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Cyanobacteria are diverse photosynthetic microorganisms able to produce a

myriad of bioactive chemicals. To make possible the rational exploitation of

these microorganisms, it is fundamental to know their metabolic capabilities

and to have genomic resources. In this context, the main objective of this

research was to determine the genome features and the biochemical profile of

Synechococcus sp. UCP002. The cyanobacterium was isolated from the

Peruvian Amazon Basin region and cultured in BG-11 medium. Growth

parameters, genome features, and the biochemical profile of the

cyanobacterium were determined using standardized methods.

Synechococcus sp. UCP002 had a specific growth rate of 0.086 ± 0.008 μ

and a doubling time of 8.08 ± 0.78 h. The complete genome of Synechococcus

sp. UCP002 had a size of ~3.53 Mb with a high coverage (~200x), and its quality

parameters were acceptable (completeness = 99.29%, complete and single-

copy genes = 97.5%, and contamination = 0.35%). Additionally, the

cyanobacterium had six plasmids ranging from 24 to 200 kbp. The

annotated genome revealed ~3,422 genes, ~ 3,374 protein-coding genes

(with ~41.31% hypothetical protein-coding genes), two CRISPR Cas systems,

and 61 non-coding RNAs. Both the genome and plasmids had the genes for

prokaryotic defense systems. Additionally, the genome had genes coding the

transcription factors of the metalloregulator ArsR/SmtB family, involved in

sensing heavy metal pollution. The biochemical profile showed primary

nutrients, essential amino acids, some essential fatty acids, pigments (e.g.,

OPEN ACCESS

EDITED BY

Jesus L. Romalde,
University of Santiago de Compostela,
Spain

REVIEWED BY

Gregory K. Farrant,
FR2424 Station biologique de Roscoff
(SBR), France
Ryan Simkovsky,
University of California, San Diego,
United States
Dieter Maurice Tourlousse,
National Institute of Advanced Industrial
Science and Technology (AIST), Japan
Clayton Lima,
Centro Universitário Tocantinense
Presidente Antônio Carlos, Brazil

*CORRESPONDENCE

Juan C. Castro,
juan.castro@unapiquitos.edu.pe

SPECIALTY SECTION

This article was submitted to
Evolutionary and Genomic
Microbiology,
a section of the journal
Frontiers in Genetics

RECEIVED 20 June 2022
ACCEPTED 18 October 2022
PUBLISHED 09 November 2022

CITATION

Cobos M, Condori RC, Grandez MA,
Estela SL, Del Aguila MT, Castro CG,
Rodríguez HN, Vargas JA, Tresierra AB,
Barriga LA, Marapara JL, Adrianzén PM,
Ruiz R and Castro JC (2022), Genomic
analysis and biochemical profiling of an
unaxenic strain of Synechococcus
sp. isolated from the Peruvian Amazon
Basin region.
Front. Genet. 13:973324.
doi: 10.3389/fgene.2022.973324

COPYRIGHT

© 2022 Cobos, Condori, Grandez,
Estela, Del Aguila, Castro, Rodríguez,
Vargas, Tresierra, Barriga, Marapara,
Adrianzén, Ruiz and Castro. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 09 November 2022
DOI 10.3389/fgene.2022.973324

https://www.frontiersin.org/articles/10.3389/fgene.2022.973324/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.973324/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.973324/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.973324/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.973324/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.973324/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.973324&domain=pdf&date_stamp=2022-11-09
mailto:juan.castro@unapiquitos.edu.pe
https://doi.org/10.3389/fgene.2022.973324
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.973324


all-trans-β-carotene, chlorophyll a, and phycocyanin), and phenolic

compounds. In conclusion, Synechococcus sp. UCP002 shows

biotechnological potential to produce human and animal nutrients and raw

materials for biofuels and could be a new source of genes for synthetic

biological applications.

KEYWORDS

biotechnological exploitation, cyanobacteria, genome analysis, microbial biodiversity,
nutraceuticals, biochemical analysis

1 Introduction

Cyanobacteria are an ancient lineage and polyphyletic group

of prokaryotes exhibiting oxygenic photosynthesis (Kauff and

Büdel, 2011). These microorganisms are the most important

primary producers on Earth, inhabiting and playing key roles in a

great diversity of aquatic and terrestrial ecosystems exposed to

light (Dvořák et al., 2015). Estimates of the current

cyanobacterial biodiversity range from 5,301 (AlgaeBase:

Listing the World’s Algae, 2022) to 8,000 species (Guiry, 2012).

Due to their extraordinary biodiversity and metabolic

diversity, cyanobacteria are potentially valuable for humans

in several ways. For example, microalgae could be useful in

aquaculture, producing foods, feeds, biofuels, fertilizers,

nutraceuticals, secondary metabolites, pigments, and a

myriad of bioactive biochemicals (Singh et al., 2005; Udayan

et al., 2017; Cobos et al., 2020). In addition, cyanobacteria are

isolable and cultivable in laboratory conditions (Ernst, 1991;

Badr et al., 2018; Prihantini, 2020; Thilak et al., 2020; Jasser

et al., 2022; Singh and Kumar, 2022). Moreover, cyanobacteria

have a relatively short doubling time and can produce high

biomass volumes (Yu et al., 2015; Jaiswal et al., 2018;

Mastropetros et al., 2022; Prabha et al., 2022). These

microorganisms also have small genomes readily deciphered

at structural and functional levels (Jaiswal et al., 2018; Lin et al.,

2019; Kling et al., 2022; Pierpont et al., 2022). Finally, several

cyanobacteria are genetically transformable. The genetic

transformability of these microorganisms can broaden their

spectrum of biotechnological uses (Jaiswal et al., 2018; Jaiswal

et al., 2020; Purdy et al., 2022; Santos-Merino et al., 2022; Tan

et al., 2022).

Despite all these advantages of cyanobacteria as

biotechnological platforms, only a few species have been

exploited at commercial levels (Lem and Glick, 1985; Grewe

and Pulz, 2012; Yu et al., 2015, 2). Consequently, it is necessary to

constantly make bioprospection efforts and basic studies at the

biochemical and molecular levels. These approaches will help us

discover cyanobacterial strains with desirable phenotypic and

genotypic traits. These desirable traits include the fastest growth,

highest productivity, metabolic diversity, and genetic

transformability (Thajuddin and Subramanian, 2005; Al-Haj

et al., 2016; Selão, 2022). In this context, the present study

shows the genome features and the biochemical profile of

Synechococcus sp. UCP002, a cyanobacterium isolated from

the Peruvian Amazon Basin region.

2 Materials and methods

2.1 Sample collection

Water samples were collected horizontally along the water

surface of the Amazon River using a 20-μm plankton net

(Continental TEM, Lima, Peru) using a boat towing method.

The plankton net was held horizontally at 20-cm depth and

dragged ~100 m from the geographic coordinates 03°41′0.6″ S,

73°14′8.9″ W to 03°40′57″ S, 73°14′08″ W. Sterile, screw-cap,

wide-mouth 500-ml glass bottles were used to collect and

transport the water samples at ~8°C in dark conditions.

2.2 Isolation, culture, growth profile, and
harvest of the cyanobacterium

A total of 50 milliliters of the filtered water sample was

homogenized with 50 ml of BG-11 medium (Allen, 1968). The

cyanobacterial cells were cultured for 4 weeks in a controlled culture

room at 25.27 ± 0.06°C with 12:12-h light–dark cycles using 265 ±

10 μEm−2 s−1 intensity of a 50-W LED-based white light source

(Wellmax, Samsung) with continuous bubbling of air and shaking

the cultures at 180 rpm. After the initial cultivation of the mixed

cultures, unicellular cyanobacteria were subjected to isolation by the

cell washing method (Richmond and Hu, 2013) and by repeat sub-

culturing and plating on a solid BG-11 agar medium.

After isolation, cyanobacterial cells were inoculated and

cultured in 50 ml of the BG-11 medium. According to the

growth of the cyanobacteria, the culture volume was increased

gradually to obtain 1 L of culture.

To determine the cyanobacterium growth profile, an aliquot

of the culture was taken and subcultured in triplicate at a final

volume of 200 ml in Erlenmeyer flasks (250 ml) in a controlled

culture room at 38.21 ± 0.76°C in 12:12-h light–dark cycles using

500 μE m−2 s−1 intensity of a 50-W LED-based white light source

(Wellmax, Samsung), with continuous bubbling of air and

shaking the cultures at 180 rpm. The initial absorbance at

730 nm (A730 = 0.104 ± 0.05) was determined by
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spectrophotometric analysis using a NanoDrop

2000 spectrophotometer (Thermo Fisher Scientific,

United States). The growth of the cyanobacterium was

monitored every day for 12 days by recording its absorbance

at 730 nm and the dry weight of the cyanobacterial biomass. To

determine both measures, aliquots of 2.1 ml were obtained from

the culture every day at the sixth hour after the start of the

illumination phase of the photoperiod. To determine the dry

weight of the cyanobacterial biomass, 2 ml of the culture was

harvested by centrifugation at 10,000 × g for 5 min at 4°C, and the

pellets were washed two times with 1 ml of a physiological saline

solution. Finally, the samples were dried in an oven at 70°C for

24 h, and the dry weight was measured gravimetrically using an

analytical balance Kern ABJ 220-4NM (Kern and Sohn GmbH,

Balingen, Germany).

To determine the cyanobacterium-specific growth rate (µ)

and the doubling time (td, generation time in hours), an aliquot of

the culture was subcultured in triplicate at a final volume of

200 ml in Erlenmeyer flasks (250 ml) in a controlled culture

room at 38.21 ± 0.76 °C in constant illumination using

500 μE m−2 s−1 intensity of a 50-W LED-based white light

source (Wellmax, Samsung), with continuous bubbling of air

and shaking the cultures at 180 rpm. The initial absorbance at

730 nm was 0.085 ± 0.007. The growth of the cyanobacterium

was monitored recording absorbances at 730 nm every 2 hours

for 14 h. Based on the absorbance data on this period of time, the

μ and td growth parameters were computed using the following

equations:

Specific growth rate (μ) � Ln(Af) − Ln(Ai)
tf − ti

,

Doubling time (td) � Ln(2)
μ

,

where A is the absorbance at 730 nm (A730) at the final (f) or

initial (i) time (t).

For the biochemical analysis, the cyanobacterial cells were

harvested during the exponential growth phase of cultures at the

sixth hour after the start of the illumination period. The culture

was transferred to 50-ml conical-bottom centrifuge tubes and

centrifuged at 2,000×g for 15 min at 4°C to harvest the

cyanobacterial cells. The obtained cyanobacterial biomass was

rinsed three times with 40 ml of sterilized ultrapure water,

centrifuged again in the aforementioned conditions, and the

supernatants were discarded.

2.3 Morphological and molecular
identification of the isolated
cyanobacterium

The isolated cyanobacterium was preliminarily identified

using standard microscopic morphological characteristics.

Also, the autofluorescence emitted was recorded using a Carl

Zeiss fluorescence microscope. Microphotographs were obtained

using a digital camera AxioLab.A1 AxioCam ERc real-time 5 s.

Images were obtained at a magnification of ×400 with visible light

and epifluorescence (excitation 510–560, emission 590). The

average cell size (length and width) of the isolated

cyanobacterium was estimated from 100 cells by ZEN 2012 ×

32 blue software (Carl Zeiss, Jena, Germany).

For molecular identification, a phylogenomic analysis was

conducted with 31 conserved proteins (Wu and Eisen, 2008).

These conserved proteins were retrieved from complete genomes

of Synechococcus sp. UCP002 and 43 cyanobacteria species.

Furthermore, these proteins were concatenated, aligned, and

trimmed using the tools of Geneious Prime® 2022.2.2 (Kearse

et al., 2012). Finally, a maximum likelihood tree with

100 bootstrap replicates was inferred using MEGA 11

(Tamura et al., 2021). The Le–Gascuel model (Le and Gascuel,

2008) of amino acid substitution was selected based on the

likelihood test. A discrete gamma distribution was used to

model evolutionary rate differences among sites (four

categories (+G, parameter = 0.7090)) and a proportion of

invariable sites.

2.4 Genomic DNA purification, library
preparation, and shotgun sequencing

Genomic DNA was extracted from 200 mg of cyanobacterial

biomass using a modified CTABmethod (Cobos et al., 2017) and

purified using the DNeasy® PowerSoil Pro Kit (QIAGEN,

Germany), following the manufacturer’s instructions. The

quality and quantity of the purified genomic DNA were

determined by spectrophotometric analysis using a NanoDrop

2000 spectrophotometer (Thermo Fisher Scientific,

United States). DNA integrity and purity were evaluated by

electrophoretic analysis on agarose gels (Sambrook and

Russell, 2006). DNA quantity was determined with the

Qubit™ dsDNA BR Assay Kit using a Qubit™ 4 Fluorometer

(Thermo Fisher Scientific, United States).

Libraries were prepared using the Nextera XT DNA Library

Preparation Kit (Illumina, United States), following the

manufacturer’s instructions. Purified DNA was fragmented

and tagged using a tagmentation process. Index adapters were

ligated to the tagmented DNA using a limited-cycle PCR

program. The libraries were cleaned up by 0.8x Agencourt®

AMPure XP bead purification (Beckman Coulter,

United States). The sizes of the libraries were determined

using an Agilent High Sensitivity DNA Kit by Agilent

2100 Bioanalyzer microfluidic electrophoresis (Agilent

Technologies, United States). Finally, the libraries were

quantified using the Qubit™ dsDNA HS Assay Kit (Thermo

Fisher Scientific) and paired-end sequenced with the Illumina

NexSeq 550 platform.
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2.5 Bioinformatic analysis

Raw Illumina paired-end reads were uploaded as FASTQ files

and analyzed using the Galaxy (Jalili et al., 2020) and KBase

(Arkin et al., 2018) platforms. From raw sequences, the high-

quality reads were obtained with Trimmomatic v0.38.1 (Bolger

et al., 2014), and read qualities were evaluated with FastQC

v0.11.9 (Andrews, 2010).

To verify that the cyanobacterial strain is axenic or unaxenic,

the clean reads were taxonomically assigned with

GOTTCHA2 software v2.1.7 (Freitas et al., 2015). Because the

results generated by GOTTCHA2 software show associated

bacteria, the de novo assembly of the complete genome of

Synechococcus sp. UCP002 was conducted, following the

bioinformatic approaches described as follows.

Short sequences were subjected to the first round of the de

novo assembly using the assemblers IDBA-UD v1.1.3 (Peng et al.,

2012), MEGAHIT v1.2.9 (Li et al., 2015), metaSPAdes v3.15.3

(Nurk et al., 2017), SPAdes v3.15.3 (Bankevich et al., 2012), and

Velvet v1.2.10 (Zerbino, 2010). Qualities and assembly

parameters were assessed with QUAST v4.4 (Gurevich et al.,

2013). Next, the second round of the de novo assembly was

conducted using the totality of contigs obtained with the five

assemblers. For this process, the contigs were elongated and

assembled (scaffolding) using the mapper and the de novo

assembler tools of Geneious Prime® 2022.2.2 (Kearse et al.,

2012). Furthermore, the third round of the assembly was

conducted using the MaSuRCA genome assembler v3.2.9

(Zimin et al., 2013) using a combination of the generated

contigs and scaffolds and the high-quality short reads. In

addition, to reconstruct the draft genome, contigs and

scaffolds were binned using CONCOCT v1.1 (Alneberg et al.,

2014), MaxBin2 v2.2.4 (Wu et al., 2016), and MetaBAT2 v1.7

(Kang et al., 2019). Binned contigs and scaffolds were optimized

by dereplication, aggregation, and scoring approaches using the

DAS Tool v1.1.2 (Sieber et al., 2018). Taxonomic assignments of

the optimized bins were based on the Genome Taxonomy

Database (GTDB; https://gtdb.ecogenomic.org) (Parks et al.,

2022) using GTDB-Tk v1.7.0 (Chaumeil et al., 2020). The bin

containing contigs and scaffolds derived from cyanobacteria

(Synechococcus sp.) was extracted as an assembly using the

BinnedContigs tool v1.0.2. Furthermore, the complete genome

was obtained by re-assembling the contigs and scaffolds and the

clean paired-end reads by Unicycler v0.4.8.0 software (Wick et al.

, 2017). Finally, prior to downstream annotation analysis,

coverage, quality, contamination, and completeness of the

genome were evaluated using the Geneious mapper (Kearse

et al., 2012), CheckM v1.0.18 (Parks et al., 2015), and BUSCO

v5.3.2 (Simão et al., 2015), respectively. Additionally, the

prediction of plasmid sequences in contigs and scaffolds was

conducted by PlasFlow v1.0 software (Krawczyk et al., 2018), and

its assembly was completed by NOVOPlasty v4.3.1 software

(Dierckxsens et al., 2017).

The circular genome map of Synechococcus sp. UCP002 was

aligned with its closest genetic neighbors using the Proksee server

(https://proksee.ca/). Also, the circular maps of the plasmids were

generated using the same online server.

The assembled genome was functionally annotated using the

following tools: Bakta v1.5.0 (Schwengers et al., 2021), dFast

v1.6.0 (https://dfast.ddbj.nig.ac.jp/) (Tanizawa et al., 2018),

DRAM v0.1.0 (Shaffer et al., 2020), KAAS (https://www.

genome.jp/kegg/kaas/) (Moriya et al., 2007), Prokka v1.14.5

(Seemann, 2014), and RASTtk v1.073 (Brettin et al., 2015).

Additionally, the CRISPR–Cas elements in the genome and

plasmids were identified by the online software application

CRISPRCasFinder (Couvin et al., 2018).

The genes coding the enzymes of the phenylpropanoid/

flavonoid biosynthetic pathway were found by conducting a

local BLAST search (Camacho et al., 2009) according to Del

Mondo et al. (2022). Sequences of 29 core enzymes acting in the

phenylpropanoid/flavonoid biosynthetic pathway of plants and

cyanobacteria from KEGG were used as queries to detect

ortholog sequences in the complete genome of Synechococcus

sp. UCP002. The sequences with the best hit matches for each

core enzyme were retained. Furthermore, the protein sequences

were used to make a BLAST search against the UniProt TrEMBL

protein database (UniProt Consortium, 2021).

The protein sequences coded by the genes smtB of

Synechococcus sp. UCP002 and some cyanobacterial species

(Synechococcus sp. PCC 6312 (WP_015123347), Calothrix

sp. PCC 7507 (WP_01512714), Leptolyngbya sp. PCC 6406

(WP_008314625), Oscillatoria nigro-viridis (WP_01574920),

Nostoc sp. PCC 7107 (WP_015114276), and Anabaena

sp. PCC 7108 (WP_016952607)) were aligned using the

Alignment tool of Geneious Prime® 2022.2.2.
The prediction of the three-dimensional structure of the

proteins SMTB1, SMTB2, and SMTA involved in the metal-

responsive cyanobacterial expression system of Synechococcus

sp. UCP002 was realized using the SWISS-MODEL server

(https://swissmodel.expasy.org/). The three-dimensional

models for the two proteins of the metal-sensing

transcriptional repressors (SMTB) were based on the

cyanobacterial metallothionein repressor from Synechococcus

elongatus PCC 7942 (PDB accession: 1SMT). The model

corresponding to metallothionein was based on the

cyanobacterial metallothionein SMTA from Synechococcus

elongatus PCC 7942 (PDB accession: 1JJD).

2.6 Biochemical analysis of the
cyanobacterial biomass

For proximate composition analysis, the cyanobacterial

biomass was dried in an oven at 70°C. The dried biomass was

measured gravimetrically using an analytical balance Kern ABJ

220-4NM (Kern and Sohn GmbH, Balingen, Germany). Total
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lipids were extracted following the Bligh and Dyer method (Bligh

and Dyer, 1959) and quantified gravimetrically using a semi-

micro analytical balance (Sartorius, MSU225S-000-DU, Foster

City, CA, United States). Total carbohydrates were determined

using a colorimetric method (DuBois et al., 1956). The protein

content was measured following the Hartree approach (Hartree,

1972). The ash content was determined by thermogravimetry

(AOAC, 1990) using a Thermolyne™ F6010 muffle furnace

(Thermo Fisher Scientific, Waltham, MA, United States) set at

550°C for 16 h.

For pigment analysis (all-trans-β-carotene, lutein, and

chlorophyll a), 40 mg of the freeze–dried cyanobacterial

biomass was homogenized with 5 ml of acetone 100%. The

acetonic extract was filtered onto 0.45-μm PTFE membrane

filters to remove cells and cell debris. Next, 20 μl of pigment

solutions were resolved using a Hitachi Elite LaChrom HPLC

System (Hitachi High Technologies, San Jose, CA, United States)

equipped with an L-2200 autosampler, L-2130 HTA pump, L-

2350 column oven, L-2455 diode array detector, L-2485

fluorescence detector, and a 150 × 4.6 mm x 5 μm

MilliporeSigma™ LiChroCART™ LiChrosorb™ RP-8

C8 Reversed Phase HPLC Column (Merck, Darmstadt,

Germany). The HPLC system was programmed to run under

the following conditions: column temperature: 25°C, flow rate:

1 ml/min, and absorbance monitoring at 450 nm. A ternary

mobile phase consisted of (A) 100% methanol, (B) methanol:

ammonium acetate 0.5 N (80:20), and tetrahydrofuran. The

following gradient elution was employed: 0 min: (0% A, 100%

B, and 0% C), 5 min (98% A, 0% B, and 2% C), 42.2 min (80% A,

0% B, and 20% C), 26 min (98% A, 0% B, and 2% C), 34 min (0%

A, 100% B, and 0% C), and 30 min of column equilibration

(100% A, 0% B, and 0 %C). EZChrom Elite software v3.2.1

(Agilent Technologies, Santa Clara, CA, United States) was used

for data acquisition and analysis, compared with the

chromatographic profiles of authentic standards of all-trans-β-
carotene, lutein, and chlorophyll a (Sigma-Aldrich, Saint Louis,

MO, United States).

For the determination of the total content of phycocyanin in

vivo (c-phycocyanin [CPC] + allophycocyanin [APC]), the

absorbances at 620 and 652 nm of an aliquot of the

cyanobacterial culture in the logarithmical growth phase were

recorded using a NanoDrop 2000 spectrophotometer (Thermo

Fisher Scientific, United States). Finally, the CPC and APC

contents were determined with the following equations

(Bennett and Bogorad, 1973; Chaiklahan et al., 2012):

CPC (mg.mL−1) � A620 − (0.474 xA652)
5.34

,

APC (mg.mL−1) � A652 − (0.208 xA620)
5.09

.

For total phenolic content (TPC) analysis, first, a

hydromethanolic extract was obtained from 100 mg of the

cyanobacterial dry biomass using an approach previously

described (Cobos et al., 2020). Furthermore, the total phenolic

content was estimated by the Folin–Ciocalteu method (Velioglu

et al., 1998) based on a standard curve from 10 to 100 μMof gallic

acid (3,4,5-trihydroxy benzoic acid) (Sigma-Aldrich, Germany).

Results of the total phenolic content were expressed as gallic acid

equivalents (mg GAE. g−1 of cyanobacterial biomass dry weight

[cbdw]).

For fatty acid analysis, first, fatty acid methyl esters (FAMEs)

were obtained following an acid-catalyzed methanolysis/

methylation approach (Ichihara and Fukubayashi, 2010);

furthermore, FAMEs were resolved by using a gas

chromatographic method (Cobos et al., 2020). FAMEs were

identified by comparing the retention time of the peaks with a

known standard mixture (Nu-Chek Prep, Elysian, MN,

United States). Also, each sample was mixed with tricosanoic

acid methyl ester (Sigma-Aldrich, Saint Louis, MO,

United States) as the internal standard. Finally, generated

chromatograms were analyzed with Galaxie™
Chromatography Data System software v1.9.3.2 (Agilent

Technologies, Santa Clara, CA, United States).

For amino acid analysis, total proteins were subjected to acid

hydrolysis (Hirs et al., 1954); furthermore, amino acids obtained

by hydrolysis and amino acid standards (Sigma-Aldrich, Saint

Louis, MO, United States) were derivatized with 6-

aminoquinolyl-N-hydroxysuccinimidyl carbamate, following

instructions of the AccQ-Fluor Reagent Kit (Waters

Corporation, Milford, MA, United States). Derivatized amino

acids were identified and quantified using an HPLC method

(Cohen and Michaud, 1993). All the described biochemical

analyses were carried out in triplicate, and data are expressed

as the mean ± SD.

3 Results and discussion

3.1 Isolation, growth profile, and
identification

In this work, we report the discovery of the cyanobacterial

strain Synechococcus sp. UCP002 from the Peruvian Amazon

Basin. The unicellular cyanobacterium strain showed a typical

growth profile with the lag, logarithmic, and stationary phases in

an interval time of 12 days (Figure 1, Supplementary Figure S1).

The average values for the specific growth rate and the cell

doubling time in constant illumination for 14 h were

estimated at 0.086 ± 0.008 μ and 8.08 ± 0.78 h, respectively

(Figure 1). It is difficult to compare this cell doubling time

value with reports for other cyanobacterial strains due to

differences in culture conditions (e.g., photoperiod, light

intensity, temperature, and use or number of

photobioreactors). Some doubling time values are 4.9 h for

Synechococcus elongatus PCC 7942 (Ungerer et al., 2018a) and

11.8 h for Synechococcus sp. AMC149 (Mori et al., 1996; Kondo

Frontiers in Genetics frontiersin.org05

Cobos et al. 10.3389/fgene.2022.973324

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.973324


et al., 1997). Also, some studies report the existence of fast-

growing strains of S. elongatus. For example, the strains PCC

11801 and PCC 11802 isolated from Powai Lake (India) have

doubling times of 2.3 h (Jaiswal et al., 2018) and 2.8 h (Jaiswal

et al., 2020, 11801), respectively. Similarly, Synechococcus

sp. PCC 11901 isolated from the Johor Strait (Singapore) has

a doubling time of ≈2.0 h (Włodarczyk et al., 2020). Finally, S.

elongatus UTEX 2973 is up-to-date the fastest-growing

cyanobacterium with a doubling time of 1.5 h (Yu et al., 2015;

Ungerer et al., 2018b).

To corroborate the cyanobacterial nature of the strain, first,

the whole-cell absorbance spectrum was recorded in the UV-

visible range (from 280 to 800 nm). The whole-cell absorbance

showed a peak at 635 nm, which corresponds to C-phycocyanin

(Abalde et al., 1998; Gupta and Sainis, 2010; Sonani et al., 2017).

Additionally, the whole-cell absorbance showed peaks at 440 and

680 nm. This absorbance pattern is in agreement with the typical

absorbance of chlorophyll a. Also, the whole-cell absorbance

showed a less defined peak at 483 nm. This peak corresponds to

carotenoids (Figure 1). Microscopically, the cyanobacterium is

unicellular with rod-shaped morphology (Figure 1). The

cyanobacterium had an average length of 3.61 ± 0.54 μm

(from 2.49 to 4.34 μm) and a width of 1.42 ± 0.31 μm (from

1.06 to 2.10 μm). These cellular dimensions are similar to those of

Synechococcus sp. 6,312 (2.7 × 1.3 μm) (Allen and Stanier, 1968)

and some strains of Synechococcus elongatus (Jaiswal et al., 2018;

Jaiswal et al., 2020). Together, these typical morphological

characteristics corroborate that the cyanobacterium belongs to

the Synechococcaceae family.

Finally, based on the phylogenomic analysis of 31 conserved

proteins (Wu and Eisen, 2008), the isolated strain forms a clade

with cyanobacteria of different genera. These cyanobacterial

genera include Acaryochloris, Synechococcus, Thermostichus,

and Termosynechococcus (Figure 2). But Synechococcus

sp. UCP002 showed the highest genetic similitude with

Synechococcus sp. PCC 6312. Synechococcus sp. PCC 6312 is a

fresh-water cyanobacterium isolated from California

(United States) in 1963 (https://www.ncbi.nlm.nih.gov/

biosample/SAMN02261337), and its complete genome was

sequenced by the CyanoGEBA Sequencing Project (https://

www.ncbi.nlm.nih.gov/bioproject/158717). Synechococcus sp.

PCC 6312 shows similitude in shape (rod-shaped) and size

(Allen and Stanier, 1968) with Synechococcus sp. UCP002. In

addition, this cyanobacterium strain can intracellularly

FIGURE 1
Microscopic morphology (A), growth profile (B), specific growth rate and doubling time (C), and in vivo absorption spectrum (D) of the
cyanobacterium Synechococcus sp. UCP002 isolated from the Peruvian Amazon Basin region.
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biomineralize amorphous calcium carbonate. These calcium

carbonate inclusions are located mostly in the cellular poles of

the cyanobacterium (Benzerara et al., 2014; De Wever et al.,

2019).

3.2 Genome analysis

3.3.1 Genome assembly
A total of 4,838,556 reads were de novo assembled to generate

the complete genome of Synechococcus sp. UCP002. The

complete genome had a size of ~3.53 Mb and a GC content of

47.87% (Figure 3). The GC content and the genome size recorded

fit in the range of values reported for cyanobacteria with

complete genomes of the genus Synechococcus (Supplementary

Table S1) (Sugita et al., 2007; Jaiswal et al., 2018; Jaiswal et al.,

2020, 11801; Kling et al., 2022; Pierpont et al., 2022, 1). Also, we

assembled and annotated six plasmids with sizes ranging from

24.44 to 200.03 kbp (Supplementary Figure S2).

According to the analysis, the complete genome had a high

coverage and was characterized by its high quality. The coverage

was ~200x, and the BUSCO results indicate that more than 97%

of the 40 core genes were complete and single-copy genes, and

only a very low fraction was missing. In addition, the CheckM

results showed that the genome had completeness of more than

99% and a low contamination level (0.35%).

FIGURE 2
Maximum likelihood phylogenomic tree with bootstrap support inferred based on 31 conserved proteins.

Frontiers in Genetics frontiersin.org07

Cobos et al. 10.3389/fgene.2022.973324

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.973324


3.3.2 Functional annotation of the genome
The complete genome of Synechococcus

sp. UCP002 contained 3,324–3,640 predicted genes (Table 1).

Of the total genes, from 3,280 to 3,596 were protein-coding genes

with an average protein length of 305 amino acid residues. Of

these protein-coding genes, those from 1,920 to 2,407 were

associated with known functions. Of the protein-coding genes

with known functions, those from 756 to 948 were enzyme-

coding genes. Also, from the total protein-coding genes, those

from 903 to 1,752 were hypothetical protein-coding genes. In

addition, in the draft genome were recognized seven ncRNA,

nine ncRNA regions, two genes coding rRNA (16 and 23S),

41 genes coding tRNAs, one gene coding tmRNA, and two

CRISPR–Cas systems. Also, CRISPR–Cas systems were

identified in four (pSUCP002.1, pSUCP002.2, pSUCP002.3,

and pSUCP002.6) of the six plasmids of Synechococcus

sp. UCP002 (Supplementary Table S2). CRISPR loci and Cas

(CRISPR-associated) operons together (CRISPR–Cas system)

constitute a heritable molecular adaptive immune system

found in many bacterial and archaea species (Barrangou et al.,

2007; Sorek et al., 2008). In cyanobacteria, the CRISPR–Cas

systems are classified into class 1 (with types I and III) and class

2 with type V (Pattharaprachayakul et al., 2020).

This CRISPR–Cas system protects the prokaryotic cells from

invading bacteriophages and conjugative plasmids (Sorek et al.,

2008; Marraffini and Sontheimer, 2010). Recent investigations

have shown that the CRISPR–Cas system has a widespread

distribution in the phylum Cyanobacteria. However, marine

cyanobacteria of the Synechococcus and Prochlorococcus

subclade do not have this interference system (Cai et al.,

2013). This result is apparently paradoxical because these

marine cyanobacteria live in an environment with abundant

and diverse cyanophages (Suttle and Chan, 1994; Lu et al., 2001).

Actually, the CRISPR–Cas system has emerged as an effective

and versatile tool for genetic modification in cyanobacteria of the

genus Synechococcus. Wendt et al., using targeted genome editing

and enrichment outgrowth, created a new strain of Synechococcus

elongatus 2973-T that was both naturally transformable and fast-

growing (Wendt et al., 2022). Also, some researchers

demonstrated that the CRISPR–Cas tool can be used for the

FIGURE 3
Genomemap of Synechococcus sp. UCP002 compared with
the closest relative (Synechococcus sp. PCC 6312). The circular
map also shows the GC content and GC skew (+/−). The gap
regions show no overlapping regions with the closest
neighbor.

TABLE 1 Results of the functional annotation of the complete genome of Synechococcus sp. UCP002 using Bakta, dFast, Prokka, and RASTtk tools.

Bakta dFast Prokka RASTtk

Total gene count 3,371 3,324 3,354 3,640

CRISPR array 2 2 2 2

Protein-coding genes 3,310 3,280 3,310 3,596

Number of genes with EC number 948 943 756 942

RNA 61 44 44 44

ncRNA 7 — — —

ncRNA regions 9 — — —

rRNA 3 2 2 2

tRNA 41 41 41 41

tmRNA 1 1 1 1

Proteins associated with known function 2,407 1,920 1,558 2,111

Hypothetical proteins 903 1,360 1,752 1,566

Coding ratio (%) 85.9 84.9 85.6 86.7
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metabolic engineering of cyanobacteria of the genus

Synechococcus (Gordon et al., 2016; Racharaks et al., 2021).

Consequently, this modern genetic tool could be used to

generate genetically improved strains of Synechococcus

sp. UCP002.

In addition to the CRISPR–Cas system, the genome of

Synechococcus sp. UCP002 and most of its plasmids contain

other prokaryotic defense systems (Supplementary Table S2).

These include the restriction and modification system (RM

system), the toxin–antitoxin system (TA system), and the

DNA phosphorothioate system (PT). The RM system includes

genes coding restriction enzymes (types I, III, and IV) and DNA

methyltransferases (e.g., dam, yhdj, and dcm). The TA system has

genes coding several key proteins of the type II TA system (e.g.,

mazF, priF, yefM, and higA-1) and their related factors (i.e., ftsZ,

mreB, and gltX). Finally, the PT system has genes coding the

sulfur modification proteins (e.g., iscS, dndB, dndC, and dndD)

and genes coding the DNA phosphorothioation-dependent

restriction proteins such as dptF, dtpG, and dtpH. The PT

system modifies the DNA backbone and constitutes a

protective epigenetic system with multiple functions

(i.e., antioxidant, restriction-modification, and virus resistance

properties). The occurrence of dnd genes and gene clusters is

common in the genomes of archaea and bacteria, including

cyanobacteria of the orders Nostocales and Synechococcales

(Jian et al., 2021). Together, these prokaryotic defense systems

are an evolutive response system of bacteria and archaea against

the great diversity of genetic parasites. Consequently, in these

microorganisms, an important fraction of the genetic

information participates in antiparasitic defense. These

antiparasitic defense systems use several strategies, including

innate immunity (RM system), adaptive immunity

(CRISPR–Cas system), dormancy induction, or programmed

cell death (TA system) (Makarova et al., 2013; Koonin et al.,

2017).

Two genes potentially useful for the development of

biosensors for heavy metal pollution were identified in the

genome of Synechococcus sp. UCP002, which are denominated

smtB1 and smtB2. These genes code transcription factors of the

metalloregulator ArsR/SmtB family. These transcription factors

are negative regulators for the expression of the gene smtA, also

identified in the genome, which codes cysteine-rich

metallothionein that is able to sequester metal ions, such as

cadmium, copper, and zinc (Cavet et al., 2003). To corroborate

the identity of the proteins encoded by smtB1 and smtB2, we

conducted additional in silico analysis by predicting their

tridimensional structure (Supplementary Figure S3) and by

aligning their amino acid sequences (Figure 4). According to

this analysis, the two proteins fit with known proteins involved in

the functions described. Together, these genes constitute a metal-

responsive expression system (Turner et al., 1996; Busenlehner

et al., 2003; Ma et al., 2009). This system is commonly used to

develop biosensors to detect environmental pollution with heavy

metals (Hui et al., 2021), and consequently, it will be necessary to

conduct additional studies to verify the reliability of the genes

smtB1 and smtB2 of Synechococcus sp. UCP002 in engineering

biosensors for the detection of heavy metal pollution in our

region.

3.3 Biochemical profiling

According to the bioinformatic analysis, 54% and 46% of the

sequencing reads correspond to Synechococcus sp. PCC 6312 and

the associated bacteria (e.g., Proteobacteria and Dietzia),

respectively (Supplementary Figure S4). Consequently, the

biochemical profile represents the values of the

cyanobacterium and its associated bacteria.

3.1.1 Proximate composition, pigments, and total
phenolic content

The proximate composition of the unaxenic cyanobacterium

showed significant differences in its organic and inorganic

contents. Between the organic biomolecules, the proteins were

the most abundant (>57%). The second most abundant

biomolecules were carbohydrates (>17%), followed by lipids

(~16%). In contrast, the inorganic content, constituted by

ashes and moisture, was very low (<5%) (Figure 5). A similar

composition of these biomolecules was previously reported for

some cyanobacterial strains of the Arthrospira genera and

microalgae isolated from the Peruvian Amazon Basin region

(Cobos et al., 2020). It is necessary to consider that the

biochemical composition of the cyanobacterial biomass

depends on biotic and abiotic factors. The biotic factors

include the growth phase, the associate microorganisms (e.g.,

yeasts, microalgae, and bacteria), the presence of cyanophages,

the genetic constitution of the strain, and its level of laboratory

domestication (Wilson et al., 1996, 78031; Ni and Zeng, 2016;

Adomako et al., 2022; Grasso et al., 2022). Also, the abiotic

factors include the physical conditions of the culture (e.g., light

intensity, photoperiod, and temperature) and the chemical

composition of the culture medium (e.g., nitrogen source,

salinity, N:P ratio, and CO2 levels) (Pathania and Srivastava,

2021). Consequently, the recorded proximate composition for

the unaxenic cyanobacterium is relative and could change

significantly. In other words, by obtaining an axenic strain of

the cyanobacterium and changing the physicochemical

conditions of the culture, the production of these main

biomolecules could be modified. Nevertheless, regardless of

using an unaxenic or axenic strain, the raw cyanobacterial

biomass could be used to produce protein-enriched foods,

biofuels (e.g., biodiesel and bioethanol), and several useful

bioproducts through a biorefinery approach

(Sivaramakrishnan et al., 2022; Wang et al., 2022).

The unaxenic cyanobacterium showed some typical

cyanobacterial pigments with significant differences in their
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contents (Figure 3). All-trans-β-carotene was the main pigment

(~61 mg g−1 of fresh cyanobacterial biomass weight [fcbw]). The

second more abundant pigment was total phycocyanin (17.95 ±

1.10 mg g−1 of fcbw) with c-phycocyanin (6.79 ± 0.43 mg g−1 of

fcbw) and allophycocyanin (11.17 ± 0.68 mg g−1 of fcbw). The

third more abundant pigment was chlorophyll a with a content of

7.62 ± 0.08 mg g−1 of fcbw. Finally, the pigment with the lowest

content was lutein with a value of <1 mg g−1 of fcbw.

The metabolic capability of Synechococcus sp. UCP002 to

produce the majority of these pigments is in conformity to its

genetic information. The genome has all the genes coding the

enzymes involved in the biosynthesis of all-trans-β-carotene and
other carotenoids that were not quantified in this research such

as lycopene, zeaxanthin, and astaxanthin (Supplementary Figure

S5). Also, the genome has the genes coding the phycocyanins

(cpcA, cpcB, cpcC, cpcD, cpcE, cpcF, and cpcG) and

allophycocyanins (apcA, apcB, apcC, apcD, apcE, and apcF)

and all the genes coding proteins involved in the assembly of

the supramolecular complex called the phycobilisome. The

phycobilisome is an efficient and versatile light-harvesting

system that serves as a photosynthetic antenna in

cyanobacteria (Watanabe and Ikeuchi, 2013; Adir et al., 2020;

Grébert et al., 2022).

The genes coding proteins for assembly of the phycobilisome

are clustered in two regions of 1.5 kbp (135,435–136,974) and

6.5 kbp (2,859,945–2,866,344) in the genome of Synechococcus

sp. UCP002. This pattern of gene organization is common in

most cyanobacteria of the Synechococcus genera, a first small

cluster group of allophycocyanin core genes (apcE-A-B-C), while

another core gene is formed by apcD and apcF. However, the

phycobilisome rod genes are situated in larger clusters (from

6.5 to 28.5 Kbp), whose size depends on the complexity of the rod

structure (Six et al., 2007; Grébert et al., 2022).

The genome of Synechococcus sp. UCP002 also harbors most

of the genes coding the enzymes responsible for the biosynthesis

of chlorophyll a (Supplementary Figure S6). However, the genes

coding the enzymes for the biosynthesis of lutein, using lycopene

as a metabolic precursor, were lacking in the genome. The

missing genes coding the enzymes for the biosynthesis of

lutein are typical in cyanobacteria of the Synechococcus genera

(Sarnaik et al., 2018). Consequently, lutein identified in the

unaxenic cyanobacterial biomass could be a result of its

biosynthesis by the associated bacteria.

Additionally, the cyanobacterium strain showed the ability

to produce phenolic compounds. The total phenolic content

(TPC) recorded was 2.36 ± 0.06 mg GAE g−1 of cyanobacterial

biomass dry weight. This TPC value is in the range of values

reported for TPC in cyanobacteria. A similar low TPC is

recorded in strains of the cyanobacterial genera Arthrospira

(Cobos et al., 2020). Also, Li et al. reported that Synechococcus

sp. FACHB 283 has a TPC of 10.56 ± 0.11 mg GAE g−1 of

freeze-dried biomass weight (Li et al., 2007). In other

cyanobacterial genera, such as Aulosira, Anabaena,

Aphanizomenon, Calothrix, Oscillatoria, and Synechocystis,

the TPC fluctuates from 22.17 to 290.23 mg GAE g−1 of

fresh biomass weight (Singh et al., 2017; Senousy et al.,

2020). Additionally, Del Mondo et al. recorded in

14 cyanobacterial genera (e.g., Anabaena, Chroococcus,

Fischerella, Plectonema, and Tolypothrix) a TPC value from

1.0 to 60.53 mg GAE g−1 of cbdw (Del Mondo et al., 2021).

Among the most common phenolic compounds identified in

cyanobacteria are caffeic acid, chlorogenic acid, ferulic acid,

gallic acid, protocatechuic acid, trans-cinnamic acid,

p-coumaric acid, and vanillic acids (Babaoğlu Aydaş et al.,

2013; Jerez-Martel et al., 2017; Singh et al., 2017; Del Mondo

et al., 2021).

The notable differences in TPC and the class of phenolic

acid biosynthesized by the different genera, species, and

strains of cyanobacteria can be attributed to some factors.

For example, variations in the culture conditions (e.g., light

intensity, photoperiod, and the composition of the culture

medium) affect noticeably the production of phenolic

compounds (El-Baky et al., 2009; Blagojević et al., 2018).

Also, a key factor for the biosynthesis of diverse phenolic

compounds is the metabolic capabilities of the cyanobacteria.

These metabolic capabilities ultimately depend on the genes

coding the biosynthetic enzymes that harbor the cyanobacteria

genomes. According to functional annotations using KAAS,

FIGURE 4
Alignment of protein sequences coded by the gene smtB of the representative cyanobacterial species. 1: SmtB1 of Synechococcus sp. UCP002,
2: smtB1 of Synechococcus sp. PCC 6312 (WP_015123347), 3: smtB of Calothrix sp. PCC 7507 (WP_01512714), 4: smtB2 of Synechococcus
sp. UCP002, 5: smtB of Leptolyngbya sp. PCC 6406 (WP_008314625), 6: smtB of Oscillatoria nigro-viridis (WP_01574920), 7: smtB of Nostoc
sp. PCC 7107 (WP_015114276), and 8: smtB of Anabaena sp. PCC 7108 (WP_016952607). The alignment was conducted using the Alignment
tool of Geneious Prime

®
2022.2.2.
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the genome of Synechococcus sp. UCP002 has all the genes

coding the enzymes of the shikimate pathway (Supplementary

Figure S7). The shikimate pathway is the main aromatic

biosynthetic pathway (Bentley, 1990; Mir et al., 2015). This

metabolic pathway converts the metabolites erythrose-4-P and

phosphoenolpyruvate to chorismate. Chorismate is the last

common precursor for the biosynthesis of the three aromatic

amino acids phenylalanine, tyrosine, and tryptophan

(Herrmann, 1995). Furthermore, phenylalanine is the

common metabolic precursor to biosynthesize multiple

phenolic compounds through the phenylpropanoid

biosynthetic pathway (Ferrer et al., 2008; Vogt, 2010).

However, it is intriguing that although the cyanobacterium

produces phenolic compounds, not all the genes coding the

29 core enzymes of the phenylpropanoid/flavonoid

biosynthetic pathway were found in the genome of

Synechococcus sp. UCP002 (Supplementary Table S3). A

total of 22 genes coding core enzymes were found in the

genome but showed low pairwise identity with its

corresponding orthologs (range from 21.4 to 39.3 %).

However, seven genes coding the core enzymes were

missing in the genome. These missing genes are those that

code for phenylalanine ammonia-lyase (EC 4.3.1.24), tyrosine

ammonia-lyase (EC 4.3.1.25), caffeic acid 3-O-

methyltransferase (EC 2.1.1.68), and chalcone synthase (EC

2.3.1.74). This suggests that Synechococcus sp. UCP002 could

use other unidentified enzymes that convert phenylalanine or

tyrosine into the metabolic intermediaries cinnamic acid or

p-coumaric acid, respectively. An analogous situation could be

occurring with the other missing core enzymes of the

phenylpropanoid/flavonoid biosynthetic pathway. Recently,

it has been demonstrated that cyanobacteria display greater

variability in this metabolic pathway, and several core enzymes

(e.g., phenylalanine ammonia-lyase, chalcone synthase, and

FIGURE 5
Proximate composition (proteins, carbohydrates, lipids,
ashes, and moisture) (A) and pigment content (B) of the fresh
biomass of the cyanobacterium Synechococcus sp. UCP002
isolated from the Peruvian Amazon Basin region.

TABLE 2 Fatty acid composition of the unaxenic cyanobacterium
Synechococcus sp. UCP002 isolated from the Peruvian Amazon
Basin region (mg.g−1 of cbdw).

Fatty acid Mean Standard deviation

Saturated fatty acid (SFA)

C14:0 (myristic acid) 0.06 0.00

C16:0 (palmitic acid) 27.63 0.26

C18:0 (stearic acid) 0.42 0.01

Mono-unsaturated fatty acid (MUFA)

C16:1 n-7 (palmitoleic acid) 34.51 0.31

C18:1 n-7 (vaccenic acid) 2.48 0.06

C18:1 n-9 (elaidic or oleic acid) 3.14 0.06

Polyunsaturated fatty acid (PUFA)

C18:2 n-6 (linoleic acid) 0.29 0.02

Unknowns

Unknown 1 5.56 0.02

Unknown 2 0.05 0.01

Unknown 3 0.28 0.01

Unknown 4 1.73 0.01

Unknown 5 0.18 0.00

ΣSFA 28.11 (36.83)

ΣMUFA 40.13 (52.57)

ΣPUFA 0.29 (0.38)

Total fatty acids 76.33

Legend: The concentration of fatty acids is expressed in mg/g of total lipids obtained

from the unaxenic cyanobacterium dry biomass, with the percentage (%) of the total

fatty acids in parentheses, and each value represents the mean ± SD of three

experiments. ∑SFA is the sum of the contents of saturated fatty acids, ∑MUFA is the

sum of the contents of mono-unsaturated fatty acids, and ∑PUFA is the sum of the

contents of polyunsaturated fatty acids.
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chalcone synthase) are missing in some analyzed

cyanobacterial genera (e.g., Fischerella, Mastigocoleus, and

Cylindrospermum) (Del Mondo et al., 2022).

3.1.2 Fatty acid composition
The unaxenic cyanobacterium contained three groups of

fatty acids, according to their level of saturation, namely,

saturated fatty acids (SFAs), monounsaturated fatty acids

(MUFAs), and polyunsaturated fatty acids (PUFAs)

(Table 2). Palmitic acid (C16:0), palmitoleic acid (C16:1 n-

7), and linoleic acid (C18:2 n-6) were the predominant ones

in each fatty acid group. Comparing between groups, the

content of MUFAs was the highest (ΣMUFA >52%), followed

by the content of SFA (ΣSFA >36%), but the content of

PUFAs was the lowest (ΣPUFA <0.5%). Also, five fatty

acids were unknown (10.22% of total fatty acids). The

pattern of fatty acid composition characterized by a high

content of C16:0 and C16:1 n-7 fatty acids and low content of

PUFAs is common in several cyanobacterial genera. These

genera include Anabaena and Nostoc (Caudales and Wells,

1992; Guedes et al., 2011), Cyanobacterium (Sarsekeyeva

et al., 2014), Dermocarpa, Dermocarpella, Myxosarcina,

Pleurocapsa, Xenococcus (Caudales et al., 2000),

Aphanothece, Oscillatoria, Plectonema, Phormidium (Oren

et al., 1985), and Synechococcus (Murata et al., 1992;

Takeyama et al., 1997; Yu et al., 2000; Santos-Merino

et al., 2022). Consequently, these cyanobacteria do not

produce the high-demanded polyunsaturated fatty acids

EPA and DHA. These PUFAs are essential human

nutrients biosynthesized for several eukaryotic microalgae

(Nilsson et al., 2020; Hachicha et al., 2022; Jakhwal et al.,

2022; Toumi et al., 2022).

The inability of Synechococcus sp. UCP002 to

biosynthesize long-chain PUFAs can be associated with its

genetic makeup for de novo fatty acid biosynthesis.

According to the functional annotation with KAAS and

the metabolic pathways reconstructed, the genome of the

cyanobacterium possesses the totality of genes coding the

enzymes involved in de novo fatty acid biosynthesis

(Supplementary Figure S8). The type of the fatty acid

biosynthesis pathway identified is II FAS, which typically

operates in prokaryotic microorganisms such as

cyanobacteria (Mund et al., 2022). Recently, it has been

demonstrated that the enzymes of the fatty acid

biosynthesis pathway form a protein community called

metabolon (Skalidis et al., 2022). This metabolon is

generated as the final product of the SFAs palmitic acid

(C16:0) and stearic acid (C18:0). Furthermore, both

saturated fatty acids are chemically modified by the

sequential action of desaturases and elongases.

Consequently, depending on the gene pool contained in

the genome that codes desaturases and elongases, the

cyanobacterium will have the metabolic competence to

biosynthesize or not a group of short-chain and/or long-

chain PUFAs (Ratledge, 2004; Poole et al., 2020; Santos-

Merino et al., 2022).

In this context and taking into account the modes of fatty

acid desaturation, the cyanobacterium Synechococcus

sp. UCP002 belongs to groups 1 and 2, such as was

previously established for this cyanobacterium genus (Murata

et al., 1992). According to this, the genes coding elongases were

missing in the genome of the cyanobacterium. However, in the

genome were identified two genes coding desaturases, the first

coding one delta-9 desaturase and the second coding one delta-

12 desaturase. Together, these results suggest that the

hydrocarbon chain length and the pattern of desaturation

(desaturations at the Δ9 and Δ12 positions) of the fatty acids

biosynthesized by Synechococcus sp. UCP002 were determined

by the content of genetic information in its genome.

3.1.3 Amino acid composition
The unaxenic cyanobacterium strain contained 20 amino

acids commonly found in proteins. In agreement with its

nutritional value for human nutrition, it had both essential

amino acids (EAA) and non-essential amino acids (NEAA).

TABLE 3 Amino acid composition of the unaxenic cyanobacterium
Synechococcus sp. UCP002 isolated from the Peruvian Amazon
Basin region (mg.g−1 of cbdw).

Amino acid Mean Standard deviation

Essential amino acid (EAA)

Valine 35.06 0.37

Threonine 33.04 0.45

Leucine 54.72 0.95

Isoleucine 33.03 0.40

Methionine + cysteine 10.44 0.69

Lysine 28.18 1.25

Histidine 9.32 0.16

Phenylalanine 30.94 0.45

Tyrosine 27.88 0.31

ΣEAA (%) 262.61 (45.62)

Non-essential amino acid (NEAA)

Glycine 31.03 0.43

Alanine 52.81 0.85

Serine 30.99 0.32

Proline 24.28 0.33

Arginine 41.69 0.95

Aspartic acid (Asx) 57.44 1.08

Glutamic acid (Glx) 74.74 1.12

ΣNEAA (%) 312.98 (54.38)

Total AA 575.59

Legend: The quantity of amino acids is expressed in mg.g−1 of cyanobacterial biomass

dry weight, with percentage (%) of amino acid content in parentheses, and each value

represents the mean ± SD of three experiments. ΣEAA is the sum of the essential amino

acids, and ΣNEAA is the sum of the non-essential amino acids.
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The content of both classes of amino acids in the cyanobacterial

biomass was 45.62 and 54.38%, respectively (Table 3). Leucine

was the main EAA, but histidine showed the lowest

value (<10 mg g−1 of cbdw). In the NEAA group, glutamic

acid (Glx) was more abundant and proline the scarcest

(~24 mg g−1 of cbdw). Consequently, the Synechococcus

sp. UCP002 biomass could be a good source of essential

amino acids for human and animal nutrition. Essential amino

acids are a common component in proteins derived from the

cyanobacterial and microalgal biomass (Kay, 1991; Hempel et al.,

2012; Molino et al., 2018; Camacho et al., 2019; Cobos et al.,

2020).

The capability to biosynthesize the 20 amino acids by

Synechococcus sp. UCP002 was supported by its genetic

information. First, the genome harbors the genes coding

specific permeases for ammonium assimilation and the

involved enzymes to incorporate the ammonium ions into

carbon skeletons (i.e., glutamine synthetase and glutamate

synthase) (Muro-Pastor and Florencio, 2003; Muro-Pastor

et al., 2005). Second, the genome possesses the nirA-

nrtABCD-narB operon (Supplementary Figure S9) for nitrate

and nitrite assimilation (Omata et al., 1993). This operon is

actively transcribed by nitrate and nitrite when the formation of

glutamine decreases (Kikuchi et al., 1996). In Synechococcus, the

best-characterized transcriptional activator of the nirA-

nrtABCD-narB operon is codified by the gene ntcA (Vega-

Palas et al., 1992; Luque et al., 1994). Finally, the genome has

the complete set of genes coding the enzymes for the biosynthesis

of all amino acids.

For example, the biosynthesis of the aromatic family of

amino acids (i.e., phenylalanine, tyrosine, and tryptophan)

begins with the condensation of D-erythrose 4-phosphate

and phosphoenolpyruvate. This condensation reaction

produces inorganic phosphate and 3-deoxy-d-arabino-

heptulosonate-7-phosphate (DAHP). The biochemical

reaction is catalyzed by the enzyme phospho-2-keto-3-

deoxyheptonate aldolase, also called DAHP synthase (EC

2.5.1.54). This enzyme catalyzes the first committed step of

the shikimate pathway, which produces chorismate by the

consecutive catalytic activity of several enzymes (Riccardi

et al., 1989) (Supplementary Figure S7). DHAP synthase is

the regulatory enzyme, and its feedback inhibition is by

metabolic intermediates (i.e., phenylpyruvate, prephenate,

and chorismate) and by aromatic end products

(i.e., phenylalanine, tyrosine, and tryptophan). This

regulatory mechanism by feedback inhibition is common

in several genera of cyanobacteria such as Chlorogleopsis,

Fischerella, Lyngbya, Synechococcus, Synechocystis,

Oscillatoria, and Plectonema (Hall et al., 1982).

Chorismate produced in the shikimate pathway is a

fundamental metabolic branch point to biosynthesize the

three aromatic amino acids by the consecutive action of

several enzymes (Riccardi et al., 1989).

3 Conclusion

The cyanobacterium Synechococcus sp. UCP002 shows the

potential to be biotechnologically exploited for the following

reasons: 1) owing to their genetic makeup, the cyanobacterium

can biosynthesize biochemicals potentially useful for human and

animal nutrition, 2) some of themain biomolecules produced by the

cyanobacterium (i.e., lipids and carbohydrates) could be used as raw

materials to produce biofuels, and 3) the genomic resources of the

novel cyanobacterium strain could be used in the field of synthetic

biology as a new source of known genes with genetic variations.
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