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Background: Kidney Renal Clear cell carcinoma (KIRC) is a major concern in the

urinary system. A lot of researches were focused on Chromatin Regulators (CRs) in

tumors. In this study, CRs-related lncRNAs (CRlncRNAs) were investigated for their

potential impact on the prognosis of KIRC and the immune microenvironment.

Methods: The TCGA database was used to obtain transcriptome and related clinical

information. CRs were obtained from previous studies, whereas CRlncRNAs were

obtained by differential and correlation analysis. We screened the lncRNAs for the

signature construction using regression analysis and LASSO regression analysis. The

effectiveness of the signaturewas evaluated using the Kaplan-Meier (K-M) curve and

Receiver Operating Characteristic curve (ROC). Additionally, we examined the

associations between the signature and Tumor Microenvironment (TME), and the

efficacy of drug therapy. Finally, we further verified whether these lncRNAs could

affect the biological function of KIRC cells by functional experiments such as

CCK8 and transwell assay.

Results: A signature consisting of 8 CRlncRNAs was constructed to predict the

prognosis of KIRC. Quantitative Real-Time PCR verified the expression of 8 lncRNAs

at the cell line and tissue level. The signature was found to be an independent

prognostic indicator for KIRC in regression analysis. This signature was found to

predict Overall Survival (OS) better for patients in the subgroups of age, gender,

grade, stage,M, N0, and T. Furthermore, a significant correlationwas found between

riskScoreand immunecell infiltrationand immunecheckpoint. Finally,wediscovered

several drugs with different IC50 values in different risk groups using drug sensitivity

analysis. And functional experiments showed that Z97200.1 could affect the

proliferation, migration and invasion of KIRC cells.
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Conclusion: Overall, the signature comprised of these 8 lncRNAs were reliable

prognostic biomarkers for KIRC. Moreover, the signature had significant

potential for assessing the immunological landscape of tumors and

providing individualized treatment.
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microenvironment, kidney renal clear cell carcinoma (KIRC)

Introduction

Renal Cell Carcinoma (RCC) is among the ten most common

forms of cancer globally (Siegel et al., 2018), second only to bladder

cancer among urinary system tumors. There is no histological variety

of RCC more common than Kidney Renal Clear cell Carcinoma

(KIRC), accounting for 80%–90%of RCC. The KIRC is also themost

common pathological variety causing death in renal cancer patients

(Hsieh et al., 2017). There are more than 330,000 new cases of RCC

globally and over 140,000 deaths each year and the incidence has

continued to rise (Siegel et al., 2017). Advancements in medicine and

the popularity of physical examinations have resulted in

improvement in the medical level and an increase in the early

diagnosis rate of KIRC. However, some patients have advanced

KIRC at the time of diagnosis. Surgical treatment is preferred

when KIRC is detected early. Because KIRC is not sensitive to

radiotherapy and chemotherapy, targeted therapy is the main

treatment for patients with advanced KIRC. According to

statistical data, the prognosis of advanced KIRC is particularly

poor, with a 5-year survival rate as low as 11.7% (Morrissey et al.,

2015). Therefore, it is crucial to investigate the pathogenesis of KIRC,

especially advancedKIRC. This type of research can also provide new

insights into the clinical treatment of KIRC, and also provide

potential molecular targets for the targeted therapy.

Noncoding RNAs have been extensively studied since the

development of high-throughput technologies such as second-

generation sequencing. Long noncoding RNAs (LncRNAs), a class

of no protein genes coding potential, are initially assumed to be

nonfunctional transcriptional byproducts. Studies on transcriptional

activation, cell cycle regulation and epigenetic regulation (Miranda-

Castro et al., 2019; Zhang et al., 2019) have been found for lncRNAs in

the onset and development of disease. The occurrence and

progression of tumors are influenced by more than a hundred

lncRNAs with dysregulated expression, particularly urinary

malignancies, as research advances. Liu et al. demonstrated that a

signature composed of four lncRNAs can predict the prognosis of

KIRC and that the signature could be used as a potential biomarker

(Liu et al., 2020). Xia et al. validated a signature based on nine redox-

related lncRNAs as a prognostic marker for KIRC (Qi-Dong et al.,

2020). More studies have demonstrated that lncRNAs affect the

prognosis of KIRC, implying that we may be able to develop

more accurate biomarkers of KIRC based on lncRNAs.

Chromatin Regulators (CRs) are a class of proteins mainly

involved in the fine regulation of chromatin structure (Gonzalez-

Perez et al., 2013). The CRs are mainly composed of DNA

methylators, histone modifiers, and chromatin remodelers. To

participate in the biological process of the tumor, CRs can

promote epigenetic changes. Polybromo-1 (PBRM1), a chromatin

regulator, has been identified as the most mutated gene in KIRC and

a potential target for KIRC therapy (Aili et al., 2021). A recent study

recommended 11 CRs as a biomarker for bladder cancer (Zhu et al.,

2022). However, no study has been conducted to investigate the role

of CRs-related lncRNAs (CRlncRNAs) in KIRC. In the study, we

employed bioinformatics to construct a signature of CRlncRNAs and

analyzed if it could be used for KIRC.

Method and materials

Collection and processing of data

Data on all KIRC transcriptomes, their clinical characteristics

and mutation data were obtained from The Cancer Genome Atlas

(TCGA) database (https://www.cancer.gov/), excluding samples with

missing clinical information. Mutation data was downloaded to

analyze the association between the signature and tumor

mutational burden (TMB). From the previous study, we obtained

870 CRs (Lu et al., 2018). Differential analysis of these regulators was

done using |logFC| > 1 and False Discovery Rate (FDR) < 0.05 as

screening conditions, to acquire Differentially Expressed CRs

(DECRs) in KIRC. In addition, CRlncRNAs were selected by

Pearson correlation analysis, with correlation coefficients higher

than 0.8 and p-values below 0.05. Finally, differential analysis was

used to identify Differentially ExpressedCRlncRNAs (DECRLs), with

the same conditions as before.

Construction of a prognostic signature
based on chromatin regulators-related
lncRNAs

To generate training and testing sets, a 7:3 split of the entire

TCGA dataset was performed.We used the training set for signature

construction. A testing set was used to demonstrate the value of the

signature and the entire set. The training set was first subjected to

univariate regression analysis to identify DECRLs that affect the

prognosis of KIRC. In addition, Least Absolute Selection Operator

(LASSO) regression analysis was employed to avoid overfitting.
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These lncRNAs were used to construct a prognostic signature for

calculating risk scores for KIRC patients. The formula for calculating

risk scores was: Risk score = ∑n
i�1expi*βi, where β represented the

coefficient value of lncRNAs and exp denotes the expression level.

Validation of the prognostic signature

The prognostic model was further validated using a testing and

the entire set. Patients were classified into high- and low-risk groups

based on their median risk score. Based on the Kaplan-Meier (K-M)

curve, we compared survival difference of different groups of patients.

We also calculated Area Under the Curve (AUC) and assessed the

accuracy of the signature in predicting KIRC prognosis using the

Receiver Operating characteristic Curve (ROC). The differential

expressions of eight lncRNAs were compared between different

groups using heatmaps.

Validation of prognostic signature as an
independent prognostic factor

Based on logistic regression analysis, the correlations between

clinicopathological factors and riskScore were calculated and

presented in the form of a heatmap. The prognostic value of the

riskScore was investigated using univariate/multivariate regression

analysis. The ROCwas subjected to compare the accuracy of signature

and several clinical characteristics in the prediction of KIRC

prognosis.

Construction and evaluation of
nomogram

As per the previous methods (Iasonos et al., 2008), a nomogram

was developed based on 8 clinical characteristics and riskScore to

assess Overall survival (OS) in patients with KIRC. Additionally,

calibration curves were used to assess the nomogram for OS.

Enrichment analysis and gene set variation
analysis (GSVA)

Annotating differentially expressed genes involved the use of

Gene Ontology (GO) analysis, which was comprised of three

processes, including biological process, molecular function and

cellular components. The Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis was applied in the

investigation of the relevant pathways to further analyze the

mechanisms associated with prognostic models in KIRC. The

GSVA was an algorithm that can calculate the variance scores for

specific sets of genes in each sample, without the need for prior

variance analysis between samples. GSVA was performed on the

entire as per the previous methods (Hänzelmann et al., 2013), and

Person correlation analysis was used to assess the correlation of

GSVA scores with prognostic models and the 8 lncRNAs.

Assessment of tumor microenvironment
and immune cell infiltration

We used the ESTIMATE algorithm to calculate ImmunityScore,

StromalScore and ESTIMATEScore for different risk groups for

improving understanding of the association between immunity

and riskScore. The CIBERSORT (Newman et al., 2015),

CIBERSORT-ABS, TIMER (Li et al., 2017), xCELL (Aran et al.,

2017), MCPcounter (Dienstmann et al., 2019), QUANTISEQ and

EPIC (Racle and Gfeller, 2020) were used to assess immune cell

infiltration in samples of the entire TCGA set and to establish the

association between riskScore and immune cell infiltration. In this

study, we investigate the level of tumor-infiltrating immune cells and

assessed their immunological activities using ssGSEA.

Prediction of drug sensitivity

Immune checkpoint expression in different groups was examined

using the Wilcoxon signed-rank test. We further evaluated the

usefulness of prognostic signature in predicting the effect of drug

treatment for KIRC. For the purpose of determining sensitivity to

drugs, the half-maximal inhibitory concentration (IC50) of different

TABLE 1 Primer sequence of lncRNAs.

Order Primer 59 to 39

1 LINC00551_F TGCCTATAGGTGCCAAGACC

2 LINC00551_R TCTCCACCTGACATCCCTTC

3 AL031722.1_F CTCAAGCGATCGACCAGTCT

4 AL031722.1_R CTCCTGGGTTCAAGCAATTC

5 AC093001.1_F GCGGAAGCTTTGTTCTTTTG

6 AC093001.1_R TCGCGGTGTTACAGCTCATA

7 NDUFB2-AS1_F TAATGCCTGCAAGTGGACAG

8 NDUFB2-AS1_R GCTTGGCCACTTCCTTAACA

9 LINC00894_F TGAGCTGCTCCTCACTCTCA

10 LINC00894_R ATCCGACCACAGATCAGACC

11 Z97200.1_F ATCAGGGAAGAGGGGAGTGT

12 Z97200.1_R TTCATCCCTGAGTCCCTTTG

13 AC006160.1_F GAATTCTGGTCGGAGATGGA

14 AC006160.1_R CCCTGATCATGACACTGCAC

15 AC092422.1_F GCTGACTCGTCCCTTTTCTG

16 AC092422.1_R TCCTCCAGATGAGCAGGACT

The relative expression of LncRNA was evaluated using the 2−ΔΔCt method and plotted

by Graphpad Prism 8. The Institutional Research Ethical Committee of Nantong

University Hospital Institutional Research Ethics Committee granted research ethics

approval for this study.
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samples was calculated using the pRRophetic package (Geeleher et al.,

2014). A lower IC50 value was indicative of higher drug sensitivity.

Validation of the expression of lncRNAs in
KIRC based on quantitative real-time PCR
(qRT-PCR)

Verification of gene expression was conducted at tissue

level and cellular level. Validation at the cellular level was

accomplished using normal renal tubular epithelial cells

(HK-2) and renal tumor cells (ACHN, 769-P, 786-O). In

addition, we collected KIRC and adjacent normal tissue

samples from nine pairs of KIRC patients who underwent

surgery at Nantong University Hospital for tissue-level

validation. TRIzol reagent was used to extract RNA as per

the instructions of the vendor. The reverse transcription kit

(Vazyme, Nanjing, China) was then used to convert RNA to

cDNA. The SYBR Green was used for qRT-PCR. The primer

sequences for lncRNAs were presented in Table 1.

FIGURE 1
Workflow of this study.
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FIGURE 2
The differentially expressed chromatin regulator-related genes identified in KIRC. (A) Heatmap of these differently expressed chromatin
regulators. (B) Volcano plot of these differently expressed chromatin regulators. (C) Heatmap of these differently expressed chromatin regulators-
related lncRNAs. (D) Volcano plot of these differently expressed chromatin regulators-related lncRNAs (CRlncRNAs). (E,F) Lasso regression analysis
of CRlncRNAs and calculation of the minimum criteria.
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Cell culture and cell transfection

ACHN and 769-P cells (Shanghai Institute for Biological

Sciences) were cultured in a constant temperature incubator

at 37°C with a CO2 volume fraction of 5%. Cells were spread

into 6-well plates and transfected the next day. The

interference plasmids were obtained from GenePharma

(Shanghai, China). And each 6-well plate was replaced

with 2 ml complete medium +3.75 µl LipofectamineTM

3000 + 2500 ng negative control or sh-RNA when the cell

density reached about 70%. After 12 h, the complete medium

containing serum and antibiotics was replaced with 2 ml.

48 h after transfection, the cells were collected and used for

subsequent experiments.

Cell function experiments

After cells were transfected for 48 h, cells were spread evenly in

96-well plates, and 5 parallel replicate wells were set up for each group

of fragments. After waiting for cell apposition according to the cell

characteristics, 10 μl CCK-8 reagent was added separately for

FIGURE 3
Verification of gene expression. (A) LINC00551, (B) AL031722.1, (C) AC093001.1, (D) NDUFB2-AS1, (E) LINC00894, (F) Z97200.1, (G)
AC006160.1, and (H) AC092422.1 expression in normal and kidney cancer cell lines; (I) eight lncRNAs expression in normal kidney tissue and KIRC
tissue. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Frontiers in Genetics frontiersin.org06

Zhang et al. 10.3389/fgene.2022.974726

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.974726


5 consecutive days, and the absorbance at 450 nm and 630 nm was

detected by enzyme marker at the same time every day. The 24-well

plates were infiltrated using 200 μl of culture medium. After that,

transwell chambers were added, and the stromal gel and medium

were configured according to 1:6 in advance in the invasion

experiment and put into the chambers. The configured cell

suspensions were added to the chambers and fixed after 48–72 h

using 4% paraformaldehyde, stained with crystal violet, rinsed with

PBS and photographed.

Results

Identification of differentially expressed
CRlncRNAs (DECRLs)

Figure 1 showed the flow chart of the whole paper. First, we

retrieved 870 CRs from a previous study and downloaded the entire

transcriptome data of KIRC including 539 tumors and

72 paracancerous tissue samples in the TCGA database. The

FIGURE 4
Verification of 8 CRlncRNAs signature. (A–E) KM survival, risk score, 1-, 3-, and 5-year ROC and heatmaps of according to CRlncRNAs groups in
TCGA training set. (F–J) KM survival, risk score, 1-, 3-, and 5-year ROC and heatmaps of according to CRlncRNAs groups in TCGA testing set. (K–O)
KM survival, risk score, 1-, 3-, and 5-year ROC and heatmaps of according to CRlncRNAs groups in the entire TCGA set.
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FIGURE 5
The assessment of independent prognostic factor. (A,B) Univariate and multivariate Cox regression analysis of the entire dataset (TCGA). (C,D)
Univariate and multivariate Cox regression analysis of the training dataset. (E,F) Univariate and multivariate Cox regression analysis of the testing
dataset. (G–I) 1-, 3- and 5-year ROC curves of riskScore and other clinicopathologic characteristics.
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870 CRs were screened by differential analysis in the first step. Figures

2A,B shows DECRs as heatmaps and volcano maps. We then

obtained 287 DECRLs, including 258 up-regulated lncRNAs and

29 down-regulated lncRNAs (Figures 2C,D).

Construction and validation of a
prognostic signature for DECRLs

We developed a prognostic signature for patients with KIRC

using TCGA training set. First, univariate regression analysis was

conducted to obtain 99 lncRNAs associated with KIRC prognosis

(Supplementary Table S1). Then, LASSO and multivariate regression

analysis were employed to identify 8 lncRNAs (LINC00551,

AL031722.1, AC093001.1, NDUFB2-AS1, LINC00894, Z97200.1,

AC006160.1, and AC092422.1) that were involved in the

development of risk model (Figures 2E,F). Using the training set,

we performed K-M survival analysis on 8 lncRNAs (Supplementary

Figure S1). Patients with high expression of AC006160.1,

AC093001.1, LINC00894, NDUFB2-AS1, and Z97200.1 were

predicted to have a poor prognosis, whereas patients with high

expression of AC092422.1, AL031722.1, and LINC00551 were

expected to have a better prognosis. Moreover, the risk score was

computed as: risk score = (−3.2301 * LINC00551 expression) +

(−0.4501 * AL031722.1 expression) + (0.2268 *

AC093001.1 expression) + (0.7924 * NDUFB2-AS1 expression) +

(0.5056 * LINC00894 expression) + (0.5577 *Z97200.1 expression) +

(0.9458 * AC006160.1 expression) + (−0.9352 *

AC092422.1 expression). We validated the expression of these

eight lncRNAs using PCR at the tissue level and cellular level

(Figure 3). AC092422.1 expression in the three kidney cancer cells

was not statistically significant. The rest of the genes were significantly

different in the expression in the kidney cancer cell lines. For instance,

the expression of LINC00551 decreased in ACHN, 769-P and 786-O

cells. Moreover, tissue-level expression results revealed that seven

genes were highly expressed in KIRC, which was slightly different

from the cellular level expression results.

Survival results analysis and model
validation

The patients were divided into two risk groups including high-

risk and low-risk. Patients in the high-risk category had poorer

survival (Figure 4A). Figures 4B,C showed the survival status and

distribution of patients, with higher scores accounting for more

deaths. The ROC was also used to validate the signature for

prognostic prediction. The signature had AUC values of 0.768,

FIGURE 6
Correlation between risk score and clinicopathological factors. (A) Heatmap for CRlncRNAs prognostic signature and clinicopathological
factors. (B–H) Proportion and distribution of patients with different clinical traits in high- and low-risk groups.
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0.751, and 0.765 for 1-, 3-, and 5-year, indicating that it had good

predictive efficacy (Figure 4D). The expressions of these 8 lncRNAs in

high- and low-risk groups were displayed in Figure 4E.We used both

the testing and entire set to verify the reliability of the signature. The

results of the testing set implied that high-risk patients had a worse

prognosis (Figures 4F–H). Additionally, the results of the ROC

analysis indicated moderate accuracy (Figure 4I). Figure 4J

depicted a heatmap of 8 lncRNAs differentially expressed in high-

and low-risk groups. The validation results for the entire testing set

exhibited the same trend (Figure 4K−O).

The signature was an independent
prognostic factor for KIRC

We used univariable and multivariable Cox analysis on

three datasets to investigate the prognostic significance of the

signature in KIRC. In the entire set univariable/multivariable

Cox analysis revealed that riskScore could serve as an

independent prognostic factor of KIRC (univariable Cox

analysis: HR = 1.268 and p < 0.001, multivariable Cox

analysis: HR = 1.177 and p < 0.001; Figures 5A,B).

FIGURE 7
K-M survival curves of patients with different clinical traits. (A) Age >65 ranked by risk score for OS. (B) Age<= 65 ranked by risk score for OS. (C)
Female ranked by risk score for OS. (D)Male ranked by risk score for OS. (E) Grade1-2 ranked by risk score for OS. (F) Grade3-4 ranked by risk score
for OS. (G)M0 ranked by risk score for OS. (H)M1 ranked by risk score for OS. (I)N0 ranked by risk score for OS. (J)N1 ranked by risk score for OS. (K)
Stage I-II ranked by risk score for OS. (L) Stage III-IV ranked by risk score for OS. (M) T1-2 ranked by risk score for OS. (N) T3-4 ranked by risk
score for OS.
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Meanwhile, the results of univariable/multivariable Cox

analysis in the training and testing set all suggested that

riskScore could independently affect the prognosis of KIRC

(univariable Cox analysis: HR = 1.258 and p < 0.001,

multivariable Cox analysis: HR = 1.166 and p < 0.001

(training set); univariable Cox analysis: HR = 1.379 and

p < 0.001, multivariable Cox analysis: HR = 1.258 and p =

0.008 (testing set) (Figures 5C–F). All of the results indicated

that the signature could affect the prognosis of KIRC

independently (Supplementary Table S2).

The relationship between prognostic
signature and clinical characteristics

The results of 1- and 3-year ROC curves showed that riskScore

and stage had higher sensitivity and specificity in predicting OS of

patients with KIRC than other factors. Furthermore, the results of 5-

year ROC curve showed that riskScore had the highest sensitivity and

specificity (Figures 5G–I). The heatmap depicted the relationships

between riskScore and clinical variables, where riskScore differed

significantly in grade, stage, T, and M (Figure 6A). Column charts

were used to show the proportion and distribution of patients with

various clinical traits in the high and low-risk groups (Figures 6B–H).

Patients in the high and low-risk groups had the similar age, sex, and

N percentages (Figures 6B,C,F). On the contrary, there were

differences in the composition of grade, stage, T, and M in the

high and low-risk groups of patients. We further investigated the

effect of prognostic signature in different clinical subgroups on the

prognosis of patients with KIRC. Except for N1, all the signature

predicted a better prognosis for KIRC patients with different clinical

traits (Figure 7). Survival did not differ significantly among

N1 patients with different risk scores.

Construction of nomogram, GO, KEGG,
and GSVA

A nomogram containing clinical factors and riskScore can be

used for the prognosis of KIRCpatients (Figure 8A). TheOS of KIRC

patients can be predicted by calculating the total score. The

calibration curve results suggested that the nomogram plot had a

good predictive ability (Figure 8B). We conducted differential

analyses, GO and KEGG analyses on high and low-risk groups.

These genes were mainly involved in antigen binding and

immunoglobulin receptor binding in terms of molecular function.

Cellular component analysis revealed that these genes were enriched

in the immunoglobulin complex, the external side of the plasma

membrane, among others. The biological process results revealed that

they were primarily related to humoral immune response and

phagocytosis (Figure 9A). According to KEGG analysis, they were

involved in mineral absorption, IL−17 signaling pathway, viral

protein interaction with cytokine and cytokine receiver,

HIF−1 signaling pathway and so on (Figure 9B). We performed

GSVA and correlation analysis to further explore the pathways

associated with risk score. The GSVA results showed that

signaling pathways such as UV_RESPONSE_DN,

TGF_BETA_SIGNALING, and MITOTIC_SPINDLE were

significantly associated with 8 lncRNAs (Figure 9C). Many

pathways including ADIPOGENESIS, ANDROGEN_RESPONSE,

and ANGIOGENESIS were significantly negatively associated with

risk score. This suggested that there could be an association between

the pathways and the development of KIRC.

Correlation between prognostic signature
and tumor microenvironment and
immune cells infiltration

It was well known that TMBwas an importantmarker for tumor

treatment. We further explored the relationships between TMB and

risk scores as well as OS. We found that the higher the risk score the

higher the TMB (Supplementary Figure S3A). Besides, patients in the

high-TMB high-risk group had the worst prognosis, while those in

the low-TMB low-risk group had the best prognosis compared to the

other two groups (Supplementary Figure S3B). The stromal score and

immune score were assessed in different risk groups to further

examine the TME. The high-risk group had higher

ESTIMATEScore and ImmuneScore, but there were no significant

differences in StromalScore between the two groups (Figures

10A–C). The XCELL algorithm results indicated that the

riskScore was significantly positively related to B cell,

CD4+effector memory T cell, CD8+T cell, whereas it was

negatively correlated with endothelial cell and so on (Figure 10D).

The QUANTISEQ algorithm results revealed that riskScore was

significantly positively associated with M1 Macrophage, among

others, while negatively associated with neutrophils. The results of

the EPIC algorithm showed that riskScore was significantly positively

related to Macrophage while negatively correlated with endothelial

cells. Moreover, we investigated the relationship between these

8 lncRNAs and immune cell infiltration (Supplementary Figure

S2). The results found that LINC00894 was positively related to

CD4+ central memory T cells (R = 0.41, p < 2.2e−16, Supplementary

Figure S2A). NDUFB2−AS1 negatively correlated with endothelial

cells (Supplementary Figures S2B,C). The Z97200.1 was positively

correlated with NK T cell (R = 0.42, p < 2.2e−16).

Associations between prognostic
signature and immune checkpoint and
immune functions

We performed correlation analysis as well as explored the

expression of immune checkpoints in different risk score

groups since the study of immune checkpoints can be of great

help in immunotherapy. The high-risk group had higher
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expression of CTLA4, LAG3, PDCD1 and other immune

checkpoints than the low-risk group (Figure 11A). The

CTLA4, PDCD1, and TNFSF14 were significantly and

positively correlated with riskScore (Figure 11B). In

addition, CD44 was significantly negatively associated

with AL031722.1 while TNFRSF25 was significantly

positively associated with LINC00894 (Figure 11B). The

ssGSEA results revealed that the high-risk group had

higher score of immune cells such as CD8+ T cells and

Macrophage (Figure 11C). The high-risk group had higher

APC scores for co-stimulation, Check-point, inflammation

promoting, parainflammation and other immune functions

were higher (Figure 11D).

Analysis of drug sensitivity

To further improve the prognosis of KIRC, we investigated

the relationship between riskScore and the IC50 value of

various drugs. The IC50 values for bosutinib, camptothecin,

gefitinib, sunitinib and parthenolide were lower in the high-

risk group, indicating that there was greater sensitivity to

these drugs in high-risk patients (all p < 0.001, Figures 11E–J).

The IC50 value of lapatinib, on the other hand, was higher in

the high-risk group (Figure 11H).

Biological Functions of lncRNAs

Based on the results of gene expression at the cellular level,

we selected two lncRNAs (Z97200.1, AC093001.1) with the

greatest differences in expression between normal kidney cells

and KIRC cells and the most meaningful p values for functional

experiments. CCK-8 assay revealed that the absorbance (OD)

values of the Z97200.1-interfered and AC093001.1-interfered

groups were significantly lower and cell proliferation was

slower compared to the control group (Figure 12A and

Supplementary Figure S4A). By transwell assay, it was found

that the number of cells crossing the transwell chamber was

significantly reduced in the Z97200.1-interfered group compared

to the control group (Figure 12B). However, there was no

significant change in the number of cells crossing the

transwell in the AC093001.1-interfered group compared to the

control group (Supplementary Figure S4B). The above

experimental results indicated that high expression of

Z97200.1 promoted the migration and invasion of KIRC cells.

Discussion

The RCC was one of the most common varieties of urinary

tract cancer. In clinical practice, the first-line drugs for KIRC

were still tyrosine kinase inhibitors. However, due to individual

heterogeneity, drug resistance occurred more often in some

patients. To that end, new biomarkers must be discovered to

improve the diagnosis and prognosis of KIRC. Numerous tumors

were influenced by chromatin regulators to date. The high

mobility group A1 (HMGA1), a chromatin regulator, had

been shown to suppress BRCA1 gene expression in human

breast cancer (Baldassarre et al., 2003). A study by Ding et al.

identified Brahma-related gene 1 (BRG1) as a target for PTEN-

deficient prostate cancer therapy (Ding et al., 2019). There was

also an increasing number of studies on the relationship between

prognostic models and kidney cancer. Based on a model of genes

associated with ferroptosis and a model of genes associated with

lactate, Hong, Sun et al. found that the OS of KIRC could be

FIGURE 8
Construction of nomogram based on the signature and clinicopathological factors. (A) nomogram for predicting 1-, 3-, and 5-year OS. (B) The
calibration plots for predicting 1-, 3-, and 5-year OS.
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predicted using these models (Hong et al., 2021; Sun et al., 2022).

Currently, lncRNAs had been extensively studied in RCC (Zhai

et al., 2017; Yang et al., 2018; Guo et al., 2021). Tang et al. found

that a model constructed from lncRNAs associated with

ferroptosis and a model constructed from lncRNAs associated

with pyroptosis could both be used to predict OS in KIRC (Tang

et al., 2021; Tang et al., 2022). Yu et al. constructed a model

consisting of lncRNAs associated with M6A and demonstrated

that it could predict the prognosis of KIRC independently (Yu

et al., 2021). However, no chromatin regulator-related lncRNAs

had been studied in KIRC.

Differentially Expressed Chromatin Regulator-related

lncRNAs (DECRLs) were identified using the TCGA database.

Then, univariate and multivariate regression analyses were

conducted to build a prognostic risk signature containing

8 lncRNAs (LINC00551, AL031722.1, AC093001.1, NDUFB2-

AS1, LINC00894, Z97200.1, AC006160.1, and AC092422.1). We

further performed survival and ROC analyses on the prognostic

signature consisting of these 8 lncRNAs. Three datasets were used

to validate the reliability of the signature. Univariate/multivariate

Cox regression analysis demonstrated that the model could

independently influence overall survival in KIRC. A

nomogram was developed to further predict the 1-, 3- and 5-

year survival rates of KIRC patients. In prognostic signature,

three lncRNAs have been identified to be involved in tumor

progression or as tumor prognostic markers. The

LINC00551 was reported to reduce HSP27 phosphorylation

and thus inhibit the proliferation and invasion of esophageal

squamous cell carcinoma cells (Peng et al., 2021). Furthermore,

LINC00551 has been shown to decrease the proliferation and

invasion of esophageal squamous cell carcinoma cells by

reducing HSP27 phosphorylation (Wang et al., 2020). Meng

FIGURE 9
Enrichment analysis of differentially expressed genes. (A) GO analysis. (B) KEGG analysis. (C) GSVA analysis.
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et al. demonstrated that LINC00894 expression was elevated in

breast cancer cells, which promoted their proliferation and

migration (Meng et al., 2021). There was only one publication

on AL031722.1, involvement in the construction of a prognostic

signature for low-grade gliomas (Lin et al., 2020). However, the

remaining five lncRNAs have been little studied so far, and

whether they are involved in the progression of KIRC remains

to be further confirmed experimentally.

We further investigated the biological processes and

signaling pathways involved in the prognostic signature

constructed based on chromatin regulators by GO, KEGG and

GSVA analyses. This signature was found to be involved in the

IL-17 and HIF-1 signaling pathways, among others. Interleukin

17 (IL-17), a pro-inflammatory cytokine, had a crucial role in

tumor formation (Nardinocchi et al., 2015; Qian et al., 2017;

Zhao et al., 2020). In breast cancer, Chen et al. showed that

estrogen receptors down-regulated PD-1/PD-L1 expression by

regulating the IL-17 signaling pathway (Shuai et al., 2020). The

HIF-1α and HIF-1β are comprised of the transcription factor

hypoxia-inducible factor (HIF-1). In the study of solid tumors,

the HIF-1 signaling pathway was frequently mentioned (Vaupel

and Mayer, 2007; Bertout et al., 2008). The HIF-1α has been

demonstrated to play an inhibitory role in KIRC (Schödel et al.,

2016). The PHD3 has been proposed to cause neovascular

dysplasia in pancreatic ductal adenocarcinoma through the

HIF-1 signaling pathway (Tanaka et al., 2015). These

pathways were involved in the biological process of numerous

tumors. Based on the findings of the pathway analysis in this

study, we can postulate that the model may affect KIRC through

these pathways, however, this needs to be validated by further

studies.

TME and immune cell infiltration have significant effects on

tumor progression (Mlecnik et al., 2016; Malka et al., 2020). In

this study, the prognostic signature was correlated with

ESTIMATEScore and ImmuneScore. The ESTIMATEScore

and ImmuneScore, on the other hand, reflected the purity of

immune cells and the level of immune cell infiltration in the

tumor tissue. Immune cell infiltration was shown to influence

tumorigenesis and recurrence and played a critical role in

immunotherapy and clinical outcomes of tumors. A higher

FIGURE 10
Analysis of immune landscape. (A–C) The relationship between prognostic signature and TME. (D) The relationship between immune cells and
risk score was explored by correlation analysis.
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FIGURE 11
(A) Expression of immune checkpoints in high- and low-risk groups. (B) Relationships between immune checkpoint and risk score and lncRNAs.
(C,D) Comparison of the scores of immune cells and immune functions between high- and low-risk groups. (E–J) The abilities of the risk model to
predict drug sensitivity.
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level of macrophage infiltration was associated with the

aggressiveness of human breast cancer (Acerbi et al., 2015).

Hepatocellular carcinoma scoring system based on immune

cell infiltration could predict patient prognosis and guide

immunotherapy (Yang et al., 2021). According to Bai et al.,

patients with the high tumor immune infiltration group had a

better prognosis and were likely to benefit more from

immunotherapy (Bai et al., 2021).

The conventional view was that in most malignancies,

patients with high infiltration of CD8+ T cells had a better

prognosis. However, the impact of the degree of CD8+ T cell

infiltration in KIRC tissue on patient prognosis remained

controversial. Some studies suggested that the prognosis of

KIRC patients with high CD8+ T cell infiltration was worse,

while others had put forward the opposite view (Davis et al.,

2020). Combined with the results in this paper, we found that

higher risk scores suggested a worse prognosis and that high risk

was associated with high infiltration of CD8+ T cells. In addition,

some CD8+ T cells infiltrated in KIRC were found to express

CXCL13, a chemokine. High expression of this subpopulation of

CXCL13 and CD8 protein-positive T cells resulted in immune

escape, leading to a worse prognosis for patients with KIRC with

high infiltration of CD8+ T cells (Dai et al., 2021). In this paper,

whether the presence of CXCL13 expression in CD8+ T cells was

associated with poorer prognosis remains to be further verified in

subsequent experiments. This study concluded that this model

and immune cell infiltration were significantly correlated,

suggesting that the prognostic model may influence the

prognosis of KIRC by modulating tumor immune cell

infiltration. However, this needed to be validated by further

tests to confirm the mechanisms involved.

Immunotherapy was gaining more and more clinical and

scientific attention due to its effectiveness and less side effects.

Immune checkpoint inhibition therapy was one of the most

important methods (Sharma and Allison, 2015). In recent years,

immune checkpoint inhibitors, represented by CTLA-4

monoclonal antibody and PD-1/PD-L1 monoclonal antibody,

had achieved more satisfactory results in the treatment of KIRC

(Motzer et al., 2015). Currently, molecular targeting agents

targeting the PD1/PD-L1 pathway, such as nivolumab,

pembrolizumab and avelumab, had been successfully applied

in the clinical treatment of KIRC. In this paper, PD-1 and CTLA-

4 expression were higher in the high-risk group, which may

explain the poor prognosis of patients in the high-risk group. In

this study, we found that riskScore was correlated with immune

checkpoints such as CTLA-4 and PD-1 by correlation analysis,

and thus hypothesized that riskScore may influence the patient’s

response to immunotherapy by modulating the immune

checkpoint. In addition, we analyzed the IC50 value of some

clinical drugs and found that the IC50 value were different in

different risk groups. However, KIRC was not sensitive to

radiotherapy, so the drug treatment for KIRC patients still

needed to be discussed.

Overall, this study had certain advantages. This was the first

exploration of the role of prognostic signature constructed on the basis

of chromatin regulator-related lncRNAs in KIRC. Further, we used

PCR to verify the expression of these 8 lncRNAs in KIRC at tissue level

and cellular level. In addition, we explored the possible enrichment

pathways in prognostic signature and the relationship with TME and

immune response. We also selected relevant lncRNAs in the model

and investigated its effect on the biological function of KIRC cells.

However, our study also had some limitations. The prognostic

signature was verified by the TCGA dataset, and the follow-up

needed to be validated by other databases. Secondly, the prediction

efficiency of the signature for 1- and 3-year survival of KIRC was

lower than that of stage. Besides, the expression validation at tissue

level and cellular level was slightly different from the expression of

lncRNAs in the database, which may be related to the small sample

FIGURE 12
Z97200.1 stimulated the proliferation, migration and invasion of ACHN cells. (A) ACHN cells growth rates at 1, 2, 3, 4, and 5 days after
knockdownof Z97200.1 weremeasured using a CCK-8 assay. (B) Transwell assays were conducted to assess whether Z97200.1 knockdown affected
the invasion and migration of ACHN cells.
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size. Finally, the mechanism of prognostic models involved in

regulating KIRC remained to be confirmed.

Conclusion

In general, we constructed a prognostic signature based on

8 chromatin regulator-related lncRNAs, which was useful for

clinicians to determine the prognosis of KIRC. Furthermore, the

signature exhibited tremendous potential in evaluating TME and

immunotherapy inKIRCpatients.More studies are needed to validate

this signature in the future.
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