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Pancreatic cancer is one major digestive malignancy with a poor prognosis.

Given the clinical importance of lncRNAs, developing a novel molecular panel

with lncRNAs for pancreatic cancer has great potential. As a result, an 8-

lncRNA-based robust prognostic signature was constructed using a random

survival forest model after examing the expression profile and prognostic

significance of lncRNAs in the PAAD cohort from TCGA. The efficacy and

effectiveness of the lncRNA-based signature were thoroughly assessed.

Patients with high- and low-risk defined by the signature underwent

significantly distinct OS expectancy. Most crucially the training group’s AUCs

of ROC approached 0.90 and the testing group similarly had the AUCs above

0.86. The lncRNA-based signature was shown to behave as a prognostic

indicator of pancreatic cancer, either alone or simultaneously with other

factors, after combined analysis with other clinical-pathological factors in

Cox regression and nomogram. Additionally, using GSEA and CIBERSORT

scoring methods, the immune landscape and variations in biological

processes between high- and low-risk subgroups were investigated. Last but

not least, drug databases were searched for prospective therapeutic molecules

targeting high-risk patients. The most promising compound were Afatinib, LY-

303511, and RO-90-7501 as a result. In conclusion, we developed a novel

lncRNA based prognostic signature with high efficacy to stratify high-risk

pancreatic cancer patients and screened prospective responsive drugs for

targeting strategy.
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Introduction

Pancreatic cancer is known as a highly lethal malignancy

with a poor prognosis. Accounting for approximately

496,000 new patients per year worldwide, pancreatic cancer

ranks 14th in new cases among 36 major types of cancer

(Sung et al., 2021). However, the disease reaches as high as

the 4th in cancer-related death, with the death number around

466,000 annually. On average, the 5-year survival rate of

pancreatic cancer is below 10% at the time of diagnosis

(Mizrahi et al., 2020; Zhu et al., 2021). Nowadays, surgical

resection remains the optimal treatment for pancreatic cancer

by increasing the 5-year survival rate to around 20%

(Christenson et al., 2020). For unresectable tumors,

nonetheless, the efficacy of other approaches such as

chemotherapy, radiotherapy, and systemic therapies, despite

receiving incremental progress during the last decade, requires

further assessment. To note, due to lacking severe symptoms in

the early stage, the diagnosis of pancreatic cancer is of great

difficulty and often delayed. Therefore, novel molecular markers

of satisfying sensitivity and accuracy become an urgent demand

for diagnosis and prognosis evaluation purposes. Besides, new

strategies for screening patients with higher long-term risk are

also expected for better clinical decision-making.

Not surprisingly, considerable amounts of studies have

revealed the possibility and value of molecular signatures in

the diagnosis and prognosis of pancreatic cancer over the last few

years. For instance, Wu et al. have developed a nine-gene (MET,

KLK10, COL17A1, CEP55, ANKRD22, ITGB6, ARNTL2,

MCOLN3, and SLC25A45) panel to predict the overall

survival of pancreatic cancer (Wu et al., 2019). Other groups

have also built several signatures based on genes associated with

different biological aspects of pancreatic cancer including

autophagy, methylation, and metabolic changes (Yu et al.,

2021; Xiao et al., 2022; Zhang et al., 2022). Nowadays it is

widely acknowledged that the dysregulation of non-coding

RNA is closely correlated to different types of tumors

including pancreatic cancer. Hence, signature classifiers

generated from non-coding RNAs have also been carried out

using micro RNA (miRNA), long non-coding RNA (lncRNA),

circular RNA (circRNA) and so forth. Nevertheless, the value of

non-coding RNAs in assessing pancreatic cancer has not been

thoroughly explored, as most of them emphasized prognosis

prediction but failed to provide detailed hints on clinical decision

making.

Therefore, this study aims to identify the clinical significance

of lncRNAs for pancreatic cancer evaluation and construct a

comprehensive lncRNA-based signature with high prognostic

efficacy to monitor outcomes of pancreatic cancer patients.

Besides, the molecular signature is used to explore the

immune landscape and potential therapeutic targets and small

molecules between risk subgroups. In detail, expression and

clinical data of pancreatic cancer patients were acquired from

public databases including The Cancer Genome Atlas (TCGA),

Cbioportal, and Cancer Cell Line Encyclopedia (CCLE). An 8-

lncRNA classifier was then constructed by applying Cox and

random survival forest (RSF) regression in differentially

expressed lncRNAs (DElncRNAs). The capacity of the

signature as a prognostic indicator was evaluated in different

aspects. To emphasize, the immune feature landscape, possible

therapeutic targets, and molecules were subsequently checked in

patients with a high-risk score according to the signature in

detail, holding the potential to expand the current therapeutic

strategies for the pancreatic cancer population.

Materials and methods

RNA-sequencing cohorts

An RNA-seq dataset of 177 pancreatic cancer patients

involving RNA expression value and matched clinical

information was obtained from the TCGA data portal (http://

portal.gdc.cacner.gov/repository) and the Cbioportal website

(http://cbioportal.org). Fragments per million reads (FPKM)

normalized expression value was used for further analysis.

The cohort was then randomly split with a 2:1 ratio into a

training group and a testing group.

Cancer cell line data

Expression profiles of human cancer cell lines (CCLs) were

achieved from the Broad Institute CCLE project (http://portals.

broadinstitute.org/ccle). To search for potential therapeutic

agents, sensitivity data of compounds in CCLs were achieved

from the Cancer Therapeutics Response Portal, Board institute

(CTRP, http://portals.broadinstitute.org/ctrp) and PRISM

repurposing dataset (http://depmap.org/portal/prism). The

algorism of drug sensitivity was described in previous studies.

Briefly, the database provided the area under the curve (AUC)

values as the readout of drug sensitivity. The lower AUC values

indicate higher drug sensitivity. Compounds with more than 20%

missing data were excluded from the dataset, and the K-nearest

neighbor algorithm (K-NN) was applied to estimate the AUC

values. To further investigate the mechanism of actions (MoA) of

the drugs screened out, the Connectivity Map tools database

(CMap, http://clue.io) with more than 2000 small molecule

perturbagen types was applied for specific analysis.

Construction of lncRNA-based prognostic
signature

The human lncRNA annotation profile was obtained from

the GENCODE website (GRCh38.p13, release 39, http://
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gencodegenes.org/human). After the acquisition of lncRNA

expression data as described above, the lncRNAs were

separated from gene-coding RNA and other non-coding

RNAs. Differentially expressed lncRNAs (DElncRNAs) were

identified with the criteria of absolute log2 fold-change

(log2FC) > 1 and adjusted p-value < 0.05 between tumor and

control tissues. Afterward, univariate Cox regression was

conducted to identify prognostic lncRNAs which shared a

correlation with the overall survival (OS) time of the patients

in the cohort (p < 0.05). Thus, the candidate prognostic lncRNAs

were determined by overlapping the DElncRNAs and prognostic

lncRNAs.

To develop the lncRNA-based signature, the univariate Cox

proportional hazards regression was first applied to preliminarily

narrow the candidates using the training group. Subsequently, an

RSF regression based on minimal depth was used to finally

identify the signature. The RSF regression model underwent

iteration 1,000 times to construct a lncRNA-based OS

classifier with the largest C-index value. Eventually,

multivariate Cox regression was employed to select candidates

as independent indicators to form the 8-lncRNA-based signature

retained for the next analysis. According to the classifier, each

sample in the cohort was endowed with a risk score following the

equation:

RiskScore � ∑
n

k�1
Coefk × Expk

in which Coefk was the coefficients of each sample, Expk was the

expression of member lncRNAs of the signature. The cohort was

divided into high-risk and low-risk groups by the mean value of

the risk score. Afterward, the efficacy and effectiveness of the

lncRNA classifiers in both training, and validation cohorts were

evaluated by the Kaplan-Meier long-rank test, Time-dependent

ROC curve analysis, multivariate Cox regression and nomogram

scoring.

Immune function analysis

Algorithms including CIBERSORT and ssGSEAwere applied

to compare the pattern of immune infiltration between high-risk

and low-risk groups. Moreover, the Tumor Immune Dysfunction

and Exclusion (TIDE) scoring method were employed to assess

the response to immunotherapy, extent of immune dysfunction,

immune exclusion, and microsatellite instability (MSI) for

patients in high-risk and low-risk groups.

Statistical analysis

All statistical analyses were conducted with the R software

platform (v4.0.2, R Foundation for Statistical Computing,

Vienna, Austria). Some major R packages included “edgeR,”

“limma,” “survival,” “ROCR,” “ggplot2,” “pRRophetic,” and

“randomForestSRC”. To compare variables in multiple groups,

Student’s t-test and ANOVA analysis were used for parametric

factors, whereas theWilcoxon rank-sum test and Kruskal–Wallis

test were applied for nonparametric factors. To measure the

correlation of different variables, Spearman’s rank-order

correlation and Pearson’s r correlation were set. Furthermore,

Kaplan-Meier and the log-rank test were used for survival

analysis. The area under the curve (AUC) was measured to

judge the efficacy of the receiver operating characteristic

curve. For all statistical calculations, a two-tailed p < 0.05 was

considered significant.

Results

Construction of lncRNA based prognostic
signature

The whole RNA transcriptome profile containing tumor

tissue (n = 177) and adjacent control (n = 4) was obtained

from the TCGA portal as described above. Of the

14,078 lncRNAs extracted from the RNA-seq dataset,

540 lncRNAs were identified as DElncRNA under the

condition of absolute log2 FC > 1 and adjust p < 0.05

(Figure 1; Figure 2A; Supplementary Figure S1). On the other

hand, a univariate Cox regression analysis was used to select

2676 prognostic significant lncRNAs (p < 0.05) that possibly

correlated to the OS time of the patients. A Venn diagram was

created by overlapping DElncRNAs and univariate COX positive

lncRNAs to select the candidate lncRNAs (Figure 2B). Next, a

random survival forest (RSF) model was built based on minimal

depth to screen out lncRNAs were most relevant to the prognosis.

The RSF went through 1,000 times iterations under the criterion

of largest C-index value and eventually led to an 8-lncRNA

signature as the prognostic signature model for pancreatic cancer

(Figure 2C). Thus, the multivariate Cox regression was applied to

determine the risk score for each patient by values of coefficient

and expression as described above (Supplementary Figure S2A).

The detailed information on the elemental lncRNAs was listed as

follows (Table 1).

Assessment of the prognostic potentiality
of lncRNA based signature

As the 8-lncRNAs-based classifier for pancreatic cancer

was constructed, its efficacy for prognosis induction was

evaluated in all aspects. First, patients were divided into

high-risk and low-risk groups according to the median

value of the risk score in all the training, validation and

whole groups. Hence, the distribution of risk scores, the
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correlation between vital status and risk score and the

expression pattern of elemental lncRNAs were shown in

detail (Figures 2D–F). To investigate the relationship

between 8 prognostic lncRNAs and the risk score.

Spearman’s correlation analysis was conducted among the

expression of element lncRNAs and the risk score

(Supplementary Figure S2B). Interestingly, the expression of

most members was found strongly correlated with the level of

risk score, represented by MIR600HG with a Spearman’s

coefficient of −0.54 and CASC8 with 0.58. In addition,

certain components of the classifier share a closer

relationship in expression. For example, the correlation

coefficient between Lnc-PQLC1-10 and CASC8 was more

than 0.5, suggesting a potential biological relevance might

exist between them in the development of pancreatic cancer.

Afterward, the expression of lncRNAs of the prognostic

classifier was compared in groups with different risk levels to

further evaluate the differential expression pattern accompanied

by the risk score (Supplementary Figure S2C). As a result, 7 out of

8 components (Lnc-ROBO2-3 excluded) of the signature

expressed differently between groups with different risk levels.

Among them, 5 lncRNAs (Lnc-PQLC1-10, CASC8, Lnc-KAT7-

3, MIR924HG and Lnc-PDK2-5) were found up-regulated in

patients with a higher risk score, while MIR600HG and Lnc-

FIGURE 1
The work flow of the study.
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FIGURE 2
Development of lncRNA based molecular signature. (A) Volcano plot showed DElncRNAs identified from the TCGA-PAAD dataset. (B) Venn
diagram of candidate lncRNAs obtained by overlapping DElncRNAs and Cox positive lncRNAs in the training cohort. (C)OOB error in 1,000 iteration
of the random survival forest regression. (D) Distribution of the lncRNA based signature and expression of component lncRNAs in training group. (E)
Distribution of the lncRNA based signature and expression of component lncRNAs in testing group. (F) Distribution of the lncRNA based
signature and expression of component lncRNAs in whole group.

TABLE 1 Information of the lncRNAs in pancreatic cancer prognostic signature. 8 lncRNA-based molecular classifier.

Gene id Gene name Chromosome Start point End point

ENSG00000236901 MIR600HG 9q33.3 125871773 125877756

ENSG00000267015 LncPQLC1-10 18q23 79337837 79344139

ENSG00000246228 CASC8 8q24.21 127277047 127482140

ENSG00000248954 Lnc-KAT7-3 17q21.33 49887597 49936831

ENSG00000271874 Lnc-RAD1-3 5p13.2 34647370 34656270

ENSG00000240241 Lnc-ROBO2-3 3p12.3 78266893 78298888

ENSG00000267374 MIR924HG 16q22.1 39113067 39800322

ENSG00000276851 Lnc-PDK2-5 17q21.33 50094064 50094647
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RAD1-3 expressed lower in the high-risk group. Therefore, more

studies and experiments are in great need to explore the possible

biological role of these novel lncRNAs in tumorigenesis and the

development of pancreatic cancer.

For the Kaplan-Meier survival curve, high-risk and low-

risk groups were compared in the training, validation, and

whole cohorts respectively (Figures 3A–C). In all cohorts,

patients in high-risk groups showed significantly poorer

outcomes of shorter average survival time where p <
0.01 unanimously. These results indicated that the OS- and

RFS classifiers are significantly linked with the prognosis of

pancreatic cancer, which holds the potential as an effective

prediction model. The results claimed that the 8-lncRNA-

based signature strongly correlated to the outcome of

pancreatic cancer, thus holding the possibility as a

prognosis indicator. The time-dependent receiver operating

characteristic (ROC) analysis was subsequently performed.

The areas under the ROC curve (AUCs) of the classifier were

0.94, 0.97 and 0.90 for 1, 3, and 5 years of anticipation in the

training group (Figure 3D), 0.87, 0.86 and 0.86 in the

validation group (Figure 3E), 0.75, 0.83 and 0.81 for 1, 3,

and 5 years in the whole group (Figure 3F). Moreover, the

lncRNA-based panel signature was also assessed when the

recurrence happened to predict other outcomes of the disease

(Supplementary Figures S3C,D). Despite the signature that

could differ the recurrence time and status in K-M regression,

it failed to meet comparable accuracy in ROC analysis with less

than 0.5 in 5-year anticipation.

Comprehensive analysis of lncRNA based
signature and clinical characteristics

As described, the 8-lncRNAs-based molecular signature was

capable of being a novel prognosis indicator with high efficacy for

pancreatic cancer. Nevertheless, whether the lncRNA-based

signature was relevant to conventional clinicopathologic

characteristics remains unclear and requires further study.

Clinical data were obtained as previously described and major

clinical factors were listed with the risk score for combined

analysis.

First, the extent of tumor stage and histological grade were

found positively associated with the risk score in Pearson’s chi-

square analysis, supporting the conclusion that a higher risk

FIGURE 3
Evaluation of the efficacy of lncRNA based signature. (A–C) The Kaplan-Meier survival curves compared the patients in high- and low-risk
subgroups of all training, testing and whole cohorts. (D–F) The ROC curve anticipated the 1, 3, and 5 years survival of patients in all training, testing
and whole cohorts.
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score represents advanced tumor progression and worse outcome

(Supplementary Figure S3A,B). Next, major clinicopathological

characteristics including the risk score were jointly assessed in a

two-step Cox regression analysis. As a result, the age of patients,

number of malignant lymph nodes, and the risk score were the

three factors significantly associated with survival time in a

univariate Cox test and thus further went through a

multivariate Cox analysis (Figure 4A). Interestingly, all the

three variables remained significant in the following

multivariate Cox survival test (Figure 4B). Therefore, the 8-

lncRNA-based signature and its risk scoring could be

considered an independent factor for the prognosis prediction

of pancreatic cancer.

To develop a practical, comprehensive model for outcome

prediction in pancreatic cancer, a nomogram involving the

risk scoring and other clinical characteristics was established

(Figure 4C). In the very method, each clinical feature received

one certain point according to its statistical weight in

prognosis prediction. And the total points reflected the

probability of 1, 3, and 5 years of survival. To note, the risk

score of the lncRNA-based signature was of most importance

and predominance while factors such as gender and

histological grade of the tumor weighted minimally in the

model.

Functional enrichment analysis between
risk subgroups

To gain a deeper understanding of the novel mechanism

underlying the lncRNA-based molecular classifier, Gene set

enrichment analysis (GSEA) was applied to investigate

distinguished genes, pathways, and biological processes

between subgroups with a different risk scores. In specific,

1755 differentially expressed genes (DEGs) were identified

between the high-risk and low-risk subgroups at the condition

of absolute log2FC > 1 and p < 0.05. For signaling pathways

described in Kyoto Encyclopedia of Genes and Genomes

(KEGG), these DEGs were significantly enriched in

27 pathways in the high-risk group and 16 pathways in the

low-risk group, respectively. Among them, cell cycle, DNA

replication, retinol metabolism, spliceosome, and systemic

lupus erythematosus were the top 5 KEGG pathways enriched

in the high-risk group according to normalized enrichment score

(NES), while calcium signaling pathway, hematopoietic cell

lineage, neuroactive ligand-receptor interaction primary

immunodeficiency and renin-angiotensin system were the

most relevant pathways in low-risk group (Figures 5A,B). In

addition, biological process (BP) was also evaluated as a major

aspect of gene annotation (GO) analysis, where chromatin

FIGURE 4
Assessment of prognostic ability of both separate and combined usage of risk score and clinical factors. (A)Uni-andmultivariate Cox regression
by risk score and other clinical factors as OS predictor. (B) Nomogram including risk score determined by the lncRNA-based signature and other
clinical factors for OS prognostic assessment.
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assembly or disassembly, chromatin organization involved in the

regulation of transcription, chromosome segregation,

cornification, and DNA conformation change were the most

associated BP in the high-risk group, and neurotransmitter

transport, regulation of membrane potential, regulation of

postsynaptic membrane potential, regulation of trans synaptic

signaling and signal release were enriched in the low-risk group

(Figures 5C,D).

Last but not least, hallmark gene sets defined by Molecular

Signature Database (MSigDB, http://software.broadinstitute.

org/gsea/misigdb) were also checked. Interestingly, gene

clusters related to E2F targets, G2M checkpoint, glycolysis,

interferon α response, and MYC targets were the top

hallmarks positively correlated to the high-risk group, but

only 3 clusters, allograft rejection, KRAS signaling, and

pancreas β cells were relevant to the low-risk group in our

whole cohort (Figures 5E,F).

Estimation of the tumor immune
microenvironment

With the increasing application of immunotherapy for

pancreatic cancer in recent years, it is intriguing to investigate

the possible variation of immune microenvironment among risk

subgroups. To date, the infiltration and enrichment of 22 main

immune cells in the subgroups were analyzed via the

CIBERSORT algorithm (Figure 6A; Supplementary Figure

S4A). The result suggested that patients with a high-risk level

tended to have decreased B naïve cells but elevated M1 and

M2 subtypes of macrophages andmast cells, while other immune

cells remained indifferent. Moreover, Kaplan-Meier survival

regression was performed to investigate the effect on patient

outcomes imposed by specific immune cells according to

CIBERSORT scoring (Supplementary Figure S4B–G). And in

agreement with their infiltration profile, B naïve cell, M1/

M2 Macrophage and mast cells were also observed to impose

a significant effect on the prognosis of patients in the cohort.

Besides CIBERSORT, ssGSEA was also used to compare the

activity of some major immune cells and functions between

different risk subgroups (Figure 6B). Noticeably, antitumoral

immune cells including B cells, CD8+ T cells, T helper cells and

Neutrophils, accompanied by immune functions such as T cell

inhibition, T cell stimulation and type II IFN response were

discovered a reduced activation in high-risk rather than low-risk

patients.

Since the immune microenvironment was altered among

different risk subgroups, it is reasonable to speculate the effect

FIGURE 5
Enrichment of distinguished genes, pathways, and biological processes between low- and high-risk subgroups. (A) Top enriched KEGG
signaling pathways in high risk group. (B) Top enriched KEGG signaling pathways in low risk group. (C) Top enriched GO biological processes in high
risk group. (D) Top enriched GO biological processes in low risk group. (E) Top enriched hallmarks in high risk group. (F) Top enriched hallmarks in
low risk group.
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of immunotherapy in risk subgroups might differ

simultaneously. Therefore, the expression and risk profile in

the cohort were assessed by the Tumor Immune Dysfunction

and Exclusion (TIDE, http://tide.dfci.harvard.edu) and

compared between risk subgroups (Figures 6C,D). To note,

the high-risk group of the cohort received decreasing TIDE

score as well as the extent of immune dysfunction, implying a

favorable effect of immunotherapy might occur among

patients with a high-risk score according to the molecular

classifier. Nonetheless, the level of immune exclusion and MSI

were equal between high- and low-risk subgroups

(Figures 6E,F).

FIGURE 6
Exploration of immune landscape between low- and high-risk subgroups. (A) CIBERSORT algorithm evaluated the level of 22 major immune
cells between risk subgroups. (B) ssGSEA assessed the extent of main immune cells and activations. (C) TIDE scoringwas compared between risk sub
groups. (D) Immune dysfunction was compared between risk sub groups. (E) Immune exclusion was compared between risk sub groups. (F)MSI was
compared between risk sub groups.
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Identification of potential therapeutic
molecules for high-risk score patients

CTRP and PRISM databases, containing large drug

sensitivity profiles in thousands of CCLs, are widely used for

estimating drug response. CTRP involves 481 compounds from

860 CCLs while PRISM contains 1,448 compounds from

499 CCLs. According to the results above, patients with a

high-risk score from our signature were more likely to have a

deteriorative outcome. Thus, potential therapeutic agents with

FIGURE 7
Spearman correlation and differential drug response analysis for high risk group. (A) Positive drugs identified in CTRP database. (B) Positive drugs
identified in PRISM database.
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higher drug sensitivity were searched particularly for high-risk

patients in two different approaches.

First, drug response profiles were obtained from CTRP and

PRISM databases separately. The differential drug response was

compared between high- (top 20%) and low-risk (bottom 20%)

patients to screen out agents with lower estimated AUC values in

high-risk patients (log2FC > 0.05). Subsequently, spearman

correlation analysis was applied between the AUC value of specific

candidates and the risk score of the patients, in which correlation

coefficient r<−0.3 for CTRP and r<−0.5 for PRISMwere considered

potentially effective. Altogether, 2 compounds (selumetinib and

afatinib) from CTRP and 5 compounds (Ro-4987655, PD-

0325901, fluocinolone-acetonide, ingenol-mebutate, 12-O-

tetradecanoylphorbol-13-acetate) from PRISM were identified in

which all these molecules had a significantly lower value of AUC

in high-risk patients compared to low-risk ones (Figures 7A,B).

To further confirm the effectiveness and mechanism of

these drug candidates in the cohort, the CMap mode-of-action

(MoA) database including nearly 3000 small-molecule

compounds was applied. The CMap algorithm compares

the expression profile of DElncRNAs in different risk

subgroups with the existing response pattern of gene

expression for thousands of drugs and molecules in the

library. In specific, the CMap score of less than −95 will be

considered potentially effective. Positive agents selected via

CTRP and PRISM were evaluated in the CMap library,

respectively. And all agents with CMap score less

than −95 were also listed below (Table 2).

Discussion

As a lethal malignancy that causes the second most cancer-

related death, pancreatic cancer remains a critical global health

challenge. Despite tremendous progress has been made during past

decades in understanding the genesis and development of this fatal

disease, only a fraction of patients have the opportunity to receive

radical or surgical resection. Currently, an increasing number of

curative approaches including chemotherapy, targeted therapy, or

immunotherapy are available for patients with unresectable or

metastatic disease, but with merely reluctant effects. To improve

the process of clinical decision-making, physicians and surgeons

dedicated years to looking for novel strategies for better diagnosing

and prognosis guiding for pancreatic cancer. At the moment,

clinicians depend largely on pathological factors such as TNM

classification, AJCC tumor staging, or histological grade of the

tumor to select proper therapy and forecast the outcome for a

certain patient. Nonetheless, novel biomarker panels with high

accuracy and specificity are widely accepted as a promising

approach that could shed light on improving clinical surveillance

and management of pancreatic cancer.

In recent years, the roles of non-coding RNA including micro

RNA (miRNA), circular RNA (circRNA) and lncRNA have been

increasingly emphasized in tumor biology. Numerous studies have

revealed that dysregulated lncRNA participates in processes of

carcinogenesis and progression of pancreatic cancer. For

instance, Liu has reported that lncRNA NR2F1-AS1 promotes

proliferation and invasion of pancreatic cancer by regulating the

neighboring NR2F1 gene and activating AKT/mTOR signaling

pathway (Liu et al., 2022). Huang has demonstrated that

lncRNA LNC00842 prompts the malignancy of pancreatic

cancer by preventing acetylate PGC-1α from deacetylation and

remodeling the metabolic status of cancer cells (Huang et al., 2021).

Additionally, Zheng has announced that lncRNALINC00673 serves

as a tumor suppressor by accelerating the ubiquitination of

oncogene PTPN11 via binding to miRNA-1231 and competing

for the endogenous RNA (ceRNA) mechanism (Zheng et al., 2016).

As our knowledge of translating molecular profiling and genetic

TABLE 2 Information of candidate agents identified by CTRP, PRISM and CMap databases. Candidate molecules identified by public databases.

Name Description Status CMap score

Selumetinib MEK inhibitor Approved 3.28

Afatinib EGFR inhibitor Approved −34.5

Ro-4987655 MEK inhibitor Phase I NA

PD-0325901 MEK inhibitor Phase I/II 2.64

Fluocinolone-acetonide Glucocorticoid receptor agonist Approved 0

Ingenol-mebutate PKC activator Approved 85.49

12-O-tetradecanoylphorbol-13-acetate PKC activator Phase I/II NA

LY-303511 Casein kinase inhibitor No data −98.38

RO-90-7501 Beta amyloid inhibitor No data −98.17

TG-101348 FLT3 inhibitor Phase I/II −97.64

Baeomycesic-acid Lipoxygenase inhibitor No data −97.24

Pirarubicin Topoisomerase inhibitor Phase II −97.22

PIK-75 DNA protein kinase inhibitor No data −96.65
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defects into novel biomarkers and targets soars, the potentiality of

lncRNA in pancreatic cancer is not to be neglected.

The major pursuit of the present study is to construct a

lncRNA-based molecular signature that hosts high efficacy in

predicting the outcomes of pancreatic cancer. We have noticed

that all patients with pancreatic cancer are now treated with one

universal norm mainly based on imaging experiments. The lack of

corresponding biomarkers and specified measures possibly result in

unsatisfactory therapeutic effects. Therefore, another purpose of the

study is to develop a tailored treatment for a certain proportion of

patients with possible high risk and worse outcomes.

To achieve these goals, the TCGA-PAAD cohort was randomly

split and applied for prognostic analysis. After screening out the

differentially expressed lncRNAs and prognostic lncRNAs that were

Cox-positive, an RSF model based on minimal depth were

established to finally identify target lncRNAs and to form a

lncRNA based classifier with the highest efficacy and

effectiveness. Hence, the cohorts were subsequentially divided

into high-risk and low-risk groups according to the median

value of the risk scores by the signature. The survival status of

the high-risk and low-risk groups was then compared via Kaplan-

Meier survival analysis. The result indicates a huge gap between the

subgroups where individual samples with high-risk scores reveal

remarkably worse prognoses than their counterpart in low-risk

groups. In addition, the signature exhibits superior efficacy in

prognosis anticipation, where the AUC value in ROC analysis

exceeds over 0.90 for all 1, 3, and 5 years prediction of OS in the

training group and reaches 0.75 to 0.83 overall. Furthermore, the

signature was approved by the uni- and multivariate Cox as one

independent predictive factor withmarked significance. Last but not

least, a combined predictionmodel that includesmultiple associated

factors was carried out using a nomogram to put the prognosis

prediction of pancreatic cancer into practice.

Despite our analysis suggesting that the lncRNA-based signature

is of both expressional and prognostic significance, most component

lncRNAs consisting it remains unknown in tumor biology. As the

champion with the highest coefficient value among all member

lncRNAs, the association between CASC8 and the malignant tumor

has beenmarked recently. It was reported that CASC8 promoted the

proliferation of retinoblastoma cells via manipulating the

methylation of miRNA-34a (Yang B. et al., 2020). Besides,

inhibiting CASC8 led to decreased development in non-small cell

lung cancer and enhanced sensitivity against chemotherapy,

implying CASC8 might be a novel target for cancer treatment in

the future (Jiang et al., 2021). MIR600HG is another

elemental lncRNA with a high coefficient but rather negative

than positive. Pieces of the literature suggested that MIR600HG

suppressed metastasis and development by targeting oncogenic

ALDH1A3 in colorectal cancer (Yao and Li, 2020). Nevertheless,

other studies also indicated that MIR600HG induced but not

hindered the progression of the same disease, reflecting its

complex nature in tumor biology (Huang et al., 2022).

Furthermore, the finding that elemental lncRNAs had

considerable mutual correlation in expression suggests some of

them might have relevant mechanisms. More functional study is

in great need to gain a deeper understanding of these lncRNAs

which might unravel novel mechanisms in pancreatic development.

Pancreatic cancer is well known for its feature of immune

suppression due to the oncogenic drivers (Bear et al., 2020). By far

no single-agent immune therapywas proven clinically effective. And

immunemodulators are jointly applied with other treatments. After

decades of dedication, scientists gradually unraveled the pivotal role

of the classical oncogene KRAS and the activation of its mutation in

pancreatic cancer. Not only as the trigger of carcinogenesis, but the

inception of mutant KRAS signaling also orchestrates a complex

network of immunosuppression by manipulating the tumor

microenvironment (TME) in pancreatic cancer. Evidence shows

that the hyperactivation of KRAS prevents both the innate and

adaptive immunity by regulating the expression of immune

checkpoint CD47 and PD-L1, activating immune suppressive

cells, modulating the level of major histocompatibility complex

class I (MHC), forming an inconvenient stromalmicroenvironment

and so forth (cancer cell p2). Despite all the disadvantages,

developing novel strategies of immunotherapy for pancreatic

cancer is still able to catch the public interest. Several

approaches have been proposed for future combinatorial

treatments such as stimulating the antigen specificity of T cell

immunity, increasing the function of effector T cells, and

diminishing the immunosuppressive myeloid and stromal cells.

In this study, the assumption was made that risk subgroups

might relate to different immune landscapes. Thus, activation of

major immune cells and functions were compared by CIBERSORT

and ssGSEA. The result revealed that the activation of a series of

major immune cells including B naïve cell, CD8+ T cell, T helper cell

and neutrophils were modestly down-regulated in the high-risk

group, suggesting that the activation of immune cells in tumors of

the high-risk patients are possibly paralyzed. Consistently, crucial

immune functions such as T cell inhibition, T cell stimulation and

IFN response were also found to decline in the high-risk

group. Taking together, the enhanced immunosuppression in the

high-risk group might be one possible explanation for its notorious

outcome.

Of note, as one pivotal component in the tumor

microenvironment of pancreatic cancer, the activation of

M2 macrophage was found elevated in high-risk patients. The

polarization of tumor-associated macrophage (TAM) has been

widely accepted as one symbolic event in early and advanced

tumorigenesis. Also, several studies confirmed increased

M2 deviation of macrophages that promotes tumor behaviors

including tumor proliferation, metastasis, and immune escape in

pancreatic cancer (Yang S. et al., 2020). Moreover, a meta-analysis

containing 1,699 patients with pancreatic cancer concludes that the

activity of M2 macrophage is not only closely associated with

carcinogenesis, but also has a clear impact on the OS of

pancreatic cancer, and thus might be considered a diagnostic

and therapeutic target in the future (Yu et al., 2019).
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Besides, the gene enrichment and tumor immune analysis

unanimously observed an increased interferon-alpha response in

the high-risk subgroup. As one of the oldest immune-based

therapeutic options for cancer treatment, interferon-alpha is

widely used to suppress tumor growth in melanoma, lymphoma,

renal carcinoma and so forth. In pancreatic cancer, some clinical

trials suggested that chemotherapy based on interferon might

improve the overall outcome after surgical resection (Jensen

et al., 2014; Ohman et al., 2017). Nonetheless, more efforts are

still required to assess the potential of interferon as a first-class

approach in a certain population of pancreatic cancer.

In addition, the potential responsibility for the immunotherapy

was evaluated by TIDE analysis. Paradoxically, the result indicated

that the high-risk group positively correlated with the declined level

of TIDE score and immune dysfunction to their low-risk peer,

suggesting promising anticipation of therapeutic effect in the high-

risk group. To our knowledge, the TIDE algorithm was built on

specific tumor types of melanoma and non-small cell lung cancer

(NSCLC). The unique characteristic of heterogeneity and

immunosuppression in pancreatic cancer could leave the result

debatable. In sum, further studies are drastically needed to gain a

deeper understanding of immune activity in pancreatic cancer

before novel promising therapeutic strategies are to be developed.

Last but not least, potential small molecules that might have

therapeutic effects, particularly for high-risk patients were searched

viaCTRP, PRISM andCMap databases. As the only agent identified

by CTRP and PRISM with a negative CMap score, Afatinib belongs

to the tyrosine kinase inhibitor family and is mainly effective for

epidermal growth factor receptor (EGFR) and human epidermal

growth factor receptor 2 (HER2). Afatinib, under the commercial

name of Gilotrif, has received approval as a first-line treatment for

NSCLC. Other indication includes advanced breast cancer with

HER2 positive. On-going and complete clinical trials are revealing

the potential efficacy of Afatinib in lung cancer other than NSCLC,

Head, and Neck squamous cell carcinoma, glioma, and prostate

cancer (Molife et al., 2014; Reardon et al., 2015; Hayashi et al., 2022;

Kao et al., 2022). Noticeably, two studies exploring the effect of

Afatinib on pancreatic cancer acquired only negative results (Haas

et al., 2021; van Brummelen et al., 2021). In a phase I study, Afatinib,

together with another agent selected from the CTRP database,

Selumetinib, was administrated on KRAS-mutated pancreatic

cancer (van Brummelen et al., 2021). The result suggested that

despite the combination can be used on KRAS-mutated tumors

without severe complications, the clinical efficacy was also limited.

The other phase II trial concluded that the combination therapy of

Afatinib plus gemcitabine did not exhibit a synergistic effect and

failed to surpass gemcitabine application alone (Haas et al., 2021).

Yet it is still not clear if Afatinib might be more beneficial to certain

portions of pancreatic cancer patients.

According to CMap analysis, 5 novel molecules exhibited

strong therapeutic potentiality (CMap < −95). LY303511 inhibits

the activity of casein kinase 2, which is known to prompt the

translation from the G1 to G2 phase and therefore down-

regulated cellular proliferation in A549 cells (Kristof et al.,

2005). Afterward, LY303511 also increases apoptosis in tumor

cells via sensitizing TRAIL signaling in HeLa cells (Tucker-

Kellogg et al., 2012). However, little is known about the

function of LY303511 in pancreatic cancer, and no clinical

trial using the agent were carried out so far. TG-101348, a

selective JAK antagonist, is one rising star in the antitumor

pharmacy. It has been extensively studied in hematology by

both in vitro and in vivo models (Lasho et al., 2008; Wernig

et al., 2008; Lasho et al., 2010). Running clinical studies are

investigating the role of this promising molecule in leukemia and

myeloproliferative neoplasm. Interestingly, a recent study

showed that TG-101348 ameliorates hepatic fibro-genesis by

inhibiting the TGF-β relied upon activation of hepatic

fibroblasts, indicating a broad future prospective of this novel

molecule (Akcora et al., 2019).

Conclusion

To. conclude, this study generated a novel lncRNA-based

signature based on a random forest model to predict the overall

survival of pancreatic cancer. The efficacy and effectiveness of

the signature were evaluated individually and combined with

other clinical characteristics. This lncRNA panel, either alone

or in combined efforts with other clinical factors, can provide a

novel strategy for prognosis anticipation and clinical decision of

pancreatic cancer. High-risk patients entitled to the signature

tend to have considerably worse outcomes than their low-risk

counterparts. And enhanced immunosuppression might be one

reasonable explanation. Last but not least, potential therapeutic

molecules were excavated from public databases. The result

turns out Afatinib, LY-303511, TG-101348 and Pirarubicin

could be candidates that are particularly effective for patients

with a high-risk score. But before understanding all this, more

efforts on validation and mechanistic exploration of these genes

and drugs are still in great demand.
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