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Genotype by environment (G × E) interaction is fundamental in the biology of

complex traits and diseases. However, most of the existing methods for

genomic prediction tend to ignore G × E interaction (GEI). In this study, we

proposed the genomic prediction method G × EBLUP by considering GEI.

Meanwhile, G × EBLUP can also detect the genome-wide single nucleotide

polymorphisms (SNPs) subject to GEI. Using comprehensive simulations and

analysis of real data from pigs and maize, we showed that G × EBLUP achieved

higher efficiency in mapping GEI SNPs and higher prediction accuracy than the

existing methods, and its superiority was more obvious when the GEI variance

was large. For pig and maize real data, compared with GBLUP, G × EBLUP

showed improvement by 3% in the prediction accuracy for backfat thickness,

while our findings indicated that the trait of days to 100 kg of pig was not

affected by GEI and G × EBLUP did not improve the accuracy of genomic

prediction for the trait. A significant advantage was observed for G × EBLUP in

maize; the prediction accuracy was improved by ~5.0 and 7.7% for grain weight

andwater content, respectively. Furthermore, G × EBLUPwas not influenced by

the number of environment levels. It could determine a favourable environment

using SNP Bayes factors for each environment, implying that it is a robust and

useful method for market-specific animal and plant breeding. We proposed G ×

EBLUP, a novel method for the estimation of genomic breeding value by

considering GEI. This method identified the genome-wide SNPs that were

susceptible to GEI and yielded higher genomic prediction accuracies and lower

mean squared error compared with the GBLUP method.
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Introduction

Genomic selection (GS) (Meuwissen et al., 2001), which

relies on linkage disequilibrium between single nucleotide

polymorphisms (SNPs) and causative variants, has become a

useful tool in animal (VanRaden et al., 2009) and plant (Zhong

et al., 2009) breeding. However, GS analytical modelling usually

assumes no G × E interaction (GEI) and opposes the true genetic

architecture of complex traits. In fact, interaction is fundamental

in biology, and there is growing interest in estimating breeding

value by considering GEI and using genome-wide SNPs.

The current state-of-the-art methods for the estimation of

genomic breeding value without considering GEI include

GBLUP (VanRaden, 2008) and Bayes-Alphabet (e.g., Bayes A,

Bayes B and Bayes C) (Habier et al., 2011). Multi-trait (Richard,

1996) and reaction norm models (Rebecka et al., 2002) are the

two prevalent GEI-handling methods that are used for genomic

evaluations. However, the multi-trait model could only capture

GEI in a limited number of environments, and the computational

demands of multi-trait models would increase rapidly with an

increase in the number of environment levels (Song et al., 2020a).

The reaction normmodel captures only part of the GEI because it

needs to accommodate a continuous range of environmental

values and cannot select excellent individuals using the unique

estimated breeding value in actual breeding (Jarquin et al., 2014;

Song et al., 2020b).

To explore GEI, certain G × E interaction-affected methods

have been proposed for detecting SNPs. Wang et al. (2019)

proposed several methods (Bartlett, F-Killeen, L-mean and

L-median) that can be used to infer GEI from variance

quantitative trait locus (vQTL) analysis without requiring

environmental factor measurements. Moore et al. (2019)

proposed StructLMM, which is useful for studying

interactions with hundreds of environment variables.

Moreover, Kerin and Marchini. (2020) proposed LEMMA,

which infers GEI using a Bayesian whole-genome regression

model. However, in Wang’s method, GEI-affected SNP

detection is possible because of selection, epistasis and

phantom vQTL, instead of only GEI (Wang et al., 2019).

StructLMM and LEMMA do not currently enable accounting

for relatedness, and these methods cannot be efficiently applied

to livestock and plant breeding due to the close genetic

relationships that widely exists between individuals (Kerin

et al., 2020; Moore et al., 2019). Therefore, it is essential to

develop new methods for the estimation of genomic breeding

value by considering GEI.

In this study, we proposed a novel approach for the

estimation of genomic breeding value by considering GEI,

which can handle environment variables in different

dimensions. The basic principle of the new approach was to

first detect the genome-wide markers affected by GEI (G ×

EWAS), in which a score-test statistics was implemented to

identify the significant GEI-associated SNPs. Next, all markers

were classified into SNPs with/without GEI to construct the

genomic relationship matrices separately and predict the

genomic breeding value using the mixed model (G × EBLUP).

For its general application, the efficiency of the proposed method

was evaluated through simulation study and real data from pigs

and maize.

Methods

Ethics statement

The animal study was reviewed and approved by Animal

handling and sample collection were conducted according to

protocols approved by the Institutional Animal Care and Use

Committee (IACUC) at China Agricultural University. All

authors strictly complied with the Regulations on the

Administration of Laboratory Animals (Order No. 2 of the

State Science and Technology Commission of the People’s

Republic of China, 1988). There was no use of human

participants, data or tissues.

G × EWAS

G × EWAS extends the conventional linear mixed model by

including an additional per-individual effect term accounting for

G × E, which can be represented as N × 1 vector, βGxE. The model

was defined as follows:

y � Xb + xβG + x ⊙ βGxE + u + e (1)

where y is the vector of observed phenotypic values; b is the

vector of fixed effects; βG is the average effect of gene substitution

of a particular SNP; and x is the vector of the genotype indicator

variable of the variant coded as 0, 1 or 2. x ⊙ βG×E � diag(x)βG×E,
where ⊙ denotes the element-wise (Hadamard) product and

diag(x) denotes the N × Ndiagonal matrix whose diagonal is

x.The per-individual effect size vector βG×E is defined as a

random effect, following the multivariate normal distribution

βG×E ~ N(0, σ2G × E ∑), where σ2G × E, is the variance and

covariance matrix of the G × E effect, ∑ ∈ RN×N parameterises

how per-individual effects covary across individuals and is

calculated as a function of observed environment variables.

∑ ≡ ∑ (E) � EE′, where E is the N × L matrix of L observed

environments. The linear covariance function (EE′) was

primarily used because of two appealing properties. First, as

the number of samples typically exceeds the number of

environments in larger populations (L << N), a low-rank

linear covariance is noted, which enables parameter inference

with a computational complexity that scales linearly with the

increasing population size. Second, a linear covariance is directly

interpretable as there is one-to-one correspondence between G ×

EWAS and linear regression using L covariates to account for
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GEI. Notably, for the special case of σ2G × E � 0, the model G ×

EWAS reduces to a standard linear mixed model for genome-

wide association study; thus, G × EWAS is a single-SNP

regression model; u is the vector of random polygenic effects

with a normal distribution u ~ N(0, Gσ2u), in which σ2u is the

polygenic variance and G is the genomic relationship matrix. It

was constructed using the markers according to VanRaden

(2008); X is the incidence matrix linking b to y; e is the

vector of random errors with normal distribution of N (0, I

σ2e ), where σ
2
e is the residual variance and I is the identity matrix.

The analysis of G × EWAS was based only on the reference data

to avoid the double counting of the SNP effect in genomic

prediction.

For the parameter inference, we considered the marginalised

form of the model in Eq. 1, which was obtained by integrating

over the G × E effects βG×E and the random effect component u :

y ~ N(Xb + xβG, σ
2
GxEdiag(x)EETdiag(x) + σ2gG + σ2eI) (2)

Using the marginalised model in Eq. 2, a G × E interaction

test corresponds to the alternative hypothesis σ2G × E > 0. We

defined an efficient score-based test that enabled the p-value

calculation with a complexity that scaled linearly with the

number of individuals, provided that there is low-rank

environment covariance ∑. The null model of the interaction

test reduced to a standard linear mixed model with a low-rank

covariance matrix for additive genetic effects, and the existing

efficient inference strategies for the standard linear mixed model

can be reused. The score-test statistics can be computed in an

analogous manner according to the procedure described by Wu

et al. (2011):

Q � 1
2
yTPK1Py � 1

2
yTP(diag(x)EETdiag(x))Py

� 1
2
yTP(diag(x)E)(diag(x)E)′Py � 1

2

∣∣∣∣∣∣∣∣WTPy
∣∣∣∣∣∣∣∣2 (3)

Where

K1 � diag(x)∑ diag(x)
W � diag(x)E

P � H−1
0 −H−1

0 [X, x]([X, x]TH−1
0 [X, x])−1[X, x]TH−1

0

The matrix H0 denotes the total covariance matrix estimated

under the null model H0 =σ2gG + σ2e I Q follows a mixture of χ2

distributions (Wu et al., 2011; Lippert et al., 2014): Q ~ ∑kakχ
2
1,

where the vector of the coefficients a � [ak]k can be computed as the

eigenvalues of P
T
2 K1P

1
2. According to the procedure in SKAT (Wu

et al., 2011), as the distribution of the score-test statistics was a

mixture of χ2, the p-values were computed using the Davies method

(Davies, 1980). Alternatively, the Liumethod (Huan et al., 2008) was

employed when the Davies method failed to converge.

The evidences for individual environment variables or

environment sets for driving the observed G × E effects can

be assessed by comparing the model log marginal likelihoods

between models with and without including these environments.

The Bayes factors (BF) obtained from such comparisons is

directly calibrated as the parameter number fitted using

maximum likelihood and is independent of the environment

variable numbers.

Given a variant and set of L environment

L = (e1, e2, e3, . . . , eL),

(Log(BF) � LML(L) − LML(Li) (4)

where LML(L) and LML(Li) represent the marginal log-

likelihood of the model described in Eq. 2, either considering

the full or reduced environment sets to define the G × E

environment covariance, respectively. log(BF) < 0 indicates

the lack of contribution of the environmental impact on G ×

E interaction, whereas log(BF) > 3 indicates strong G × E

environment interaction (Kass and Raftery., 1995).

G × EBLUP

The G × EBLUP model includes additive genetic and GEI

effects. The model is as follows:

y � Xb + ZuG×E + Zu + e (5)

where y, X, b and e denote the same parameters as in the G ×

EWAS model, uG×E is the vector of genomic values captured by

genetic markers associated with GEI, following a normal

distribution of N(0,GG×Eσ2G × E); u is the vector of genomic

values captured by the remaining genetic marker sets (SNPs

that are not significantly associated with GEI), following a

normal distribution N(0, Guσ2u) and Z is an incidence matrix

that links uG×E and u to y. Matrices GG×E and Gu were

constructed similarly as G; the former was constructed using

only the genetic marker set defined by GEI, as described below,

and the latter was constructed using the remaining markers.

σ2G × E and σ2u are the variance components explained by the

variants with and without GEI, respectively. When an SNP was

significant the GEI with phenotypes based on the prespecified

significance cutoff level (E01-E05), showing the SNP was

considered to impact the GEI.

Data simulation

So far, only few genomic data simulating softwares

considering GEI have been available. In this study, we

proposed a reaction norm model accounting for

heterogeneous residual variances to simulate phenotypic and

environmental values.

y � α0 + α1pc + e0 + e1pc
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where y is the vector of phenotypic value, c is the vector of

environmental value; α0 and α1 are the random additive genetic

effects for the intercept and slope, respectively; and e0 and e1 are the

random residual effects for the intercept and slope, respectively.

The environmental value c is further divided into two

components:

c � β + 

where β is the vector of the random genetic effect and ε is the

vector of the random residual effect.

We assumed that α0, β and α1 are affected by all QTLs

simultaneously, and these three effects of each QTL are drawn

from a multivariate normal distribution with the vector of means

0 and the variance–covariance structure
⎡⎢⎢⎢⎢⎢⎢⎢⎣
σ2α0 σα0β σα0α1
σα0β σ2β σβα1
σα0α1 σβα1 σ2α1

⎤⎥⎥⎥⎥⎥⎥⎥⎦. The
genetic variance of each QTL is computed using 2 pi(1 − pi)mi,
where piis the frequency of one allele of ith QTL, mi is the effect
of the ith QTL for α0 , β or α1. Then, the substitution effects are
rescaled to ensure the total variances σ2α0 , σ

2
β and σ

2
α1
for α0, β and

α1, respectively. The σα0β, σα0α1 and σβα1 are re-calculated using
the scaled substitution effects of QTL. The e0 , e1 and ε values of
each individual are sampled from a multivariate normal
distribution with the vector of means 0 and the

variance–covariance structure ⎡⎢⎢⎢⎢⎢⎢⎣
σ2e0 σe0e1 σe0ε
σe0e1 σ2e1 σe1ε
σe0ε σe1ε σ2ε

⎤⎥⎥⎥⎥⎥⎥⎦.
For the G × E interaction simulations, the parameter σ2α1 was

set to control the extent of the G × E interaction, whereas other

parameters (σ2α0 , σ
2
β, σα0β, σα0α1, σ

2
e0
, σβα1, σ

2
e1
, σ2ϵ , σe0e1 , σe0ϵ and

σe1ϵ) were fixed. The pseudo true breeding values (TBVs) of an

individual for α0 , β and α1 are its QTL effects multiplied by

genotypes, followed by the scaling of the means of the pseudo

TBVs to 0. Finally, the environmental valuec of each individual is

obtained by adding the cumulative effect across all QTLs for β

with the residual , followed by the generation of the phenotype y

of each individual through the model y � α0 + α1*c + e0, without
accounting for heterogeneous residual variance. For the

simulated data, c was used as the environment variable E, as

described in formula (1). The real genotypes of 7,334 individuals

determined using the Illumina BovineSNP50 BeadChip from the

Chinese Holstein population were referred for phenotype and

environment simulation, and 45,323 SNPs remained after

imputation of missing genotypes and removal of SNPs with a

minor allele frequency (MAF) of <0.01. Additional File

3 Supplementary Figure S1 presents the heat map of the

genomic relationship matrix of 7,334 Chinese Holsteins. Three

simulated datasets with GEI effect variances of 0.25, 1 and 2 were

obtained, and the corresponding phenotypic variances were 2.25,

3 and 4, respectively. Additionally, when the GEI effect variance

was 0.25, the datasets 2 and 3 covariate environments were

simulated and compared. For each dataset, 306 SNPs that

affected the trait of interest were simulated and referred to as

simulated QTLs in this study. For each scenario, the simulation

was repeated 20 times. We used the DMU software (Madsen

et al., 2006) to estimate the variances of the additive effect, GEI

effect and residual using the reaction norm model for each

replicate. As shown in Additional File 2 Supplementary Table

S1, these estimated values were close to the assigned values.

Moreover, a dataset was randomly selected from the 20 repeated

datasets, and 6 SNPs with GEI were randomly selected from this

dataset, showing that the phenotypic variation was largely

affected by GEI and that it was relatively small in the

scenarios with no GEI (Additional File 3: Supplementary

Figures S2–S6), thus implying that the simulation fitted well.

All analyses with G × EBLUP and GBLUPmodels and simulation

were conducted using in-house scripts written in Python3.8 by

the first author.

Real data

Pig data
Yorkshire pigs were sampled from a breeding company with

five breeding farms distributed across China (Additional File 3:

Supplementary Figure S7). Different farms displayed distinct

climates, housing systems, nutritional regimes, disease pressures

and stocking densities, potentially leading to GEI. Table 1 presents

the phenotype data. We examined two growth traits ‘days to

100 kg (AGE)’ and ‘backfat thickness adjusted to 100 kg (BFT)’.

Genotyping was performed using the PorcineSNP80 BeadChip

(Illumina, CA, USA), which included 68,528 SNPs across the

entire pig genome. A total of 1,778 animals born between 2011 and

2016 were genotyped (Table 1).

Pig data

Maize is one of the most important crops worldwide. It

provides food for humans and animals; it is a raw material for

industrial processes and a model plant for understanding

evolution, domestication and heterosis (Romay et al., 2013).

Thus, maize data from 11 regions across China (Additional

File 3: Supplementary Figure S7) were obtained to verify G ×

EBLUP, with the regions used as environment variables. Because

of varying conditions of light, temperature, air, water and soil in

different regions, under which GEI could show its effect, region

effect was considered as an environmental covariate in the

present study. A total of 681 maize lines were collected and

each line had phenotype records of two traits, grain weight (GW)

and water content (WC), in 1–8 environments. Overall,

2,676 observations were collected for the two traits. Table 1

lists the detailed information on GW and WC. Meanwhile, all

lines were genotyped using the customised SNP panel of

61,224 markers across the maize genome.

For real pig and maize data, Beagle 4.1 (Browning and

Browning, 2009) was used for the imputation of the missing
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SNP genotypes, and only loci on autosomes were used for further

analysis. PLINK software (v1.90) (Chang et al., 2015) was

implemented for quality control. We excluded SNPs with a

MAF of <0.05, call rate of <0.90, or those severely deviating

from the Hardy–Weinberg equilibrium (HWE) (p < 10–7).

Similarly, we excluded the pig individuals or maize samples

with a call rate of <0.90. Finally, 56,463 and 59,401 SNPs

were present in the pig and maize data, respectively, and all

genotyped pigs and maize were retained.

Method application

Application to simulated data
Simulated data analysis was performed using G × EWAS

proposed in this study to identify markers associated with GEI.

We used Bonferroni correction at a significance level of 0.05 to

identify significant SNPs. We implemented the four methods

(L-median, L-mean, Bartlett and F-Killeen) proposed by Wang

et al. (2019) in addition to StructLMM proposed by Moore et al.

(2019) to identify SNPs affected by GEI. Based on the G × EWAS

results, we performed genomic prediction on each simulated

dataset using G × EBLUP. To investigate more SNPs with GEI,

p-value gradients of 1-E01–1-E05 were chosen as threshold

standards to select the SNPs associated with GEI. Five 10-fold

cross-validation (10-CV) repetitions were used to assess the

genomic prediction using G × EBLUP. In each cross-

validation, the reference and validation populations comprised

6,601 and 733 individuals, respectively. The accuracy of genomic

prediction was calculated as the Pearson’s correlation between

original phenotypes Phe and the genomic estimated breeding

values (GEBVs) of all validation individuals r(Phe, GEBV).

Moreover, the mean squared error (MSE) of the prediction

ability matrix was used to evaluate the performance of the

models; MSE was computed as the average square of the

difference between Phe and GEBV centred on zero. In each

scenario, we performed the comparisons between G × EBLUP

and GBLUP (VanRaden, 2008) at different GEI variances (0.25,

1 and 2) and different number of environment variables (1,

2 and 3).

Application to real data
Pig data were used to detect the SNPs affected by GEI. The

herd-year-season effects, estimated using the conventional

pedigree-based BLUP method, were used as environmental

covariates, and the corrected phenotype were used as response

variables. The calculations for the corrected phenotype value

followed the method described by Song et al. (2017). Overall,

207 young and the remaining 1,571 individuals were considered

as the validation and reference populations, respectively. For the

maize data, an environment was randomly selected for each line

to ensure that all lines could be used for analysis. Accordingly, we

used 681 lines for each analysis and performed five replications of

5-fold cross-validation.

For the G × EBLUPmethod, the p-values for all markers were

calculated using G × EWAS, and a threshold standard with

p-value gradients of 1-E01–1-E05 was selected to screen the GEI-

associated SNPs. The GBLUP and G × EBLUP methods were

then used to estimate GEBVs. The genomic prediction accuracy

on the real data was evaluated differently than that on the

simulated data, using the correlation between GEBVs and the

phenotypic values y (maize data) or corrected phenotypes yc (pig

data) in the validation population. MSE was computed as the

average square of the difference between y or yc and GEBVs

centred on zero. The BF for each environment variable was

TABLE 1 Descriptive statistics for pig and maize population traits.

Population Traita N-obsb Genotyped individuals N-envc Mean SD Min Max

Pig AGE (day) 28,827 1778 5 170.8 13.9 124.0 211.0

BFT (mm) 28,827 1778 5 11.8 2.4 5.0 30.7

Maize GW (kg) 2676 681 11 6.75 1.39 0.407 11.24

WC (%) 2676 681 11 26.89 4.58 14.80 47.80

aAGE: days to 100 kg; BFT: backfat thickness adjusted to 100 kg; GW: grain weight; WC: water content.
bN-obs: number of observations.
cN-env: number of environments.

TABLE 2 Significant G × E interaction single nucleotide
polymorphisms (SNPs) detected on simulated data using the
proposed G × EWAS method and the five approaches, StructLMM,
Bartlett, F-Killeen, L-mean and L-median under different variance of
G × E interactions. The SNP numbers overlapping with simulated
genotype–environment interaction quantitative trait locus (306)
are in parentheses.

Variance of G ×
E interactions

0.25 1 2

G × EWAS 2435 (43) 5081 (64) 3981 (77)

StructLMM 2472 (41) 5092(62) 4084 (77)

Bartlett 507 (9) 3495 (33) 3976 (54)

F-killeen 101 (6) 144 (2) 109 (3)

L-mean 224 (6) 1037 (8) 606 (14)

L-median 188 (6) 808 (8) 439 (9)
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calculated to obtain the sensitive environments of markers

associated with GEI. For simulated data and real data, the

improvement in prediction accuracy for G × EBLUP over

GBLUP was calculated by subtracting the prediction accuracy

obtained by GBLUP from the prediction accuracy obtained by

G × EBLUP and then dividing by the prediction accuracy

obtained by GBLUP.

Results

Genome-wide G × E association analysis

Simulated data
Table 2 indicates that G × EWAS performed better than the

other methods. When the GEI variance was 0.25, G × EWAS

detected 2,435 significant SNPs with Bonferroni correction

(0.05/45,293). Of these SNPs, 43 overlapped with the

306 simulated GEI SNPs. Although a low number of SNPs

(41) overlapped with the simulated GEI SNPs, StructLMM

detected a high number of significant SNPs (2,472).

Similarly, G × EWAS detected a higher number of

significant SNPs than those detected using the Bartlett,

F-Killeen, L-mean and L-median methods, which identified

507, 101, 224 and 188 significant SNPs, respectively. Further, 9,

6, 6 and 6 SNPs overlapped with the simulated GEI QTLs,

respectively. A similar trend was also observed in the scenario

where GEI variance increased to 1 or 2. Larger GEI effect

variances led to the identification of a higher number of real

QTLs with GEI (with the exception of the F-Killeen method), as

shown in Table 2 and Additional File 3 Supplementary Figures

S8–S10.

Pig and maize data
Figure 1 illustrates the genome-wide G × E marker mapping

on pig and maize data. Figure 1 shows that a total of 1,164 and

5,448 significant SNPs were detected in pigs for AGE and BFT

traits with Bonferroni correction (0.05/56,445), respectively. For

maize data, only 1 and 84 genome-wide significant SNPs were

detected for the two traits, GW and WC, respectively.

Additionally, the genotypic values and SNP effect values of

the top most significant SNPs for each trait at different

environments in pig and maize populations indicated that

BFT, GW and WC were affected by the environment;

however, no GEI was detected on AGE (Additional File 3:

Supplementary Figures S11, S12).

FIGURE 1
G × E marker genome-wide association analysis of pig and maize population traits. AGE: days to 100 kg; BFT: backfat thickness adjusted to
100 kg; GW: grain weight; WC: water content.
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Accuracy and mean squared error of
genomic prediction

Simulated data
The significance level was set at the p-value gradient of 1-

E01–1-E05 to determine SNPs associated with GEI. Table 3

presents the number of SNPs affected by GEI. These SNPs

along with the corresponding remaining SNPs were used in

G × EBLUP. All 45,323 qualified SNPs were used in GBLUP.

The genomic prediction accuracy and MSE of the simulated

data were determined from a randomly selected replicate.

Table 3 shows that the G × EBLUP accuracy was different

under different p-values. G × EBLUP showed the highest

genomic prediction accuracy and the lowest MSE with a

p-value of 1-E03. Further, the prediction accuracy of G ×

EBLUP improved by 1.7% compared with that of GBLUP.

Figure 2 shows the averaged accuracies and MSE of genomic

prediction obtained using G × EBLUP and GBLUP under

different GEI variances. For G × EBLUP, the average

prediction accuracy was calculated by selecting the highest

prediction accuracy values under different p-values in each

repetition. When the GEI variance was 0.25, the G × EBLUP

yielded 1.7% higher prediction accuracies than GBLUP.

Moreover, G × EBLUP yielded lower MSE than GBLUP,

with average MSE values of 1.816 and 1.942, respectively.

G × EBLUP performed significantly better than GBLUP

when the GEI variance was increased to 1 and 2, yielding

3.9 and 6.4% higher prediction accuracies, respectively, and a

lower MSE than GBLUP.

Figure 2 also shows how the number of the environment

variables influences the genomic prediction. In the scenario with

a GEI variance of 0.25, when the number of environment

variables was 1, 2 and 3, no significant differences were noted

in the prediction accuracy and MSE among the number of

different environment variables for G × EBLUP. Additionally,

in all scenarios, G × EBLUP yielded 1.8% higher accuracies and a

12.4% lower MSE than GBLUP, confirming that G × EBLUP

performed better.

Pig and maize data
Figure 3 and Table 3 present the accuracy and MSE of

genomic prediction on pig and maize data. According to the

results of G × EWAS regarding AGE trait in pigs, 27,762; 14,117;

7,420; 3964 and 2,117 SNPs were selected as G × Emarkers in G ×

EBLUP, and the accuracies of G × EBLUP under different G × E

markers (1-E01–1-E05) were not significantly different. The

average prediction accuracy obtained using G × EBLUP was

0.225, which was same as that obtained using GBLUP. Moreover,

no differences were noted in the MSE between G × EBLUP and

GBLUP. These findings indicated that AGE was not affected by

GEI. However, for BFT, G × EBLUP showed the best

performance at the p-value of 1-E02, the prediction accuracy

was improved by 3% compared with that of GBLUP, and the

MSE was reduced by 0.107, decreasing from 2.707 to 2.600.

TABLE 3 Genomic prediction accuracies and mean squared error (MSE) for GBLUP and G × EBLUP method under different G × E interaction p-values
(E01~E05).

Data set Trait Content GBLUP P-valuea

E01 E02 E03 E04 E05

Simulationb Onec SNP number 45,323 23,517 14,210 8844 5543 2186

Accuracy 0.737 0.735 0.739 0.749 0.738 0.712

MSE 1.818 1.820 1.810 1.715 1.813 1.894

Pig AGE SNP number 56,445 27,762 14,117 7420 3964 2117

Accuracy 0.225 0.223 0.226 0.226 0.226 0.224

MSE 179.81 179.918 179.722 179.703 179.677 179.797

BFT SNP number 56,445 37,448 25,242 17,110 11,801 8098

Accuracy 0.268 0.275 0.276 0.272 0.269 0.268

MSE 2.707 2.693 2.69 2.699 2.704 2.706

Maizeb GW SNP number 59,401 17,285 4279 834 421 143

Accuracy 0.288 0.290 0.306 0.294 0.271 0.269

MSE 46.323 46.317 46.174 46.178 46.223 46.347

WC SNP number 59,401 28,636 12,123 4168 2132 875

Accuracy 0.295 0.301 0.315 0.318 0.293 0.273

MSE 721.588 721.229 721.129 720.854 721.590 722.009

aCut-off p-values for G × E interaction single nucleotide polymorphisms on G × E.
bOne randomly selected replicate.
cThe variance of G × E interactions was 0.25.
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Compared with pig data, the genomic prediction of G × EBLUP

showed considerable improvement in maize data. As shown in

Table 3, for the trait GW from a randomly selected replicate, G ×

EBLUP showed the best performance at the p-value of 1-E02, the

genomic prediction accuracy was improved by 6.25% compared

with that of GBLUP, and MSE was reduced from 46.323 to 46.174.

For the trait WC from a randomly selected replicate, the highest

prediction accuracy of G × EBLUP was obtained at the p-value of 1-

E03, the prediction accuracy was improved by 7.8% compared with

that of GBLUP, andMSEwas reduced from 721.588 to 720.854. The

average prediction accuracy of 5 repetitions of 10-fold CV for

GBLUP and G × EBLUP are shown in Figure 3, G × EBLUP

showed approximately 5.0 and 7.7% improvement in prediction

accuracy for GW and WC in maize population, respectively.

Moreover, G × EBLUP also showed a lower prediction MSE

than GBLUP, which further verified the advantages of G × EBLUP.

Sensitive environment detection in real
data

The BF for each environmental factor was obtained, and then

the sensitive environments were assessed accordingly. In pig

population, for AGE and BFT, 10 SNPs each with the smallest

p-values were selected for sensitive environmental detection. As

shown in Figure 4, for AGE, the top 10 SNPs regarding season

showed the largest BF, indicating that the most sensitive

environmental factor for the top 10 SNPs was season.

Similarly, the least sensitive environmental factors for SNPs

were farm and year, as the values of BF of farm and year

were equally low. For BFT, the most sensitive environmental

factors for all SNPs were farm and season, and their BF values

were also same; year was the least sensitive environmental factor

(Figure 4). In maize population, as shown in Figure 4, the

averaged log BF values indicated that the region environment

variable has a strong GEI (Log(BF) > 3) with WC and GW.

Additionally, the BF values of WC were higher than that of GW,

which was also consistent with the superiority of genomic

prediction of WC (Figure 3).

Computing time

The average computation time for G × EBLUP and GBLUP

to complete each fold of CV is presented in Table 4. Running

time of the methods was measured in minutes on an HP server

FIGURE 2
GBLUP and G × EBLUP method for the (A) accuracy and (B)mean squared error (MSE) of genomic prediction under different G × E interaction
variances. Genomic prediction (C) accuracy and (D) MSE under different numbers of environment variables.
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(CentOS Linux 7.9.2009, 2.5 GHz Intel Xeon processor and 515G

total memory). In all scenarios, G × EBLUP runs longer than

GBLUP, mainly because running G × EBLUP requires

concurrently running G × EWAS, which is a single marker

regression model with a long running time, e.g. G × EWAS

took an average of 45.8 min in each fold of CV to complete the

analysis, requiring considerably less time than GBLUP

(15.05 min). In addition, there is no obvious difference here

between different traits in the same population due to the same

size population and number of SNPs.

Discussion

G × E interactions play an important role in livestock and

plants and should be considered in breeding programmes to

select elite individuals in specific environments (Crossa, 2012;

Heslot et al., 2014; Jarquin et al., 2017; Perez-Rodriguez et al.,

2017; Tiezzi et al., 2017; Liu et al., 2019; Zhang et al., 2019; Braz

et al., 2021). However, because of their complexity, G×E

interactions are usually ignored in conventional breeding and

the current widely used methods of estimating genomic breeding

value, e.g. GBLUP (VanRaden, 2008), single-step GBLUP

(Misztal et al., 2009), BayesA (Meuwissen et al., 2001),

BayesCpi (Habier et al., 2011), which could lead to biases in

the estimation of breeding values and selection decisions.

Although the multi-trait (Richard, 1996) and reaction norm

models (Rebecka et al., 2002) are two prevalent methods for

handling GEI in the estimation of genomic breeding value, our

previous studies have explicated the disadvantages of these two

types of methods (Song et al., 2020b). Moreover, these two

methods could not detect the markers associated with GEI. In

this study, we proposed G × EBLUP, which is a novel method for

genomic breeding value estimation that takes GEI into account.

The core of G × EBLUP is the estimation of GEI using G × EWAS

by including an additional per-individual effect term that

accounts for GEI; it is also powerful for the identification of

the SNPs that are susceptible to GEI. Comprehensive simulation

studies and real data of pigs and maize have demonstrated the

superiority of the proposed method.

In the simulated data, our results indicated the superiority of

the G × EBLUP method for genomic prediction in all scenarios,

which was more remarkable when the variance of GEI was large

(Figures 2A,B), showing that the new method can appropriately

handle GEI. Our results also showed that there was no significant

difference in the prediction accuracy of G × EBLUP under

FIGURE 3
GBLUP andG× EBLUPmethod for the (A,C) accuracy and (B,D)mean squared error (MSE) of genomic prediction in pigs andmaize. AGE: days to
100 kg; BFT: backfat thickness adjusted to 100 kg; GW: grain weight; WC: water content. MSE is a relative value by assuming that the MSE of GBLUP
method is equal to 0 because of the large MSE value.
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different numbers of environment variables (Figures 2C,D),

implying that the number of environment levels have no

effect on our new method. This is a major highlight of the G ×

EBLUP method compared with the methods based on the

multi-trait (Richard, 1996) and reaction norm models

(Rebecka et al., 2002), in which the number of

environment levels was the main limitation (Song et al.,

2020a; Song et al., 2020b). The advantage of G × EBLUP

for joint G × E analysis of multiple environment variables

could be that multiple environments can interact with a

single genetic locus to influence the phenotypes (Moore

et al., 2019). In our new method, the interactions of

genotype with different environments could be

represented by one or more markers, as explicated by G ×

EWAS. Therefore, it was not sensitive to the number of

environment levels.

In this study, we proposed G × EWAS and a score-test

statistic to identify the significance of SNP affected by GEI; the

details of G × EWAS and its computational complexity can be

found in Additional File 1 Supplementary Material. In G ×

EWAS, E is the N × L matrix of L observed environments,

and EE′ is used as a variance–covariance structure for G × E

effects; thus, G × EWAS is a single-SNP regression model, which

FIGURE 4
Bayes factors of 10 single nucleotide polymorphisms for (A) AGE, (B) BFT, (C) GW and (D) WC in different environmental factors. AGE: days to
100 kg; BFT: backfat thickness adjusted to 100 kg; GW: grain weight; WC: water content.

TABLE 4 Average computation time for G × EBLUP and GBLUP to
complete each fold of cross-validation.

Date set Traita G × EBLUP GBLUP

Simulation V0.25 45 min 48 s 15 min 3 s

V1 46 min 27 s 15 min 12 s

V2 46 min 13 s 15 min 9 s

Pig AGE 30 min 9 s 2 min 14 s

BFT 30 min 14 s 2 min 18 s

Maize GW 26 min 13 s 1 min 7 s

WC 26 min 8 s 1 min 10 s

aV0.25, V1 and V2: The traits with variance of G × E interactions of 0.25, 1 and 2,

respectively, in simulated data.
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is different from the multi-trait (Richard, 1996) and reaction

norm models (Rebecka et al., 2002). The linear covariance

function (EE’) was primarily used because of two appealing

properties. First, as the number of samples typically exceeds

the number of environments in larger populations (L << N), a

low-rank linear covariance is noted, which enables parameter

inference with a computational complexity that scales linearly

with the increasing population size. Second, a linear covariance is

directly interpretable, as there is one-to-one correspondence

between G × EWAS and linear regression using L covariates

to account for GEI. Compared with the four methods proposed

byWang et al. (2019), our results showed the obvious advantages

of G × EWAS in GEI detection (Additional File 3: Supplementary

Figures S8–S10 and Table 2). The low efficiency of the other

methods could be because the selection, epistasis and phantom

vQTL can also cause vQTL instead of just GEI, which may lead to

biases in the detection of G × E markers, e.g. the overlapped

simulated QTLs were decreased for L-mean and L-median when

the variance of G × E increased. Although the efficiency of G ×

EWAS was improved with increase in the variance of GEI, it

yielded higher number of overlap QTLs with GEI. As a

combination of the standard linear mixed model for genome-

wide association study and StructLMM, our proposed G × EWAS

performed better than StructLMM (Additional File 3:

Supplementary Figures S8–S10 and Table 2). The superiority

of G × EWAS was mainly because it built a genomic relationship

matrix to capture the realised relationships among individuals;

moreover, it can accurately capture the effect of each

environment on markers by adding the GEI vector in the

model, which follows a multivariate normal distribution. In

the scenario of larger variance of GEI, more QTLs would

contribute to the GEI, increasing the weight of per-individual

effect size as described in Eq. 1; thus, it could be easily detected

using G × EWAS.

Although G × EWAS could detect more significant SNPs

associated with GEI using Bonferroni correction, only a small

amount of the whole markers were detected. The best

performance of G × EBLUP was obtained at the marker

selection criterion of p-value of E02 (BFT in pig and WC in

maize) or E03 (simulated data andWC inmaize) (p-values < 10–2

or 10–3) in all scenarios (Table 3). In fact, the performance of G ×

EBLUP at E02 and E03 was similar. Accordingly, the selected

SNPs with GEI for simulated data, AGE and BFT in pig and WC

and GW in maize were enough to build a genomic relationship

matrix to elucidate the contribution of GEI. The number of

selected SNPs with GEI in G × EBLUP was lower than that of the

significant SNPs at false discovery rate of 0.05 (Additional File 2:

Supplementary Table S2). Therefore, it is reasonable to use

p-values of <10–3 as threshold for determination of SNPs with

GEI in G × EBLUP. The advantage of G × EBLUP over GBLUP is

mainly because G × EBLUP allows the assignment of different

weights to the genomic variants in the different genomic

relationship based on their estimated genomic parameters,

which can better fit the genetic architecture of the trait, while

randomly selected a subset of SNPs that are not all associated

with the trait, giving more weight to these SNPs in G × EBLUP

does not improve the accuracy of genomic prediction (results not

shown).

Along with the mapping of G × E markers, G × EWAS could

determine favourable environment using BF of SNPs on each

environment. This is extremely helpful for market-specific

breeding in animals and plants as it may provide further

explanation to those individuals who have a higher risk of

being affected by GEI in a certain environment variable

(sensitive environment). In this study, farm was identified as a

sensitive environment for BFT in pigs, which allows the selection

of elite individuals with good performance in specified farms.

Further, our results showed that GEI was different for distinct

traits, e.g. similar genomic prediction accuracies were obtained

for G × EBLUP and GBLUP for AGE, whereas G × EBLUP

showed improvement by approximately 3% in the prediction

accuracy for BFT in pigs (Figure 3). This observation is consistent

with that of our previous report that showed GEI for BFT but not

for AGE (Song et al., 2020b). This could be explained by values of

the variance of the slope (σ2a1 ) compared with those of the

intercept (σ2a0 ) in the reaction norm model; σ2a1 / σ2a0 were

0.002 and 0.348 for AGE and BFT, respectively. Thus, traits

with small variance of GEI cannot improve the accuracy of

genomic prediction using G × EBLUP even after the

identification of more significant SNPs on AGE. Similarly, the

less significant SNPs in the maize data showed larger variance

and greater improvement in the genomic prediction accuracy

than those in the pig data (Figure 3). Further, this might be due to

the trait characteristics of plants, which are more vulnerable to

GEI than livestock, the effect of environment in animal become

ignorable as the industrial management. Conversely, the small

sample size of the maize may have reduced the power of G ×

EWAS, leading to the identification of a small number of

significant GEI markers, which may explain why the gain of

G × EBLUP was lower than expected. In addition, using sensitive

tests to detect sensitive environments is an alternative, and then

fitting the overlap environment of SNPs in the G × EBLUPmodel

based on the pre-defined environment. However, the effect of this

method and how to fit it in G × EBLUP model need to be

investigated in the future.

Our results showed G × EBLUP is a powerful alternative to

the conventional method for the estimation of genomic breeding

value. However, there are several limitations in this approach.

First, G × EWAS is not a whole-genome regression model and

does not account for the genome-wide contribution of all other

variants, thus G × EWAS is still a single marker regression model

with a long calculation time (Table 4). G × EWAS assumes all

SNPs affected by GEI in the current model, and it could not

differentiate between the significant SNPs with or without GEI. It

might be the reason why a large number of significant SNPs were

detected in the simulated data, although only few overlapped
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with simulated QTLs. The same phenomenon was also found in

other methods, such as Bartlett, F-Killeen, L-mean, L-median

and StructLMM, implying that the detection of GEI is more

difficult due to the flexibility of the environment. Second,

although sensitive environment can be obtained by calculating

the BF value for each environment variable, the BF value of each level

of an environment variable cannot be obtained (e.g., BF for each farm

in pig data), whichmight be important for directional breeding. Third,

G × EBLUP has an advantage only when the variance of the G × E

interaction is relatively large, e.g., similar genomic prediction

accuracies were obtained for G × EBLUP and GBLUP for AGE,

as was not affected by GEI. Finally, G × EWAS cannot handle binary

traits at present, as G×E tests need the estimation of nuisance

parameters to capture the main effects of binary traits, and

estimating these parameters requires high-dimensional integration

and the inversion of a high-dimensional similarity matrix.

Nevertheless, it is worth being investigated in the future.

Moreover, G × EBLUP can be extended to single-step

method (ssG × EBLUP), which could improve the genomic

prediction accuracy using pedigree and genomic information

(Misztal et al., 2009; Aguilar et al., 2010; Christensen and Lund.,

2010).

Conclusion

The G × EBLUP method proposed in this study showed the

following four features: 1) genomic prediction was performed

using the G × EBLUP method by considering GEI and yielded

higher accuracies and lower MSE in both simulated and real pig

and maize data when the variance of G × E interaction is large; 2)

it could powerfully detect the genome-wide SNPs subject to GEI;

3) the number of environment levels did not influence the

genomic prediction accuracy of the proposed G × EBLUP,

circumventing the limitation of current methods; 4) it could

determine favourable environment using SNP BF for each

environment, thus being useful for market-specific animal and

plant breeding.
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