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Metabolic reprogramming is one of the cancer hallmarks, important for the

survival of malignant cells. We investigated the prognostic value of genes

associated with metabolism in thyroid carcinoma (THCA). A prognostic risk

model of metabolism-related genes (MRGs) was built and tested based on

datasets in The Cancer Genome Atlas (TCGA), with univariate Cox regression

analysis, LASSO, and multivariate Cox regression analysis. We used Kaplan-

Meier (KM) curves, time-dependent receiver operating characteristic curves

(ROC), a nomogram, concordance index (C-index) and restricted mean survival

(RMS) to assess the performance of the risk model, indicating the splendid

predictive performance. We established a three-gene risk model related to

metabolism, consisting of PAPSS2, ITPKA, and CYP1A1. The correlation analysis

in patients with different risk statuses involved immune infiltration,mutation and

therapeutic reaction. We also performed pan-cancer analyses of model genes

to predict the mutational value in various cancers. Our metabolism-related risk

model had a powerful predictive capability in the prognosis of THCA. This

research will provide the fundamental data for further development of

prognostic markers and individualized therapy in THCA.
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Introduction

Thyroid carcinoma (THCA), the most common endocrine malignancy, affects

approximately 65,000 patients in the United States yearly, with an increasing

incidence (Mady et al., 2020). It accounts for 3.1 percent of cancer incidence

worldwide (Gallardo et al., 2020). It is evaluated that the number of new cases of

thyroid carcinoma is over 213000, and 35000 patients succumb to thyroid carcinoma

yearly (Wang et al., 2019). There are four types of thyroid carcinoma based on histological

characteristics, which consist of medullary follicular thyroid cancer (FTC), thyroid cancer
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(MTC), papillary thyroid cancer (PTC), and anaplastic thyroid

cancer (ATC). Healing with standard therapy is difficult for some

DTCs (<10%), many MTCs and almost all ATCs, but with a

result of spreading to distant metastatic sites (Naoum et al.,

2018). Therefore, targeted and immune therapies are receiving

increasing attention showing a significant clinical value in

preclinical and clinical studies (Laha et al., 2020). For this

reason, there is imperative to create innovative prognostic

models or acquire atypical biological markers to make

targeted therapies more achievable and advance the survival of

patients with TC.

Metabolic reprogramming, a symbol of cancer,

empowers malignant cells’ potential for growth and

diffusion in the tumor microenvironment (TME) that is

short of nutrition, and the favorable changes for cancer

cells are initiated by the synthetic effects of oncogenic

alterations in host cell factors and malignant cells (Dey

et al., 2021). Research carried out by advanced survival

analysis displays that enhanced overall metabolism-related

gene expression in tumors always leads to unsatisfactory

survival outcomes in 33 cancer types (Zhang et al., 2020).

Recent studies have investigated the prognostic models of

MRGs in several cancers, like lung adenocarcinoma (Zhang

et al., 2021a), Ewing’s sarcoma (Fu et al., 2021), and stomach

adenocarcinoma (Ye et al., 2021). We hope to build a risk

model about metabolism-related genes to help predict

clinical prognosis and precise treatment by combining it

with the current status of thyroid carcinoma treatment and

the frontiers of metabolism in the field of cancer. In this

research, we integrated the expression profile of MRGS in

patients with thyroid carcinoma and obtained the metabolic

genes associated with prognosis in combination with

survival data. A prognostic risk model of MRGs, validated

in the test cohort, was constructed through various advanced

statistical methods. With calculated risk scores of patients,

the two sets were grouped into high-stakes and low-stakes

cohorts. Therefore, we can observe differential genes

associated with metabolism between tumor and normal

examples, functional enrichment, immune infiltration,

mutation, and therapeutic reaction in different risk

groups, thereby providing references for individualized

treatment of patients at different risk states.

Materials and methods

The acquisition of data

We transferred 570 gene expression profiles of THCA

From Harmonized Cancer Datasets, which was made of

58 normal and 512 tumor samples. The Clinical features of

615 samples from the TCGA database were transferred from

the UCSC Xena website (https://xena.ucsc.edu/). From the

Molecular Signatures Database, we got the key file (c2.cp.kegg.

v7.4.symbols.gmt) to find 944 MRGs, and we extracted MRGs

expression from the expression data. All THCA gene

expression data had been transformed into log2 (x+1) and

we took the average of the same gene expression value.

The screening of differentially expressed
genes

We selected Differentially Expressed Genes (DEGs) tied with

metabolism between tumor and normal patients using the

“limma” package in R language (version 4.1.0). With the

statistical method of the Wilcox test, FDR of <0.05 and |

logFC | of >0.5 were formulated as the screening criterion.

The final differential results were displayed in heatmap and

volcano plot.

Functional enrichment of DEGs

In what followed, we annotated DEGs using Gene Ontology

(GO) enrichment analysis and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis via the “clusterProfiler”

package in R language and then visualized the results of

enrichment analysis using “enrichplot” and “ggplot2″ packages.

TABLE 1 The clinical features in training and test sets.

Variables Type Training
set (n = 252)

Test set (n = 248) Sig

Age ≤60 192 196 0.446

>60 60 52

Gender Female 192 173 0.106

male 60 75

T T1 68 73 0.979

T2 89 75

T3 82 88

T4 12 11

unknown 1 1

N N0 114 114 0.887

N1 113 110

unknown 25 24

M M0 151 130 0.063

M1 2 7

unknown 99 111

Stage Stage I 140 141 0.848

Stage II 58 25

Stage III 27 54

Stage IV 27 28
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Construction of metabolism-related
prognostic model and survival analysis

All thyroid cancer patients were randomly divided into a

training set (n = 252) and a test set (n = 248) at a one-to-one

ratio. The training set was used to identify prognostic metabolism-

related genes and develop a prognostic risk model, which was then

validated in the test set. Clinical characteristics were short of

significant differences in the two cohorts (Table 1). Univariate

Cox regression analysis (p < 0.01) was employed to identify the

metabolic-related DEGs related to patient survival initially.

Subsequently, LASSO Cox regression analysis (Tibshirani,

1997), first proposed by Robert Tibshirani in 1996 and a

commonly used regularization method for automatic feature

screening, was used to eliminate the highly correlated genes to

avoid the over-fitting of the model with the R package “glmnet”.

Finally, we conducted a multivariate Cox regression analysis to

construct the ideal prognostic mode, using the genes selected by

LASSO. Immunohistochemistry (IHC) verification data was

caught from the Human Protein Atlas (HPA) database (https://

www.proteinatlas.org/). After that, we reckoned the patients’ risk

scores in two sets according to the risk score formula of the

established prognostic model. To endorse the model’s forecasting

capability, we parted the patients of two sets into a high-risk cohort

and low-risk cohort separately to plot survival curves and ROC

curves via the “survival” package, “survminer” package and

“timeROC” package, with the median risk score of the training

group as the segmentation value. Principal Component Analysis

(PCA) in three dimensions and t-distributed Stochastic Neighbor

Embedding (t-SNE) using a Barnes-Hut Implementation were

carried out with the “scatterplot3d” and “Rtsne” packages,

respectively. A nomogram was created using the nomogram

function from the “rms” package. As an indicator to appraise

the prediction accuracy, we calculated the concordance index

(c-index) and restricted mean survival (RMS) of other models

(Pak et al., 2019; Wu et al., 2019; Han et al., 2020; Lv et al., 2020;

Ren et al., 2021; Wen et al., 2021; Zhen et al., 2021) and the model

we developed. Gene Set Enrichment Analysis (GSEA) was carried

out between high-stakes and low-stakes cohorts via GSEA 4.2.2

(Subramanian et al., 2005).

Construction of correlation network

Genes were used to conduct the correlation network via the

“igraph” and “reshape2″ packages, with 0.2 as the correlation

coefficient threshold, after being selected by Univariate Cox

regression analysis (p < 0.05). We also analyzed the

transcription factors associated with these genes by Pearson

Correlation analysis (p < 0.001; coefficient >0.5), with the

result displayed with a Sankey Diagram using the “ggalluvial”

package.

Independent prognostic value of the risk
score achieved from the metabolism-
related prognostic model

We conducted a univariate Cox regression analysis, Log-rank

test, and Breslow test (p < 0.05) to evaluate the prognostic values

of clinical characteristics and risk scores in the training set.

Furthermore, multivariate prognostic analysis for the training

set (p < 0.05) was carried out to assess whether the risk score

achieved from the metabolism-related model could be an

independent predictor. In addition, we investigated the link

between clinical characteristics and risk scores through the

statistics software SPSS 26.0. In addition, considering the

pathological subtypes of thyroid cancer, we conducted a

differential analysis of risk scores for different pathological

subtypes via analysis of variance (ANOVA). Simultaneously,

we performed multiple linear regressions to discuss the effect

of different pathological types on the risk score.

Immunogenomic landscape analyses of
the metabolism-related prognostic model

We analyzed the immunogenomic landscape to determine the

link between the THCA metabolism-related prognosis Model and

immune status. The overall immune infiltration in the training and

test set and the survival difference of different immune cells in the

high-stakes and the low-stakes groups were evaluated with

CIBERSORT algorithms. The immune-related functions were

compared between the high-stakes and the low-stakes cohorts

with single-sample gene set enrichment analysis (ssGSEA)

algorithms using the “GSVA” package, “limma” package, and

“GSEABase” package. We assessed the correlation between risk

score and TME-related score with ESTIMATE algorithms,

visualized using the “ggpubr” package. Furthermore, we

investigated the expression difference of common immune

checkpoints in the high-risk and low-risk cohorts.

Drug susceptibility analysis

We used the “pRRophetic” R package to forecast the half-

maximal inhibitory concentration (IC50) of antitumor drugs that

had statistical significance between two risk cohorts in the

training set for exploring the clinical value of risk models for

antitumor therapy in thyroid cancer patients. Subsequently, we

took advantage of the CellMiner database (https://discover.nci.

nih.gov/cellminer/home.do) to get drug sensitivity data and gene

expression data, then chose drugs that FDA approved,

performing Pearson correlation analysis (“co. Test” function)

between model genes expression and drug response. In order to

explore the radioactive iodine treatment response in different risk

Frontiers in Genetics frontiersin.org03

Du et al. 10.3389/fgene.2022.972950

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://discover.nci.nih.gov/cellminer/home.do
https://discover.nci.nih.gov/cellminer/home.do
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.972950


cohorts, we performed differential analysis and correlation

analysis of NIS gene expression.

Mutation analysis

Mutation data from TCGA were transformed into the MAF

file. The application of “maftools” package presented the

mutation landscape in the waterfall plots. The variance of

tumor mutation bearing (TMB) calculated from the MAF file

was analyzed using the Wilcoxon test.

Pan-cancer analyses related to mutation
of model genes

To inquire into the expression and mutation of model genes

in different cancers, the expression of model genes in pan-cancer

was examined using Tumor Immune Estimation Resource

(TIMER) web address (Li et al., 2017). Moreover, we explored

TMB and Microsatellite Instability (MSI) of model genes in pan-

cancer, displayed as radar charts via the “fmsb” package.

Cell culture

The B-CPAP cell line (human thyroid papillary

carcinoma cells) was purchased from the Chinese

Academy of Sciences Cell Bank (Shanghai, China). As a

normal control, the Nthy-ori 3–1 cell line (SV-

40 immortalized normal human thyroid epithelial cells)

was purchased from Sunncell Biological Company

(Wuhan, China). The mycoplasma test result of the cell

line was negative, and the STR test was correct. All cell

lines were nurtured in RPMI-1640 medium mixed with

10% fetal bovine serum, in 5% carbon dioxide, at 37°C.

The qRT-PCR validation of model genes

Total RNAs of cells were collected using the M5 universal

RNA Mini Kit Tissue/Cell RNA Rapid Extraction Kit

(Mei5 Biological Company, Beijing, China). The PrimeScript

RT Master Mix (Perfect Real Time) (Takara Bio Inc., Beijing,

China) and C1000 Touch Thermal Cycler (Bio-Rad, Hercules,

CA, United States) were used for reverse transcription. qRT-PCR

was carried out with 2X M5 HiPer Realtime PCR Super mix with

Low Rox (Mei5 Biological Company, Beijing, China) and

QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher

Scientific Incorporated, Waltham, MA, United States). ACTB

gene was used as the internal control for normalization of target

mRNA levels. The relative expression of model genes (PAPSS2,

ITPKA and CYP1A1) was computed using the 2−ΔΔCt method.We

gave a summary of the sequences of the primers in

Supplementary Table S1.

Immunofluorescent staining

On 12-well plates, cells were seeded and fixed for 30 minwith ice-

cold paraformaldehyde. To block non-specific staining, we incubated

cells with sheep serum after washing them with PBS. Cells were

incubated overnight with primary antibodies at 4°C and secondary

antibody (GB21303, 1:300, Servicebio, China) for 1 h. Here are the

primary antibodies we used: CYP1A1 (PB9544, 1:200, Boster, China),

ITPKA (14270-1-AP, 1:100, Proteintech, China), PAPSS2 (CSB-

PA527262LA01HU, 1:100, Cusabio, China). Finally, DAPI

(AR1176, Boster, China) was used to observe the nucleus.

Fluorescence microscopy was used to observe the staining.

Statistical analysis

We used Strawberry Perl software (version 5.30.1-64bit) and

R software (version 4.1.0) to analyze all statistics. In some cases,

we used SPSS software (SPSS 26.0, SPSS Inc.) and GraphPad

Prism Software (version 8.3 for Windows, GraphPad). The

interpretation of the p-value was in line with medical statistics.

Results

Identification and analyses of differentially
expressed MRGs

After analyzing differential expression of 944 MRGs on normal

(n = 58) and tumor (n = 512) groups in TCGA-THCA dataset (|

logFC| > 0.5, FDR <0.05), we found 120 upregulated and

81 downregulated genes (Figures 1A,B). Functional enrichment

analysis provided a biological understanding of these metabolism-

associated DEGs in THCA. GO enrichment analysis demonstrated

biological processes with the most significant enrichment, comprising

nucleoside phosphate metabolic process, small molecule catabolic

process, and olefinic compound metabolic process (Figure 1C).

KEGG enrichment analysis depicted that differentially expressed

MRGs mainly contained pathways in the metabolism of

xenobiotics by cytochrome P450, retinol metabolism, tyrosine

metabolism, purine metabolism, linoleic acid metabolism and so

on (Figure 1D).

Prognostic model construction based on
MRGs

Based on patients’ survival data in the TCGA-THCA training

set, 201 DEGs related to THCA metabolism were included in a
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univariate Cox regression analysis. p < 0.01 determined that ten

genes that met the screening criteria were identified as the

threshold for filtering. Increasing selection methods played

their respective advantages in creating gene signatures (Pak

et al., 2020), but LASSO was easier to interpret than other

methods (Zhang et al., 2017), and it has also been applied for

the construction of many prediction models recently. With ten-

round cross-validation for the optimal penalty parameter

lambda, six prognostic MRGs were picked up (Figure 2). After

the stepwise multivariate Cox regression analysis, three metabolic

genes eventually accomplished the prognostic model

establishment (Figure 3). The final model formula was that

each patient’s risk score = 2.121*PAPSS2 + 1.630*ITPKA +

6.202*CYP1A1, which meant the sum of the products of the

expression level of each model gene and their respective

coefficients. A nomogram was created to demonstrate the

predictive performance of the model better (Supplementary

Figure S1). Then we corroborated the expression of model

genes based on IHC data in the HPA database

(Supplementary Figure S2). For succeeding survival analysis,

we divided patients into two sets of high-stakes and low-

stakes groups, all samples’ risk scores reckoned. The

consequences of PCA in three dimensions and t-SNE affirmed

the precision of the assortment among the thyroid carcinoma

samples (Supplementary Figure S3). The survival curves between

high-stakes and low-stakes cohorts were different (p = 0.013),

and the survival rate of the low-stakes cohort was better

apparently in contrast with the high-stakes cohort

(Figure 4A), which could also be checked in the test set

(Figure 4B). We made receiver operating characteristic (ROC)

curve analyses to further endorse the accuracy and sensitivity of

the model (Figures 4C,D). Our work validated that the model

could forecast the chance of survival for one-year [area under the

curve (AUC) = 0.983], three-year (AUC = 0.979), and five-year

(AUC = 0.983) survival time precisely and sensitively. Compared

to the C-index and RMS of four published risk models, the risk

FIGURE 1
Identification and functional enrichment of differentially expressed genes. (A) A volcano map of differential expression genes showed
120 upregulated and 81 downregulated genes. Red represents upward regulation in tumor tissue, while blue represents downward regulation.
PAPSS2, CYP1A1, and ITPKA were labeled in the figure to indicate their expression trends in tumor samples. In addition, genes with prognostic
significance and | logFC | greater than 2 were specifically marked. (B) A heat map diagram of differential gene expression in tumors and normal
samples. (C) The significant GO terms were depicted as a heat map with color annotation of up-regulated or down-regulated genes. (D) The results
of KEGG enrichment analysis were demonstrated in the circle diagram, each trapezoid representing a KEGG pathway, where red and blue dots
represented up-regulated and downregulated genes respectively.
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FIGURE 3
Multivariate Cox regression analysis demonstrated hazard ratio and 95% confidence intervals for three model genes.

FIGURE 2
Establishment of the risk model based on LASSO Cox regression analysis and multivariate Cox regression analysis. (A) We chose the optimal
penalty parameter lambda in linewith the point of aminimum validation error. (B) In linewith the optimal penalty parameter lambda, themetabolism-
related genes with non-zero coefficient were incorporated for the following model establishment.
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FIGURE 4
Excellent predictive performance of MRG model we developed. (A) KM survival curves for OS between high and low-stakes groups in the
training cohort. (B) KM survival curves for OS between high and low-stakes groups in the test cohort. (C) ROC curve in the training cohort. (D) ROC
curve in the test cohort. (E) The comparison of C-index among risk models. (F) The observation of RMS among risk models.

FIGURE 5
Risk curves, dot plots and heatmaps in training and test set. (A) The distributions of patients in training set in the risk curve. (B) The distributions of
patients in the test set in the risk curve. (C) The survival status of patients in training set in the dot plot. (D) The survival status of patients in the test set
in the dot plot. (E) Model gene expression of patients in training set. (F) Model gene expression of patients in test set.
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model we developed has great advantages (Figures 4E,F). Sample

distributions and survival conditions were displayed as risk

curves and dot plots (Figures 5A–D), and model gene

expression were depicted in Figures 5E,F. As a whole, this

metabolism-related risk model would become a robust

predictive model of thyroid carcinoma. We performed GSEA

enrichment analysis between two risk groups and attained

100 KEGG pathways, with 10 pathways figured out

(Supplementary Figure S4). Five pathways, which contained

B cell receptor signaling pathway, pathways in cancer, primary

bile acid biosynthesis, TGFβ signaling pathways, and type Ⅱ
diabetes mellitus, were most remarkably enriched in high-stakes

cohorts (p < 0.05).

The establishment of prognosis-related
genes correlation network

The network diagram displayed 25 metabolism-related genes

selected using Univariate Cox regression analysis (Figure 6A),

with the red lines representing positive correlation. Three genes

were excluded because they did not meet the requirements of the

correlation coefficient. Besides, we explored the correlations

between these genes and transcription factors, demonstrated

in a Sankey diagram (Figure 6B), with p < 0.001 and

correlation coefficient >0.5 as the filtering criteria. Prognostic-

related genes defined the color of the line.

Independent prognostic value of the risk
score based on three-gene metabolism-
related model

Through the different statistical methods mentioned

above, we studied the value of research factors in

prognostic assessment, consisting of clinical features and

risk scores (Table 2). The results depicted that our risk score

was competitive compared to different clinical features and

can be used as an independent prognostic factor. In addition,

we explored the relationship between clinical characteristics

and risk scores, which demonstrated significant differences

in risk scores across age groups (Figure 7). Then we described

the pathological typing in the training group, and did not

include anaplastic thyroid carcinoma with extremely poor

prognoses (Supplementary Table S2). Risk scores among

different pathological types were not statistically

significant (Supplementary Table S3). Concurrently, the

results of multiple linear regression indicated that

different pathological types had little effect on the risk

score (Supplementary Table S4).

FIGURE 6
The analyses of prognosis-related genes. (A) The correlation network diagram was made of prognosis-related genes, 0.2 as the correlation
coefficient threshold. (B) Correlation analysis of prognosis-related genes and transcription factors.
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TABLE 2 Application of statistical methods related to prognostic analysis in the training cohort.

Variables Univariate ox regression analysis Log-rank test Breslow test

Hazard ratio 95%CI Sig Sig Sig

Age 1.159 1.060–1.267 0.001 0.000 0.001

Gender 0.279 0.056–1.394 0.120 0.097 0.171

Stage 0.211 0.039–1.156 0.073 0.048 0.055

Risk score 2.718 1.692–4.368 0.000 0.013 0.024

Variables Multivariate analysis

Hazard ratio 95% CI Sig

Age 1.209 0.979–1.493 0.077

Gender 0.708 0.110–4.578 0.717

Stage 22.252 0.198–2500.070 0.198

Risk score 2.559 1.260–5.196 0.009

FIGURE 7
The relationships between risk scores and clinic features.
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Immunogenomic landscape analyses

Some necessary indicators were assessed in different risk

cohorts to investigate the link between the metabolism-related

model and immune response. Using the CIBERSORT

algorithm, the scores of immune cells were assessed to

compare differences between groups (Figures 8B,D). The

plasma cell was statistically different between risk cohorts in

training and test sets (p < 0.05; Figures 8A,C). Furthermore, we

explored the survival difference of plasma cells, which were

grouped predicated on the scores of immune cells. As expected,

the score of plasma cells was closely linked to the survival of

patients with thyroid carcinoma (Supplementary Figure S5). In

the analysis of immune-related functions, three functions of

parainflammation, CCR and type II IFN response were

considered statistically different from the technical assistance

of ssGSEA algorithms (Supplementary Figure S6A). Through

the training set and test set, the stromal score both depicted an

evident rise as the risk score increased (training set: R = 0.25, p =

5.3E-05; test set: R = 0.24, p = 1.4E-04). However, based on the

ESTIMATE algorithms, the immune score was not related to

the risk score not as expected (Supplementary Figure S7). We

analyzed expression levels of immune checkpoints of THCA in

different risk groups, further assessing the availableness of the

manufactured risk model in immunotherapy (Supplementary

Figure S6B). According to training cohorts, IDO1, IDO2, CD80

and CD28were most different statistically in the two risk groups

(p < 0.001).

Clinical values in antitumor therapy

To compare the chemotherapeutic differences of risk groups, it

was clear to foresee the response to antitumor drugs for treatment on

the employment of IC50. A group with a smaller IC50 represents a

better drug response. We found out that, Veliparib (p < 0.001;

Figure 9A), Afatinib (p < 0.001; Figure 9B), Doramapimod (p <
0.001; Figure 9C) and SB590885(p < 0.001; Figure 9D) had

meaningfully higher IC50 values in the high-risk cohort. In the

low-risk cohort there were higher IC50 values of AZD6482 (p <
0.001; Figure 9E), BX-795 (p < 0.001; Figure 9F) and XMD8-85 (p <
0.001; Figure 9G). We investigated the relationship between the

effect of antitumor drugs and the expression of model genes using

the CellMiner databank (Supplementary Figure S8). Increased

PAPSS2 expression was linked to increased drug sensitivity of

cancer cells to BLU-667, XAV-939, Staurosporine, Telatinib, and

entosplenitib, whereas decreased PAPSS2 expression was linked to

decreased drug sensitivity of cancer cells to EMD-534085,

FIGURE 8
Immune cell analyses between risk cohorts predicated on CIBERSORT algorithm. (A) The comparison of immune cell infiltration levels in the
training cohort. (B) Immune cell composition of patients in the training cohort. (C) The comparison of immune cell infiltration levels in the test
cohort. (D) Immune cell composition of patients in the test cohort.
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FIGURE 9
Prediction of treatment response to antitumor drugs between risk groups.

FIGURE 10
Mutation status between risk groups. (A) The comparison of tumor mutational burden. Mutation profile in (B) high-risk group and (C) low-risk
group.
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Tamoxifen, ARQ-621, Pipamperone, and GNE-617. The expression

of ITPKAwent up constantly while drug sensitivity of cancer cells to

Alisertib, NTRC-0066-0, SNS-314 and CCT-271850 rose. The NIS

(SLC5A5) expression in the high-risk group was higher than that in

the low-risk group in Supplementary Figure S9A, and there is a

positive correlation between the NIS expression and risk score in

Supplementary Figure S9B.

Mutation status of the established model
and model genes

When comparing the two risk cohorts, the TMB value was

significantly higher in the low-risk cohort (p = 0.026,

Figure 10A). Waterfall plots further demonstrated frequently

mutated genes in risk groups of the training cohort, revealing

higher mutation frequency in the low-risk group (Figures 10B,C).

BRAF and NRAS mutation frequencies were second to none in

risk groups, mostly missense mutations.

Expression levels of model genes

Comparing tumor cells (B-CPAP cell line) and normal cells

(Nthy-ori 3-1 cell line), the expression levels of model genes

(PAPSS2, ITPKA and CYP1A1) were as expected. The

consequences of the qRT-PCR demonstrated, the expression

of PAPSS2 and CYP1A1 in PTC cells was lower than that of

normal thyroid follicular cells, and the expression of ITPKA was

the opposite (Figures 11A–C). Immunofluorescence staining of

the cells confirmed the results above (Figures 11D–F).

Pan-cancer analyses related to mutation
of model genes

TIMER was used to visualize the mRNA expression of model

genes. As was displayed in the boxed plots (Figures 12A–C),

mRNA expression levels of PAPSS2, ITPKA, and CYP1A1 had

the most statistically significant differences (p < 0.001) in

multiple normal and cancer tissues, such as invasive breast

carcinoma (BRCA), kidney renal clear cell carcinoma (KIRC),

liver hepatocellular carcinoma (LIHC), lung adenocarcinoma

(LUAD), lung squamous cell carcinoma (LUSC), and thyroid

carcinoma (THCA). Then, using radar charts, we examined the

relationships between model gene expression and TMB and MSI

levels in pan-cancer (Figures 12D–I). TMB demonstrated

differences (p < 0.05) related to the expression of model genes

in pancreatic adenocarcinoma (PAAD), kidney renal clear cell

carcinoma (KIRC), head and neck squamous cell carcinoma

FIGURE 11
The expression levels of CYP1A1 (A), ITPKA (B) and PAPSS2 (C) in tumor and normal cells. (D–F) Immunofluorescence staining of normal thyroid
cells and PTC cells to further confirm differential expression.
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(HNSC), and esophageal carcinoma (ESCA). In lung squamous

cell carcinoma (LUSC) and esophageal carcinoma (ESCA), MSI

depicted differences (p < 0.05) associated with the expression of

model genes. Pan-cancer exploratory research may be useful for

future research.

Discussion

Thyroid carcinoma is the most common malignant

endocrine disorder, with an increasing incidence recently,

owing primarily to advances in image detection resolution

(Lin et al., 2020; Mariniello et al., 2020). In the current

background of precision medicine worldwide, molecular

targeted therapy has received increasing attention. Currently,

novel targeted strategies are increasingly vital in treating thyroid

carcinoma, particularly suitable for aggressive thyroid tumors

(Wang et al., 2019). Metabolic cancer disorders have attracted

large-scale notice over the past few years (Huang et al., 2020).

Epidemiological investigations indicate a link between

carcinogenesis and decompensation, which backs an

association among the increased risk of cancer and metabolic

syndrome, inflammation, obesity, and insulin resistance (Pucci

et al., 2019). However, their direct relationship regarding cancer

prognosis and metabolic pathway expression remains

mysterious. It is challenging to assess pathways as a single

entity for survival analysis out of polygenic metabolic

pathways (Zhang et al., 2020). For this reason, we built a risk

model for foreseeing the survival of THCA patients with greater

accuracy and efficiency. Our current research can prove that the

FIGURE 12
The value of model genes in pan-cancer analyses. (A–C) The mRNA expression differences of three model genes between normal and cancer
tissues in pan-cancer datasets. (D–F) Correlation analyses of model gene expression and TMB. (G–I) Correlation analyses of model gene expression
and MSI.
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risk score of the metabolism-related model is a high-stakes and

prognostic factor independent of other clinical features.

3′-Phosphoadenosine 5′-Phosphosulfate synthase 2

(PAPSS2) is the significant enzyme to produce PAPS, which is

the sulfate source in mammals and is created from ATP and

inorganic sulfate. The defection of PAPSS2 can lead to alarming

bone development diseases, containing malformation,

spondyloepimetaphyseal dysplasia, hepatocellular carcinoma,

estrogenic hormone disorder, and so on (Zhang et al., 2022).

Reports related to PAPSS2 and cancer have preliminarily

suggested the research value of PAPSS2. Evidence suggests

that high expression of PAPSS2 was linked to decreased

prevalence of human colitis and colon cancer, with PAPSS2

protecting against colitis and associated colonic carcinogenesis

over intestinal sulfomucin and furtherance of bile acid

homeostasis by way of the PAPSS2–PAPS–sulfation axis (Xu

et al., 2021). Nevertheless, the enhanced PAPSS2 is vital to push

migration and metastasis of breast cancer cells (Zhang et al.,

2019) and shows shorter relapse-free survival periods in cancer of

the breast (Jung et al., 2016). Furthermore, we discovered an

intriguing report that identified PAPSS2 as a candidate gene for

extending life span through a meta-analysis GWAS of survival to

age 90 (Yerges-Armstrong et al., 2016). This may be connected

with PAPSS2-mediated premature senescence (Jung et al., 2016).

Inositol-trisphosphate 3-kinase A (ITPKA) is ectopically

expressed in several human cancers in addition to neurons of

the central nervous system and duodenum, which is important in

controlling calcium signaling pathway and actin dynamics, and it

may provide new options for treatment for patients (Blechner

et al., 2020), such as testis, thyroid, lung, pancreas, breast,

prostate, colon, liver and breast cancer so on (Windhorst

et al., 2017). Upregulated ITPKA expression discovered in

patients with breast cancer, it may serve as an independent

prognostic marker in cancer of the breast (Zhang et al.,

2021b). Besides its demonstrated association with carcinoma

prognosis, ITPKA promotes cancer cell growth, invasion, and

migration in renal cell carcinoma (Zhu et al., 2020) and lung

adenocarcinoma (Guoren et al., 2020). Based on the functional

activities of increasing invasive migration of tumor cells, ITPKA

might become an innovative target for inhibiting invasion and

metastasis of primary tumors (Windhorst et al., 2010). Subfamily

1 of the Cytochrome P450 family Cytochrome P450 enzymes

(P450s or CYPs), a unique family of heme proteins containing

ferrous ion (Fe2+) and functioning as oxygenases, are linked to

the pathogenesis of several diseases, including primary

congenital glaucoma (buphthalmos), inflammatory disease,

and cancers (Kwon et al., 2021). It has been published that

via preventing PTEN and stimulating β-Catenin and Akt

pathways, the AhR/CYP1A1 signaling pathway affected the

phenotypes of breast cancer stem cells, such as growth,

development, renewal, and chemoresistance (Al-Dhfyan et al.,

2017). Recent research has covered the genetic polymorphisms of

CYP1A1 carried weight with the risk of developing cancers

containing lung cancer (Kudhair et al., 2020), upper digestive

tract cancer (Tian et al., 2019; Zhao et al., 2019), and thyroid

carcinoma (Bufalo et al., 2006; Figlioli et al., 2016). In thyroid

carcinoma patients, CYP1A1 could serve as a prognostic marker

to point to the grade of tumor severity, with the CYP1A1 gene

expression associated with tumor size, the presence of metastasis,

and advanced clinical stage (GallegosVargas et al., 2016).

Our research obtained 201 differential genes through the

extraction and differential analysis of 944 metabolic genes. We

preliminarily identified prognostic-related genes among

differential genes with univariate Cox analysis. Following the

results of LASSO Cox regression analysis and multivariate Cox

regression analysis, three genes were selected to construct a

prognostic model of metabolism-related genes. The prognostic

value of the three-gene risk model was estimated in the training

dataset and validated in a test dataset. The survival curves

demonstrated that the overall survival rate of the low-risk

cohort was higher than that of the high-risk cohort. The AUC

of the ROC curve in the training and test sets both demonstrated

the effectiveness of risk models for prognostic prediction. With

clinical features and risk scores involved in the multivariate Cox

analysis, the risk score achieved from the metabolism-related

model could be an independent predictor. To illuminate the

bond between infiltrating immune cells and risk score, we sized

up the infiltration of tumor immune cells between two high-

stakes and low-stakes groups of patients. In two sets, the

infiltration levels of plasma cells were statistically different

between low-stakes and high-stakes groups. In addition,

immune-related functions of parainflammation, CCR and type

II IFN response with the ssGSEA algorithms were statistically

different between high-stakes and low-stakes groups. By further

assessing the availableness of the manufactured risk model in

immunotherapy, we discovered that the expression of IDO1,

IDO2, CD80 and CD28were most different statistically in the two

risk groups. Interestingly, the advancement of the pathological

staging of PTC was linked to the abnormal expression of diverse

immune checkpoints (Yang et al., 2021). Then, we found that the

low-risk groups demonstrated high TMB. Discoveries on

mutational load indicate its function of foretelling survival in

human cancers. As the TMB of a patient gets high, the hazard

ratio of death drops in most cancers (Samstein et al., 2019).

Therefore, the results of the TMB analysis are consistent with our

previous study of overall survival in different risk groups.

In addition to the discussion of immune value and mutation

value, we found that the drug sensitivity of patients with different

risk statuses to antitumor therapy is not the same. In our study, high-

risk patients were more sensitive to Veliparib and Afatinib. It has

been reported that the PARP inhibitor Olaparib in association with

an oncolytic virus named dl922-947, had a synergistic antitumoral

effect on anaplastic thyroid carcinoma (Passaro et al., 2015). As a

PARP inhibitor, Veliparib may have the same effect. Huang et al.

discovered that Afatinib, an EGFR-targeting drug, had significant

anticancer activity in SW579 cells, an EGFR-expressing humanATC
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cell line, including growth inhibition and cell death occurrence

(Huang et al., 2018). The existing research base is consistent with our

research. In differentiated thyroid carcinoma, the expression and

functional integrity of NA+/I− symporter (NIS/SLC5A5) are decisive

for the ability of concentrating iodine (Castro et al., 2001; Wang

et al., 2013). The NIS expression in the high-risk group was higher

than that in the low-risk group, which indicated the response of

radioactive iodine (RAI) therapy may be better in high-risk

group. This finding may provide a reference for predicting the

sensitivity of RAI therapy in DTC, but we should know the changes

of other molecules that regulate intracellular metabolism also have

effects on the effectiveness of RAI therapy (de Morais et al., 2018).

Excitingly, there are few studies on metabolic-related

genes and THCA, and our research may be of great

relevance for the future. Unfortunately, our research had

unresolved regrets, such as using only a single database for

data analysis. Although the sample size was not small and

could meet statistical needs, we originally planned to use

another database for external verification. However, we

could not complete the expected plan due to the lack of

data in other databases. So we randomly split samples in a

one-to-one ratio to meet the reasonable verification required

by the plan. Furthermore, more basic experiments should be

performed to better investigate the feasibility of

immunotherapy in thyroid carcinoma. Besides, we look

forward to more extensive follow-up studies to understand

the clinical value of the risk model in thyroid cancer.

Conclusion

This research built an innovative risk model of three MRGs

for cases with THCA. As stated in the research results, this risk

model was expected to become an effective and independent

prognostic point of reference for THCA. Furthermore, our

research provided basic insights on the association between

MRGs and survival and analyzed immune status, mutation

and therapy sensitivity of patients at different risks. In

conclusion, this risk model is predictive of patient survival,

and three genes selected are a potential tool to understand

more thyroid tumor genesis and possible treatment.
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