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Background: The relationship between pre-eclampsia (PE) and cervical cancer

(CC) has drawn more attention recently, while little is known about the shared

pathogenesis of CC and PE. In the present research, we aimed to generate the

shared gene network aswell as the prognosticmodel to reveal the development

of CC and PE.

Methods: The transcription data of CC and PE patients were obtained and

enrolled into weighted gene co-expression network (WGCNA) analysis.

Disease-specific modules in CC and PE were determined to discover the

shared genes. The expression patterns of genes at protein level were

examined by HPA database. Further, LASSO penalty regression and Cox

analysis were applied to create a prognostic signature based on the shared

genes, with survival curves and ROC plots employed to confirm the predictive

capacity. To uncover the function roles and pathways involved in signature,

gene set enrichment analysis (GSEA) was conducted. Finally, the immune

infiltration status in CC was depicted using CIBERSORT algorithms.

Results:WGCNA determined three hubmodules between CC and PE. A total of

117 shared genes were obtained for CC and PE and mainly enriched in cell

proliferation, regulation of cell development and neuron differentiation. Then,

we created a robust prognostic model based on the 10 shared genes by

performing stepwise Cox analyses. Our proposed model presented a

favorable ability in prognosis forecast and was correlated with the infiltration

of immunocytes including B cells, macrophages and T cells. GSEA disclosed that

high-risk group was involved in cancer-related pathways.

Conclusion: The present project identified the shared genes to uncover the

pathogenesis of CC and PE and further proposed and validated a prognostic

signature to accurately forecast the clinical outcomes of CC patients.
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Introduction

Pre-eclampsia (PE) is a severe pregnancy-related

multifactorial disorder, which can possibly cause the

perinatal mortality of the newborn and the mother. Multiple

attempts have been made to reveal the pathogenesis underlying

PE (Mol et al., 2016; Coviello et al., 2019). Endothelial

dysfunction has been considered as a leading cause of PE

(Steegers et al., 2010). A number of angiogenic molecules

including vascular endothelial growth factor (VEGF),

placental growth factor (PlGF), and VEGFR-1 (Flt-1),

platelet-derived growth factor (PDGF), and endothelin were

reported to alter the angiogenic balance, and further induce the

onset and progression of PE (Venkatesha et al., 2006; Wang

et al., 2009). Moreover, oxidate stress, which was characterized

by lipid peroxidation accumulation, also plays a crucial role in

the pathogenesis of PE. Recently, Fragoso et al. reported that the

umbilical cords from PE pregnancies showed higher levels of

antioxidants including glutathione peroxidase (GPx) and

malondialdehyde (MDA) than pregnancies without PE

diagnosis, indicating the defensive mechanism to maintain

the oxidative balance (Fragoso et al., 2021). Despite all these

efforts, the mechanisms regulating the onset and progression of

PE remain largely unknown, making it crucial to explore highly

sensitive biomarkers to provide an early and intensive care for

patients at risk (Grill et al., 2009).

Cervical cancer (CC) ranks as the fourth most frequently

diagnosed malignancy in women worldwide (Siegel et al., 2020).

Despite the great efforts to diagnosis and treatment, CC still pose

a significant burden on women health, especially on those who

live in low- and middle-income countries (Hull et al., 2020). The

persistent infection of “high risk” genotypes of Human

papillomavirus (HPV) is recognized as the most common

cause of CC, among which, the most oncogenic HPV 16 and

18 subtypes are accountable for 70% of CC. Briefly, oncoproteins

E6 and E7 downregulate the expression level of tumor suppressor

genes p53 and pRb, respectively, resulting in genomic instability

and a series of aberrant biological phenotypes, eventually leading

to tumor initiation (Mittal and Banks, 2017). Conventional

strategies for CC treatment mainly including surgical excision,

cryosurgery, chemotherapy, and radiation therapy (Gadducci

and Cosio, 2020). However, all these strategies can hardly stop

the progression, nor the recurrence of CC in the terminal stages,

making a comprehensive understanding of biomarkers for CC is

urgently needed to guide the future direction of early detection.

Accumulating evidence has pointed out that HPV infection

itself cannot explain the carcinogenesis of CC, indicating there

exists other biological events involved in the development of

cervical lesions (Coker et al., 2002). In this regard, the exploration

of additional contributor to the onset and progression of CC is

urgently needed (Kreisel et al., 2021). According to Serrand et al.,

the occurrence of cervical cancer was associated with PE

pregnancy history in early life, reflecting the underlying

connection between PE and the cancer development (Serrand

et al., 2021). It has been hypothesized that the hormone changes

brought by PE may alter the homeostasis in reproductive system,

which might subsequently influence the incidence of hormone-

dependent cancers (Rana et al., 2019; Song et al., 2021a).

However, the underlying interaction between CC and PE

remain obscure, making a more precise prognosis-related

model urgently needed to reveal the similarity of genes that

modulate the onset and progression of both CC and PE.

In our current work, a total of 117 genes were identified as

“shared genes” for showing similar expression pattern in CC

and PE. Based on the “shared genes”, a protein–protein

Interaction (PPI) network was constructed with 10 genes

being identified as hub genes. Moreover, a prognostic model

was established on the basis of the “shared genes”, and the

predictive power of the model was analyzed using

chemotherapy sensitivity analysis. Finally, we evaluated the

patterns of immune infiltration in CC. Our proposed shared

genes network reveals the common pathogenesis of CC and PE

for the first time, which sheds lights on a deeper understanding

in the intrinsic connection between CC and PE. Collectively,

comprehensive analyses focusing on shared functional patterns

in CC and PE will provide insights into prediction of prognosis

and risks, and guide the future therapeutic targets for both

diseases.

Meterials and methods

Data acquisition

The RNA-seq data and clinical information of CC samples

were collected from the TCGA database (https://portal.gdc.

cancer.gov/). For PE, GSE60438 containing normalized

transcriptome data was downloaded from the GEO website

(https://www.ncbi.nlm.nih.gov/geo/) for further

investigation.

Weighted gene co-expression network
analysis

“WGCNA” analysis was performed to obtain functional

collections by clustering gene into several modules (Langfelder

and Horvath, 2008). As described before, the adjacency matrix

was employed to capture the connection between the gene pairs

using the Pearson correlation analysis. The adjacency matrix was

then transformed into a topological overlap matrix as well as the

corresponding dissimilarity, and a hierarchical clustering tree

was subsequently constructed to show different gene clusters in

different colors. Finally, the correlation between the module

eigengene and clinical traits were combined to build the co-

expression network.
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Construction of PPI network

The shared genes in PE and CC modules with positive

Pearson correlation coefficients were overlapped using venn

diagram. After that, the STRING online tool (https://cn.string-

db.org/) and Cytoscape were employed to establish and

visualize the PPI network, and the cut-off criteria of

interaction score was set as 0.4 (Szklarczyk et al., 2019). In

the PPI network, the cytoHubba algorithm was utilized to

identify the hub genes.

Functional enrichment analyses of shared
genes

GO enrichment analysis was utilized to explore the

molecular function, cellular component, and biological

process based on the shared genes. To predict the signaling

pathways involved in diseases development, the KEGG pathway

enrichment analysis was conducted using “clusterProfiler” R

package (Yu et al., 2012). The p-value <0.05 was considered as

the significant term.

Identification and validation of prognostic
signature

CC patients were randomly divided into the training group

and the test group at a ratio of 1:1. Candidate prognostic genes

were first selected in the training set through the univariate

regression methods. Subsequently, LASSO penalty analysis was

performed to avoid overfitting of the model. Furthermore, we

applied multivariate regression to develop a prognostic signature.

The risk factor was calculated as follows:

risk factor � ∑n
i�1(coef × Expi). The Expi was the expression

level of each gene and the coef was the risk coefficient of each

gene. All patients were divided into high- and low-risk groups

based on the median risk score, before the risk score of each

patient being calculated.

Verification of protein expressions of the
hub genes

Human Protein Atlas (HPA) is an online tool utilizing

transcriptomics and proteomics technologies to examine

protein expression in different human tissues and organs at

the RNA and protein levels. In the present research, we

performed the HPA database to confirm the expression

patterns of genes at the protein levels by

immunohistochemistry.

Gene set enrichment analysis

The gene expression data and risk groups information were

enrolled into GSEA (Subramanian et al., 2005). A specific

MSigDB v7.5 (released March 2020) database was further

downloaded as the reference gene set. p < 0.05 and

FDR <0.25 were considered as significant term to analyze

enriched gene sets.

Estimate of immune landscape

CIBERSORT is a powerful tool to characterize cell

composition from complex tissues based on their gene

expression data (Newman et al., 2015). CIBERSORT

algorithms was utilized to depict the relative abundance of

22 types of immunocytes. p < 0.05 was selected as the threshold.

Statistical analysis

All statistical data was analyzed by R version 4.0.5. The

Kaplan–Meier survival analysis was next performed to

compare the discrepancy in clinical outcomes of CC patients

between two risk groups. ROC was employed to evaluate the

predictive efficacy of the model. Univariate and multivariate Cox

analyses were used to evaluate the independence of the model.

Results

Co-expression modules analysis

We first conducted WGCNA to obtain disease-specific modules

with different colors (Figures 1A,B). In the in TCGAdataset, a total of

9 modules were determined and the “turquoise”model was selected

as CCpresent-relatedmodule due to its high positive correlationwith

tumor trait (Figures 1C,E). In terms of the GSE60438 set, we

uncovered 8 modules and choose “blue” and “magenta” modules

as pre-eclampsia-related modules (Figures 1D,F,G).

Identification of the shared genes in
cervical cancer and pre-eclampsia

A total of 117 shared genes in CC and PE were extracted

from three disease-specific modules, which may be greatly

involved in the development of CC and PE (Figure 2A). To

achieve a better understanding of the interrelationship of

these shared genes, we create a PPI network by STRING

online tool (Figure 2B). Moreover, we obtained 10 hub
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genes (VCL, EFNB2, TPM1, TPM2, TPM4, CDH2, JAG1,

SPP1, HEY1 and EPHB4) with high MCC values according

to the cytoHubba algorithm (Figure 2C).

Next, GO analysis was applied to unearth the underlying

biological roles of above shared genes in two diseases. As

revealed by Figure 2D, these genes were involved in numerous

FIGURE 1
determination of the specific modules in PE and CC by WGCNA. (A,B) Cluster plots of co-expressed genes in two diseases. (C,D) Heatmap of
module–trait in two diseases. (E) The “turquoise” model was selected as cervical cancer-related module. (F,G) The “blue” and “magenta” modules
were selected as pre-eclampsia-related modules.
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functions such as epidermal cells proliferation, regulation of

cell development and neuron differentiation. In addition,

KEGG enrichment indicated that the shared genes were

activated in cardiac-related pathways, Notch signaling and

ECM-receptor interaction (Figure 2E).

Prognostic model development

To set up an optimal signature, all CC cases were randomly

divided into training and test sets. In the training set, univariate Cox

regression was employed to detect possible prognostic factors based

on shared genes in two diseases (Figure 3A). A total of 15 prognostic

genes from univariate analysis were then enrolled into LASSO

regression (Figures 3B,C). Finally, we collected 10 genes

(FAM107A, NT5E, PAEP, LBP, PPFIA4, PTGFRN, CKB,

EPHB4, SPP1 and SLC2A1) to create a shared genes-based

model by multivariate Cox method. Risk score = (-0.2665 ×

FAM107A) + (0.1905 × NT5E) + (0.1281 × PAEP) + (0.5798 ×

LBP) + (0.4434 × PPFIA4) + (0.0103 × PTGFRN) + (-0.1552 ×

CKB) + (0.3996 × EPHB4) + (0.0468 × SPP1) + (0.0834 × SLC2A1).

In the training set, each CC sample was assigned a

corresponding risk score and all patients were divided into

high and low risk group based on the median risk score.

Survival curves showed that overall survival (OS) of patients

in the high-risk group was lower than that of patients in the

low-risk group (Figure 3D). The AUCs for 1, 3 and 5-years

survival rate were 0.717, 0824 and 0.855, respectively

(Figure 3E). The risk plots of survival status were

illustrated in Figure 3F. Then we confirmed the

performance of the model in the test set and entire set

according to the same analyses and observed the similar

results. KM analysis indicated that the clinical outcome of

the high-risk group was dismal than that in the low-risk group

among the test and entired cohorts (Figures 4A,D). ROC

analysis suggested that the AUCs of OS for 5-years survival

FIGURE 2
Characterization of the shared genes in PE and CC. (A) The Venn plot of overlapped genes. (B) The PPI network of the overlapped genes. (C) The
top 10 hub genes of the PPI network. (D) GO function enrichment analysis. (E) KEGG enrichment analysis.
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rate were 0.710 and 0.629 in the test and entired cohorts,

respectively (Figures 4B,E).

Validation of the hub model genes

In order to uncover the expression patterns of model factors

at protein level, we conducted HPA tool. The results revealed that

the protein levels of six model genes (NT5E, LBP, PPFIA4,

PTGFRN, EPHB4 and SLC2A1) were greatly higher in CC

tissues compared with normal tissues (Figure 5).

Independent prognostic analysis

We further employed univariate and multivariate Cox analyses

to examine the independence of the signature. Univariate analysis

showed that stage (p = 0.001) and the risk score (p < 0.001) were

meaningful for assessing clinical outcome (Figure 6A). Multivariate

Cox analysis showed that risk score (p< 0.001) was independent risk

factors for prognosis evaluation in CC (Figure 6B). Additionally, we

found that the two risk groups were remarkably correlated with four

subgroups of stage, but no significant relationship with age and

grade (Figures 6C–E).

Subgroup analysis of the signature

To explore the predictive value of the model in different

subgroups of CC, all patients were categorized into three

subgroups (age, grade and stage). The results of subgroup

analysis suggested that high-risk group presented a dismal

outcome compared to low-risk group based on three subgroups

(Figure 7).

Gene set enrichment analysis

GSEA indicated that five Hallmarks of CC were enriched in

high-risk group, including “angiogenesis”, “epithelial-

mesenchymal transition”, “glycolysis”, “hypoxia”, and

“MTORC1 pathway” (Figure 8A). KEGG analysis suggested

patients with high-risk were involved in ECM receptor

interaction, focal adhesion and galactose metabolism (Figure 8B).

Immunocyte infiltration analysis

To detect the immune cells infiltration status of two groups,

CIBERSORT algorithms was conducted to assess the proportion

FIGURE 3
Construction of a prognostic model. (A) Univariate Cox regression analysis. (B,C) LASSO coefficients for model. (D) Survival analysis in the
training set. (E) ROC curves of the predictive performance of the model in the training set. (F) The distribution of survival status in the training set.
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of various immunocytes. The results revealed that naïve B cells,

macrophages M1, CD4 memory T cells and CD8 T cells

downregulated in low-risk cohort, whereas macrophages M0 and

neutrophils were enriched in high-risk cohort (Figure 9).

Establishment of the RF model for PE

We first generated an RF and SVMmodel to collect potential

indicator from the shared genes to predict the occurrence of PE.

FIGURE 4
Validation of the prognostic model. (A,D) Survival analysis in the test and the entire cohorts. (B,E) ROC curves of the prognostic model. (C,F) The
distribution of survival status in two verification sets.
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To determine the optimal PEmodel, the residuals of RF and SVM

model were compared. We observed that the RF model has

minimal residuals, suggesting it could be served as the favorable

model to forecast the occurrence of PE (Figures 10A,B).

Similarly, ROC curve showed the RF model has higher

accuracy than SVM model (Figure 10C). Then, we ranked

seven candidate genes based on their importance (Figure 10D).

In order to expend the performance of the RF model, a

nomogram was constructed according to the seven potential

genes to evaluate the prevalence of PE (Figure 10E). Calibration

curve revealed the favorable ability of the nomogram

(Figure 10F). Also, the clinical impact plot unearthed that the

forecasting value of the nomogram was notable (Figure 10G).

Discussion

Despite current preventative, screening, and treatment

techniques, CC continues to pose a serious burden on public

health for decades (Arbyn et al., 2020). According to the cancer

incidence GLOBOCAN 2020 database, CC results in

approximately 341,000 new deaths annually, and of note,

more than 90% death from CC occurred in low- and middle-

income countries, where effective screening and early diagnosis

are relatively lacked (Siegel et al., 2018). Therapeutic options, as

well as the survival rate of CC patients should benefit from a

comprehensive understanding of the pathogenesis of CC.

The incidence of gynecological malignant cancers in

pregnant women is increasing, among which, CC is the most

frequently diagnosed cancer during pregnancy (Smith et al.,

2003; Song et al., 2021b). Considering that gynecological

screening is relatively bounded during pregnancy, efforts have

been made to explore an effective prognostic model to guide the

treatment for CC (McIntyre-Seltman and Lesnock, 2008). PE is a

multisystem pregnancy complication characterized by

cardiovascular dysfunction, with placental debris substantially

released into the maternal circulation. As indicated earlier, there

might exist an underlying correlation between the pathogenesis

of CC and PE (Serrand et al., 2021). After that, a PPI regulatory

network containing 10 hub genes was constructed based on these

shared genes. It is worth noting that only limited information is

available regarding the properties of most of genes in our

regulatory network. For instance, as a core gene in the PPI

network, VCL has previously been recognized as an

independent factor in predicting the CC prognosis, while its

role in PE development has yet been reported before (Sun et al.,

2016; You et al., 2021). Further study should focus on validating

the biological functions of these genes, as well as their roles in

modulating the disease development.

Researches have been conducted to unveil the signaling

pathways involved in facilitating development of CC and PE.

According to our data, a group of molecular signalings including

Epithelial-mesenchymal transition (EMT), hypoxia, mTOR, and

glycolysis were identified to play vital roles in regulating the

development of both CC and PE. EMT is one of the key steps of

the metastatic cascade (Zeng et al., 2019). During EMT process,

the loss of epithelial polarization induces multiple phenotypic

changes and help cancer cells gain mesenchymal properties to

disseminate and migrate quickly (Mathias et al., 2013). Hypoxia

is well known as an independent prognostic indicator that is

related to unsatisfactory treatment response and subsequent poor

clinical outcome for CC patients (Mayer et al., 2013). Imai and

his colleagues previously provided the evidence that hypoxia

brought proteome changes are directly involved in the

acquisition of metastasis behavior by activating EMT pathway,

indicating that targeting hypoxia induced EMT may act as a

FIGURE 5
Verification of the hub model genes at protein level by HPA database. (A) EPHB4. (B) LBP. (C) NT5E. (D) PPFIA4. (E) PTGFRN. (F) SLC2A1.
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FIGURE 6
Independent prognosis analysis. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis. (C–E) Distribution of clinical
subgroups in two risk groups.
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FIGURE 7
Subgroup survival analysis. (A) Age subgroup. (B) Grade subgroup. (C) Stage subgroup.
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promising strategy to prevent tumor invasion in CC (Imai et al.,

2003). The PI3K/AKT/mTOR signaling pathway has been

reported to regulate a series of cellular behaviors including

cell proliferation, migration, and apoptosis in cancer cells

(Saba et al., 2021). Regarding the pathogenesis of CC,

researchers have pointed out that the aberrant activity of

mTOR signaling plays a crucial role in regulating the crosstalk

between HPV virus and host cells (Hoppe-Seyler et al., 2017). As

has been pointed out before, the PI3K/AKT/mTOR mediated

transcription repression of the viral E6/E7 oncogene can only be

FIGURE 8
Gene Set Enrichment Analysis. (A) Hallmark analysis of the two risk groups. (B) KEGG analysis of the two risk groups.

FIGURE 9
Immune infiltration analysis. (A)Naïve B cells. (B)Macrophages M0. (C)Macrophages M1. (D)Neutrophils. (E) Activated CD4memory T cells. (F)
CD8 T cells.
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observed in hypoxia condition, indicating the connection

between the PI3K/AKT/mTOR activity and metabolic

transition in cancer cells (Bossler et al., 2019). Energy

metabolism is gaining increasing attention in cancer cells

recently. Cancer cells mainly rely on glycolysis to obtain

sufficient energy regardless of the presence of oxygen, which

is called the Warburg effect (Siska et al., 2020). Accumulating

evidence shows that E6/E7 oncogene is responsible for the

metabolic alteration in CC. In principle, E6 induces the

degradation of p53, which in turn promotes glycolysis and

restrains the oxidative phosphorylation (OXPHOS) pathways

(Itahana and Itahana, 2018). It is worth noting that PI3K/AKT/

mTOR cascades and hypoxia signaling are both involved in the

glycolytic switch. As a metabolic sensor, mTOR complex

responds to nutrient and energy production and render the

accumulation of hypoxia-inducible factor 1 (HIF1) (Spangle

and Munger, 2010). Other hypoxia related proteins are also

found to exert pro-oncogenic effects by remodeling in glucose

metabolism pattern. For instance, the hypoxia induced signal

transducer and activator 5A (STAT5A) was proven to promote

tumor cells growth by interrupting the activity of pyruvate

dehydrogenase complex, a gatekeeper enzyme connecting

glycolysis and the OXPHOS pathways (Zhang et al., 2021).

Establishment of immune landscape is essential for

unveiling intricate relationships among clinical outcome

and immune characteristics (Turinetto et al., 2022). It is

well documented that recruitment of immunosuppressive

cells protects cancer cells from surveillance by effector cells,

which nullifies the immunotherapy and consequently

promote cancer progression (Kitamura et al., 2015). It has

been reported that M1-like macrophages is capable of killing

tumor cells by initiating pro-inflammatory pathways within

the TME (Mills et al., 2000). Likewise, it has been well

established that cytotoxic CD8+ T cells are the most

powerful effector cells in the adaptive immune system

(Dustin, 2014). Cytotoxic CD8+ T cells are major killers of

pathogens and neoplastic cells in TME (Farhood et al., 2019).

Briefly, CD8+ T cells identify the MHC-1 molecules on the

surface of antigen-presenting cells and neoplastic cells, and

subsequently initiate the anticancer immune cascade (van

der Leun et al., 2020). According to our data, the infiltration

level of M1-like macrophage and anti-tumor CD8+ T cells is

positively related to the improved clinical outcome for CC

patients. In line with the common view that neutrophils can

facilitate tumor proliferation by impairing the host immune

system, the neutrophils infiltration is identified as

FIGURE 10
Establishment of the random forest (RF) Model for pre-eclampsia. (A) Boxplots of residual for RF and SVM model. (B) Reverse cumulative
distribution RF and SVMmodel. (C) ROC curves indicated the accuracy of two models. (D) The importance of the seven hub genes based on the RF
model. (E)Construction of a nomogram based on RFmodel. (F)Calibration curve revealed the predictive ability of the nomogram. (G)Clinical impact
curve of the nomogram.
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immunosuppressive cells for being negatively correlated

with OS of CC patients in our model (Shaul and

Fridlender, 2019). Taken together, orchestration of

immune characteristics may provide valuable evidence for

the immunotherapy and help develop novel therapeutic

targets against immunosuppressive environment.

However, there are still numerous shortcomings in our study.

First, all data analyzed in this project were collected from public

databases. The real world cohort need to be warranted to confirm

the predictive ability of our model. In addition, experimental

studies need to be conducted to explore the expression patterns

and functional roles of the shared genes in CC in future work.

Conclusion

The present project determined the shared genes to explore

the pathogenesis of CC and PE and developed a shared genes-

based signature which can be used as an indicator for clinical

outcomes evaluation in CC.
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