90 (Hsp90), have proven to be useful, the

search for early diagnosis biomarkers and effective therapies

for HCC patients is urgent.

There is growing evidence that post-transcriptional

modifications of RNA are important in different cancers

(Cheng et al., 2018; Barbieri and Kouzarides, 2020; Begik

et al., 2020; Chu et al., 2022), which provides ideas for

developing new treatment modalities. There have been

170 types of modifications identified thus far (Boccaletto

et al., 2018), such as N6-methyladenosine (m6A), 5-

methylcytosine (m5C) (Wang et al., 2013), 7-

methylguanosine, and pseudouridylation (Roundtree

et al., 2017; Shi et al., 2020). However, their functions

remain widely unknown due to technical limitations in

accurate localization throughout the genome (Cohn, 1960;

Bauer et al., 2016). There are many post-transcriptional

modifications, but the most common is a reversible

modification called m5C, which serves different functions

in different RNA types (Chow et al., 2007; Squires et al.,

2012; Huang et al., 2019; Trixl and Lusser, 2019; He et al.,

2020a; Cui et al., 2020). M5C modification involves

adenosine methyltransferases (“writers”), demethylases

(“erasers”), and “readers” for protein recognition and

binding. The “writers” include NSUN1-NSUN7, DNMT1,

DNMT2, DNMT3a, and DNMT3b, “erasers” include TET1,

TET2, TET3, and ALKBH1, and among the “readers” are

ALYREF and YBX1. Abnormal modification of m5C has

been connected to many abnormal states, for example

mitochondrial dysfunction, abnormal embryogenesis and

neurodevelopment, tumorigenesis, and tumor cell

proliferation and migration (Navarro et al., 2021;

Walworth et al., 2021). It has also been suggested that

m5C modification can even alter the fate of cancer cells

(Yang et al., 2020), and can be utilized as a biomarker for the

prognosis of many kinds of cancers (Gama-Sosa et al., 1983;

Chellamuthu and Gray, 2020). One study comprehensively

explored and systematically profiled the expression features

of m5C-related regulators in HCC and proved the m5C

modification patterns play a crucial role in the tumor

immune microenvironment and prognosis of HCC (Liu

et al., 2022b). In spite of the fact that anomalous RNA

m5C modification has been detailed to play numerous

capacities in HCC (He et al., 2020b; Sun et al., 2020), the

relationship between m5C regulatory genes and HCC is still

poorly understood, and the diagnostic and prognostic value

of m5C regulatory genes for HCC is unknown.

This study screened and compared the expression

characteristics of the m5C regulators in HCC samples with

those in normal samples using the expression matrix from

TCGA and GEO databases. Univariate Cox as well as LASSO

regression analyses were employed to discover diagnostic

markers. Then five m5C regulatory genes with prognostic

value were screened by using the data from TCGA to

construct a prognostic model. To find out if m5C regulatory

genes are valuable for diagnosis and prognosis in HCC,

researchers performed molecular typing based on m5C

regulatory gene and immune checkpoint gene expression, and

immune correlate analyses and clinical characteristic analyses

were also performed for each subgroup.

Materials and methods

Acquired data and identified differentially
expressed genes

We obtained Gene expression data from TCGA database

(Hutter and Zenklusen, 2018) (https://portal.gdc.cancer.gov/)

and the GSE76427 dataset (Grinchuk et al., 2018) (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76427) in

the GEO database (Barrett et al., 2007) (https://www.ncbi.nlm.

nih.gov/geo/). The TCGA database contains expression data

(Table 1), copy number variants (CNVs), single nucleotide

polymorphisms (SNPs), and relevant clinicopathological

features for 374 HCC samples and 50 paraneoplastic samples.

TABLE 1 Baseline data.

Data Normal Tumor

TCGA 50 (11.8%) 374 (88.2%)

GSE76427 52 (31.1%) 115 (68.9)
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The microarray platform for GSE76427 (sample size: disease

group 115/control group 52) (Table 1) dataset is Illumina

HumanHT-12 V4.0 expression beadchip, and gene set related

to m5C regulators was obtained by Cui et al.’s study (Cui et al.,

2021; Wang et al., 2021; Liu et al., 2022a). We first used “sva”

package (Leek et al., 2012) to preprocess the downloaded TCGA

and GEO dataset expression matrices, including: data

background adjustment and normalization, and output the

expression of intersecting genes in the two datasets separately.

The Perl language was then applied to extract the expression of

m5C regulator genes in both datasets. To determine the validity

of the grouping, we did a principal component analysis (PCA)

and visualized with the help of “ggplot2” package. Subsequently,

by using “limma” package, we determined DEGs between HCC

and normal liver tissue at p < 0.05.

Copy number variant and single
nucleotide polymorphism analyses

GISTIC 2.0 was used to find genes with significant

amplifications or deletions (Mermel et al., 2011) with

thresholds of p > 0.1 and p < 0.05. Mutsig2 was used to

search genes with significant mutations using a threshold of

p < 0.05.

Predictive model construction and
validation

We used m5C regulator genes to construct a prediction

model. The “survival” R package helped us separate HCC

patients into high- and low-risk groups, then we identified

significant RNA regulator genes through univariate Cox

analysis, and visualized through R package “forestplot.” The R

package “glmnet” was used to perform the LASSO regression

analysis (Friedman et al., 2010) on the training cohort, and

overfitting was prevented by tenfold cross-validation. Lastly,

according to the LASSO regression coefficients, the scoring

system was constructed, which prognostic grouping was

performed accordingly. With the help of the “survival”

package in R, we compared the overall survival of both

groups. To evaluate the stability of the model, we performed

ROC curves and calculated AUC for different survival times and

different clinical traits using the “survival” package. Key genes

were obtained by intersecting differentially expressed m5C-

related regulators from the TCGA and GEO data set, and

prognosis-related genes from our prognostic model.

Afterwards, we validated the expression of key genes in

different subgroups. Supplementary Figure S1 shows the

technology roadmap of the study.

On the basis of risk scores and clinical characteristics, we

constructed a nomogram for predicting HCC patients’ survival

probabilities. Afterwards, the discriminative power of the

nomogram was measured by calibration curve and C-index

value obtained from bootstrap analysis (1,000 replicates). The

interactive nomogram was drawn using the R package “regplot”.

GenSet enrichment analysis and gene set
variation analysis enrichment analysis

Gene Set Enrichment Analysis (GSEA) allows us to examine

the distribution of genes within predefined gene sets in a gene list

which arranged according to their phenotype correlation, and

thus determine how they contribute to the phenotype

(Subramanian et al., 2005). The MSigDB database (http://

www.gsea-msigdb.org/gsea/index.jsp) provided “c2.kegg.v7.4.

symbols” and “c5.go.v7.4.symbols” gene sets (Liberzon et al.,

2015). The R package “clusterprofiler” (Yu et al., 2012) can be

used to perform GSEA analysis for those two gene sets in high

and low-risk groups, where a p value less than 0.05 qualifies as

statistically significant.

Gene Set Variation Analysis (GSVA) is a non-parametric,

unsupervised method for evaluating gene set enrichment in

transcriptomes. Through the conversion expression matrices

of genes into expression matrices of gene sets, it is possible to

assess the enriched metabolic pathways in different samples.

GSVA analyses on the two gene sets mentioned above in different

groups was conduct with “GSVA” package (Hänzelmann et al.,

2013) and visualized using the “pheatmap” package.

Immune infiltration in hepatocellular
carcinoma

By using gene expression profiles, ESTIMATE R package

predicted stromal and immune cell scores, and calculated their

numbers for the analysis of HCC tumor purity in this study. We

further compared the ESTIMATE scores among cancer and para-

cancer groups, and among high and low-risk groups.

Molecular isoform construction

Based on “ConsensusClusterPlus”package (Wilkerson andHayes,

2010) we clustered cancer and para-cancer samples from TCGA and

GEO databases into different groups by m5C regulator genes

expression in each sample. The parameters were set to 50 replicates

and a resampling rate of 80% (pItem = 0.8). To determine the validity

of the groupings, a PCA was carried out, and the results were plotted

using the “ggplot2” package. We also analyzed the correlation between

prognosticmodels,molecular subtypes, and clinicopathological features

based on TCGA data. Additionally, we examined the correlation

between different subgroups and risk scores, and the expression of

key genes in different subgroups.
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Immune infiltration analysis

CIBERSORT is a deconvolution algorithm that utilizes linear

support vector regression to evaluate the expression matrices of

immunocellular subtypes, and now is increasingly being used for

immune infiltration characterization analysis in non-tumor

tissues (Ge et al., 2021). Infiltration analysis of immune cells

in HCC patients using RNA-Seq data can be an important guide

in disease research and treatment prognosis prediction, etc.

(Newman et al., 2019). With the CIBERSORT algorithm, this

study compared immune cell infiltration levels between different

prognostic model subgroups and different molecular subtype

groupings, to examine how immune cells infiltration relates to

different models.

FIGURE 1
m5C regulator genes analysis. (A,B): PCA analysis of GEO and TCGA expression matrices after data correction, blue represents tumor samples
(GEO: n = 115, TCGA: n = 374) and red represents control samples (GEO: n = 52, TCGA: n = 50); (C,D): differential expression analysis of m5C
regulator genes in GEO and TCGA expression matrices after data correction, blue represents tumor samples (GEO: n = 115, TCGA: n = 374) and red
represents control samples (GEO: n = 52, TCGA: n = 50); (E): mutation profile of m5C regulator genes in hepatocellular carcinoma; (F): m5C-
related regulators SNV mutation category and frequency; (G): m5C regulator genes CNV amplification and deletion.
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Molecular isotype construction of
immune checkpoint genes

Immune checkpoint genes were obtained from a review [34].

We clustered cancer and para-cancer samples of the TCGA by

the expression level of immune checkpoint genes using the R

package “ConsensusClusterPlus” with 50 repetitions and a

pItem = 0.8. To determine the validity of the grouping. PCA

was used to analyze the genes expression levels, and “ggplot2”

package visualize the results. The expression of key m5C

regulator genes was also assessed in different subgroups.

Using correlation analysis, we examined whether key m5C

regulator genes play a role in HCC through immune cell

infiltration.

FIGURE 2
Expression characteristics and prognostic model construction ofm5C regulator genes in hepatocellular carcinoma. (A,B): m5C regulator genes
co-expression analysis in the corrected GEO (A) and TCGA (B) expression matrices; (C): identify m5C regulator genes associated with prognosis by
univariate COX regression analysis, forest plots show the screened genes; (D,E): show the regression coefficients in the LASSO regression algorithm
and the cross-validation in the proportional risk model to adjust the parameter, finalize the best parameter(λ) to screen themost relevant genes
for hepatocellular carcinoma; (F): survival analysis of different LASSO subgroups; (G,H): multivariate and univariate analysis of risk scores combined
with clinical factors such as patient age, gender, and TNM stage; (I,J): AUC analysis of prognosticmodel and clinical characteristics; (K): Venn diagram
mapping of differential genes in GEO and TCGA liver cancer samples and the intersection of genes screened out by LASSO; (L,M): expression of key
genes TET1 and YBX1 in each LASSO subgroups.
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Statistical analysis

R version 4.0.2 was used for calculations and statistical

analysis (https://www.r-project.org). Student’s t-tests (normally

distributed variables) and Mann-Whitney U-tests (nonnormally

distributed variables) were used for the comparison of

continuous variables between two groups. All statistical p

values all had a two-sided significance with p < 0.05.

Results

Expression characteristics of m5C
regulator genes in hepatocellular
carcinoma

We performed PCA analysis on the corrected datasets fromGEO

and TCGA, the results suggested a good correction effect (Figures

1A,B). Referring toCui et al.’s study (Cui et al., 2021;Wang et al., 2021;

Liu et al., 2022a), we selected the seven most commonm5C regulator

genes (NOP2, NSUN2, TET3, NSUN6, TET1, YBX1, and DNMT3B)

as the subjects. In the GEO dataset, four of the seven m5C regulator

genes (TET3, NSUN6, TET1, and YBX1) were differentially expressed

(Figure 1C), while all seven m5C regulator genes had significant

differential expression in the TCGA dataset (Figure 1D). Figure 1E

lists the overall m5C regulator genes SNP

mutations in HCC samples situation, and Figure 1F shows the

mutation types of differentm5C regulator genesmost closely associated

with the development of HCC. We used CNV data from TCGA to

identify significantly missing or amplified m5C regulator genes.

Among the m5C regulator genes, YBX1 had the highest deletion

frequency and the lowest amplification frequency (Figure 1G).

Construction of prognostic model of m5C
regulator genes and screening of key m5C
regulator genes

Using co-expression analysis (Figures 2A,B) and

univariate COX regression analysis (Figure 2C; Table 2), we

assessed the effects of m5C regulator genes on HCC tissues. In

co-expression analysis, TET1 and DNMT3B showed a

significant positive correlation, and regression analysis

screened six genes, including NOP2, NSUN2, TET3, TET1,

YBX1, and DNMT3B, were associated with HCC. We

constructed a LASSO prognostic model containing five

genes, including NOP2, NSUN2, TET1, YBX1, and

DNMT3B (Figures 2D,E), and a median risk score was used

to separate HCC patients into two groups. It was

demonstrated that low-risk patients lived significantly

longer (Figure 2F). We evaluated COX regressions based on

risk scores and clinical traits (age, gender, and TNM stage)

using univariate and multivariate models (Figures 2G,H).

Using AUC, we validated the LASSO prognostic model,

and demonstrated that risk scores were highly predictive

for 1-year, 3-years, and 5-years survival (Figures 2I,J). To

further screen the key m5C regulator genes, we performed an

intersection between DEGs from GEO and TCGA dataset and

the key genes identified by LASSO modal, and finally obtained

two of them, TET1, and YBX1 (Figure 2K), and it suggested

that both two genes were higher expressed in high-risk group

(Figures 2L–M). In combination with risk scores and clinical

information, a nomogram (Figure 3A) and its calibration

curve were constructed (Figure 3B), and we observed that

sample’s risk scores tended to increase with the progression of

T-stage and grade (Figures 3C,D), which is consistent with our

previous predictions.

Evaluation of prognostic model for m5C
regulator genes

We performed a GSVA analysis of the molecular functions

for the different groups classified by the LASSO model. Low-

risk group focused on functions relating to platelet dense

granule lumen, regulation of fibrinolysis, blood coagulation

intrinsic pathway, and protein activation cascade according

to GO analysis (Figure 3E; Supplementary Table S1). KEGG

analysis revealed it focused on olfactory transduction, nitrogen

metabolism, histidine metabolism, serine and threonine

metabolism (Figure 3E; Supplementary Table S1). We also

performed GSEA analysis (Supplementary Figures S1A–D,

Supplementary Table S2). As shown by GO analysis, the

high-risk group was related to functions such as actin

filament organization, actin polymerization or

depolymerization, adaptive immune response, αβT cell

activation, and anatomical structure homeostasis

(Supplementary Figure S1A), while the low-risk group was

linked to functions such as bile acid secretion, drug

transmembrane transport, fatty acid β oxidation using acyl-

CoA dehydrogenase, negative regulation of triglyceride

metabolic process, and neurotransmitter catabolic process

(Supplementary Figure S1B). According to KEGG analysis,

TABLE 2 Univariate Cox regression analysis.

Id HR HR.95L HR.95H p-value

NOP2 1.70 1.21 2.40 2.54E-03

NSUN2 1.65 1.14 2.39 7.47E-03

TET3 1.54 1.05 2.27 2.90E-02

NSUN6 0.92 0.71 1.20 5.60E-01

TET1 2.57 1.49 4.44 7.12E-04

YBX1 2.34 1.76 3.10 4.52E-09

DNMT3B 1.72 1.18 2.50 4.63E-03
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pathways of high-risk group appeared to be enriched in

Chemokine signaling pathway, cell adhesion molecules cams,

Cell cycle, spliceosome, and Fc gamma r mediated phagocytosis

(Supplementary Figure S1C). For low-risk group, pathways

were enriched in beta alanine metabolism, histidine

metabolism, linoleic acid metabolism, primary bile acid

biosynthesis, and renin angiotensin system (Supplementary

Figure S1D). We scored each subgroup using the ESTIMATE

algorithm, and found a higher immune score in the high-risk

group (Supplementary Figure S1E), but a lower stromal score,

immune score, and ESTIMATE total score in the tumor group

(Supplementary Figure S1F).

FIGURE 3
Clinical analysis and GSVA analysis of the prognostic model. (A) risk score combined with clinical indicators to draw nomogram; (B) comparison
of predicted survival time and actual survival time using nomogram; (C,D): correlation analysis for G-stage and T-stage, respectively; (E,F): GSVA-GO
analysis (E) and GSVA-KEGG analysis (F) for high and low-risk group.
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Molecular typing of m5C regulator genes
and correlation analysis

In an effort to a better understood for the biological

characteristics of m5C regulator genes in HCC patients,

TCGA samples were clustered according to their expression

level. Two subtypes of samples were identified (1: n = 232; 2: n =

192, Figures 4A–C), which PCA result showed high separation

quality (Figure 4D), and in combination with the survival

information of HCC patients and the grouping information

of LASSO model, we constructed a Sankey diagram (Figure 4E).

Cluster1 shows a significantly higher risk score compared to

cluster2 (Figure 4F), confirming again the previous results. The

differential analysis indicated the two key genes, TET1 and

YBX1 were significantly higher expressed in cluster1 (p < 0.05,

Figures 4G,H).

We validated the previous results using the GEO expression

matrix and samples were also classified into two isoforms (I: n = 95;

2: II = 72, Figures 5A–C). PCA result showed a higher quality of

isolation (Figure 5D), and above two key genes were also present in

cluster I with significantly higher expression (p < 0.05, Figures 5E,F).

Correlation analysis between m5C
regulator genes and immune infiltration

Through CIBERSORT, we calculated the infiltration degree of

22 immune cell types in two groups classified by the LASSOmodel

FIGURE 4
Correlation analysis of m5C regulator genes with molecular subtypes of TCGA liver cancer. All samples of TCGA were clustered according to
their expression level of m5C regulator genes; (A): sample size after grouping; (B): change in area under the CDF curve (k= 2–9); (C): change of delta
area plot when k = 2 to k = 9; D: PCA analysis of cluster1 and cluster2, where cluster 1 is in red and cluster 2 is in blue; (E): Sankey diagram combining
survival status and LASSO model grouping; (F): difference in risk scores of different groupings, cluster 1 in blue and cluster 2 in orange; (G,H):
differential expression of key m5C regulator genes TET1 (G) and YBX1 (H) in different groupings, cluster 1 in blue and cluster 2 in red.
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to compare their variability of immune infiltration. A significant

difference was observed in the infiltration degree of six kinds of

immune cells when using the wilcox.test algorithm (Figure 6),

namely activated CD4 T cells、resting CD4 T cells, resting NK

cells, M0 Macrophages, resting dendritic cells, and resting mast

cells. Among them, four immune cells types were p < 0.001, one

kind was p < 0.01, and another kind was p < 0.05. Additionally,

nine kinds of immune cells showed a difference in their infiltration

degree between two subtypes of molecular typing (Supplementary

Figure S2), namely activated CD4 T cells, T gamma delta cells,

naive B cells, M0 Macrophages, resting CD4 T cells, Monocytes,

M2 Macrophages, T follicular helper cells, and Tregs cells, and six

of them were p < 0.001, one was p < 0.01 and two were p < 0.05.

Molecular isotype construction of
immune checkpoint genes

We used significantly differentially express immune

checkpoint genes to conduct hierarchical clustering of all

HCC samples again to find out the correlation between these

genes and m5C. Among all samples, two subtypes were identified

(A: n = 332; B: n = 92, Figures 7A–C). The PCA result showed a

high quality of separation (Figure 7D), and differential analysis

showed that TET1 and YBX1 were significantly differentially

expressed in different subgroups (p < 0.01, Figures 7E,F.

Correlation analysis between key m5C
regulator genes and immune cells

Using correlation analysis between key m5C regulator genes

and the immune microenvironment, we examined the potential

correlation between m5C regulators and immunotherapy

efficacy. Combining CIBERSORT results with key m5C

regulator genes, we found a positive correlation between

TET1 and the infiltration level of various kinds of innate or

acquired immune cells, such as M0 macrophages, resting

dendritic cells, and T follicular helper cells, while a significant

negative correlation with M1 macrophages, M2 macrophages,

and resting mast. There was a positive correlation between

YBX1 and resting dendritic cells and M0 macrophages, but a

negative correlation with Tregs and CD4 T cells (Supplementary

Figure S3).

FIGURE 5
Correlation analysis of m5C regulatory genes with molecular subtypes of GEO liver cancer. (A-C): All samples of GEO were classified by the
expression level of m5C regulator genes; (D): PCA analysis under different groupings; (E,F): differential expression of key m5C regulator genes
TET1 (E) and YBX1 (F) in different groupings, where cluster I is in blue and cluster II is in red.
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Discussion

Ongoing studies have showed that RNA modification

contributes to tumorigenesis and tumor progression, and

there is growing evidence that m5C regulator genes may

serve as potential biomarkers for cancer prediction (Huang

et al., 2021a; Huang et al., 2021b; Cui et al., 2021; Xue et al.,

2021). It has been suggested that 5 mC methylation influences

the development of HCC including clinical stage, progression,

and prognosis (Villanueva et al., 2015; Hlady et al., 2019), but

the relationship between m5C-related RNA modification and

HCC is still poorly understood. In order to test whether these

genes can provide prognostic clues for HCC and assist in its

initiation and progression, we need to focus on their aberrant

expression in HCC. This study confirmed that m5C regulator

genes was differentially expressed between HCC and normal

samples.

The difference of m5C regulator genes expression levels

between tumor and paraneoplastic tissues suggested that these

genes may be associated with the carcinogenesis and progression

of HCC. MeRIP-seq was used in one study to analyze the m5C

modification in tumor and paraneoplastic tissues, and it was

found that m5C modification peaks were more abundant and

higher in mRNA of HCC tissues, which reconfirmed the

relevance of m5C in this disease (Zhang et al., 2020).

Aberrant gene methylation is strongly associated with HCC,

both in frequency and amount (Nishida et al., 2008).

We constructed a LASSO regression model, which showed

satisfactory predictive performance. Similarly, He et al.

(2020b) utilized TCGA data developed a two-gene

signature of m5C regulators (NSUN4 and ALYREF) with

HCC prognostic value based on the LASSO and

multivariate Cox regression models. Also demonstrate that

the role of m5C related regulators in HCC are dysregulated

and associated with patient survival. The methodology we

used is largely similar, the major difference being is that we

analyzed GEO data combined with the TCGA analysis. In fact,

our study proves that utilizing multiple datasets and analytic

approaches may identify important gene signatures that

would otherwise not be identified using a single dataset/

approach. Ultimately this may improve the validity of the

findings and be a stronger indication to evaluate these genes in

experimental and clinical settings.

For a comprehensive analysis, we performed GSVA and

GSEA analyses. “Adaptive immune response” and “cell cycle”

et al. are found related to hepatocarcinogenesis and progression.

M5C-related RNA modifications impact mRNA translation,

transport, and stability, and m5C regulator genes appeared to

be associated with “spliceosomes” in this study, suggesting their

importance in RNA processing.

FIGURE 6
Correlation analysis of prognostic models and immune cells. (A) Differential analysis of the degree of immune cell infiltration in prognostic
model subgroups, blue for high-risk and red for low-risk; (B–G): Differential analysis of the degree of infiltration of six types of immune cells,
including resting dendritic cells, M0 Macrophages, resting mast cells, resting NK cells, activated CD4 T cells, and resting CD4 T cells.
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Tumor cells are the drivers of tumor development, but they can’t

function alone during tumor progression without the tumor

microenvironment (TME). Blood vessels, fibroblasts, immune cells,

extracellularmatrix, and signalingmolecules are all components of the

TME which contribute to tumorigenesis and tumor progression.

Evidence suggests m5C-related regulators are associated with the

tumor immune microenvironment (Geng et al., 2021). Numerous

tumors have been studied to correlate tumor immune cell infiltration

with clinical outcome (Ishigami et al., 2000; Villegas et al., 2002;

Hamanishi et al., 2007; Sharma et al., 2007; Zhu et al., 2009;Mahmoud

et al., 2011), however, we do not yet know how m5C modification

affects the immune system in HCC. Here, we describe the infiltration

characteristics of TME cells in differentmodel groupings and perform

immune scoring, which shed light on the molecular mechanism of

HCC and new clues for prognosis prediction.

As a result of its aggressiveness, metastasis, and refractoriness,

HCC has a high mortality rate and poor prognosis (Ioannou,

2021). While medical technology continues to advance and

therapeutic approaches vary, there are still no ideal therapeutic

targets or targeted interventions for HCC because its molecular

mechanisms of carcinogenesis and development are still unclear

(Jiří et al., 2020). It has been shown that azacytidine can reduce

cancer cells proliferation by inhibiting m5C modification (Esteller

and Pandolfi, 2017), suggesting that reducing m5C modification

may contribute to cancer treatment. Ultimately, different RNA

epigenetic modifications mediated by regulatory factors provide

new idea for finding potential therapeutic targets.

From the perspective of combined multi-omics analysis, we

explored the expression profiling of m5C-related genes in HCC,

correlation prognostic model construction and evaluation,

molecular typing and correlation analysis, immune cell

infiltration correlation analysis, immune checkpoint gene

molecular subtype construction, and immune cell correlation

analysis. Other functions, limited by the length of this study, we

really did not study, but we intend to verify other biological

functions of m5C through the experimental perspective by doing

experiments such as WB, PCR and IHC.

Conclusion

The study combined data from TCGA and GEO for the first

time to reveal the genetic and prognostic significance of m5C-

related regulators in HCC, which provides new directions for

identifying predictive biomarkers and developing molecularly

targeted therapies for HCC.

FIGURE 7
Molecular typing based on immune checkpoint genes. (A–C): Cluster grouping based on immune checkpoint genes, (A): sample size after
grouping; (B): change in area under the CDF curve (k = 2–9); (C): change of delta area plot when k = 2 to k = 9; (D): PCA analysis of cluster A and B;
E-F: differential expression level of TET1 (E) and YBX1 (F) in different groupings, cluster (A) in blue and cluster (B) in red.
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