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Introduction: This study aimed to screen for oxidative stress-relatedgenes (OSRGs)

andbuild anoxidative stress-related signature topredict theprognosis of liver cancer.

Methods: OSRGs with a protein domain correlation score ≥ 6 were downloaded

from the GeneCards database and intersected with The Cancer Genome Atlas

(TCGA) data for subsequent analyses. Differential immune cells (DICs) and immune

and stromal scores between the normal and tumor samples were determined,

followed by unsupervised hierarchical cluster analysis. Immune-relatedOSRGswere

identifiedusingweightedgeneco-expressionnetwork analysis. AnOSRG-related risk

signature was then built, and the GSE14520 dataset was used for validation. A

nomogram evaluation model was used to predict prognosis.

Results: Nine DICs were determined between the normal and tumor groups, and

three subtypes were obtained: clusters 1, 2, and 3. Cluster 1 had the best prognosis

among the clusters. One hundred thirty-eight immune-related OSRGs were

identified, and seven prognosis-related OSRGs were used to build the OSRG

score prognostic model. Patients in the high OSRG score group had a poorer

prognosis than those in the low OSRG score group. Six immune cell infiltration and

enrichment scores of the 16 immune gene sets showed significant differences

between the high and low OSRG score groups. Moreover, a nomogram was

constructed based on the prognostic signature and clinicopathological features

and had a robust predictive performance and high accuracy.

Conclusion: The OSRG-related risk signature and the prognostic nomogram

accurately predicted patient survival.
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1 Introduction

Liver cancer is themost critical cancer and tumor disease, threatening the safety of human life

and is a common malignant tumor with high incidence and mortality (Marengo et al., 2016).

With the increase in social work pressure and changes in living habits, the incidence of liver

cancer has increased annually. In 2020, 905,677 new cases and 830,180 deaths from liver cancer

were reported worldwide (Sung et al., 2021), with 41,438 new cases and 391,152 deaths in China,
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accounting for 47.1% of all liver cancer-related deaths worldwide (Cao

et al., 2021). Presently, the pathogenesis andmechanism of liver cancer

have not been fully elucidated. However, hepatitis B virus infection,

immune response, and inflammatory factor response are the leading

causes of liver cancer (Jin et al., 2019). Surgery, radiotherapy, and

chemotherapy are the primary treatmentmethods, but recurrence and

metastasis of liver cancer seriously affect the therapeutic effect,

prognosis, and survival of patients (Boland and Wu, 2018). A

comprehensive study of the molecular mechanisms of liver cancer

and identifying molecular targets are of great significance for the

prognosis and targeted therapy of liver cancer.

Oxidative stress is an imbalance between detoxification and

reactive oxygen species (ROS) production in the body (Sajadimajd

and Khazaei, 2018). Free radicals negatively affect the body and are

considered vital factors contributing to disease and aging

(Kudryavtseva et al., 2016). DNA damage and incorrect repair

caused by oxidative stress can contribute to the activation of

oncogenes or inactivation of tumor suppressor genes, which can

induce cancer. Oxidative stress can also facilitate tumor

neovascularization and enhance the growth and metastasis of

cancer cells (Klaunig, 2018; Sajadimajd and Khazaei, 2018). Using

antioxidants to capture free radicals and eliminate or reduce oxidative

stress is a valuable method to prevent cancer development (Chikara

et al., 2018). Studies have found that people who consume antioxidant-

rich fruits and vegetables have a relatively low incidence of cancer (Lin

et al., 2019; Kim et al., 2020). Thus, there is an urgent need to identify

biomarkers to predict the response to oxidative therapy for liver cancer.

Growing evidence suggests that changes in the tumor immune

microenvironment are associated with tumor survival and progression

(Soysal et al., 2015;Hinshaw and Shevde, 2019).However,mechanisms

underlying oxidative stress and its association with the immune

microenvironment in liver cancer remain unclear. This study aimed

to screen immune-associated oxidative stress-related genes (OSRGs)

and build an oxidative stress-related signature to predict liver cancer

prognosis. This study provides insights into immune biomarkers and

therapeutic strategies for liver cancer treatment.

2 Materials and methods

2.1 Data collection

Gene expression levels [normalized log2 (FPKM+1) expression

level data] and clinical follow-up data of 50 normal and 371 liver

FIGURE 1
Immunemicroenvironment between normal and tumor samples. (A) The difference in immune cells between normal and tumor groups. (B–D)
Tumor microenvironment scores between normal and tumor groups. *p < 0.05, **p < 0.01, ***p < 0.001, –P > 0.05.
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cancer samples were obtained from The Cancer Genome Atlas

(TCGA) database. Samples with missing overall survival (OS) times

and 0 were removed, and 365 liver cancer samples with prognostic

information were retained. In addition, the GSE14520 dataset

(Wang C. et al., 2021) with prognosis information for liver

cancer was acquired from the Gene Expression Omnibus (GEO)

database (Barrett et al., 2013), and 242 liver cancer samples were

retained for subsequent validation analysis after excluding the

samples with missing OS time and 0.

2.2 Acquisition of OSRGs

OSRGs with a protein domain correlation score ≥6 (minimum

standard value) were downloaded from the GeneCards database and

intersected with TCGA data for subsequent analyses.

2.3 Immune microenvironment in normal
and tumor samples

CIBERSORT (Chen et al., 2018) was used to evaluate the

proportion of 22 immune cells according to their expression

levels in TCGA‒liver hepatocellular carcinoma samples. In

addition, the R package ‘estimate’ (Yoshihara et al., 2013) was

used to evaluate immune and stromal scores. The Wilcoxon test

was used to compare the differential immune cells (DICs),

immune scores, and stromal scores.

2.4 Unsupervised hierarchical cluster
analysis

Based on the infiltration score of the obtained DICs,

unsupervised hierarchical cluster analysis was conducted

using ConsensusClusterPlus (Wilkerson and Hayes, 2010)

to predict the subtypes of patients with liver cancer, and the

optimal tumor subtype (K value) was obtained with a

threshold of K = 2–6. Kaplan‒Meier analysis was

employed to assess the survival differences between

patients with different subtypes using the survival package

(Rizvi et al., 2019). The correlations between prognostic

subtypes and clinical information (age, sex, grade,

pathological T/N/M, and stage) were evaluated using the

chi-squared test based on integrated clinical information

data of liver cancer.

FIGURE 2
Unsupervised hierarchical cluster analysis. (A–C) Three molecular subtypes were identified. (D) Kaplan‒Meier analysis of the three molecular
subtypes. (E–G) Proportion of clinicopathologic features of the three molecular subtypes.
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2.5Weighted gene co-expression network
analysis (WGCNA)

WGCNA in R (Langfelder and Horvath, 2008) was utilized to

identify immune-related gene modules with the characteristics of

immune subtype and immune and stromal scores, and the

threshold was set to p < 0.05. Immune-related OSRGs have

also been identified.

2.6 Construction and validation of a risk
model

Univariate Cox regression analysis was performed on

immune-related OSRGs using the ‘survival’ package to

screen prognosis-related OSRGs with a cutoff value of p <
0.05. The key OSRGs were obtained using least absolute

shrinkage and selection operator (LASSO) regression with

10-fold cross-validation and a p-value <0.05. Stepwise Cox

regression analysis was used to build the OSRG-related risk

model using the ‘survminer’ package. The OSRG score was

calculated using the following formula: OSRG score = h0(t) *

exp (β1X1 + β2X2 + ... +βnXn) [the β gene represents the

regression coefficient, h0(t) represents the benchmark risk

function, Xn indicates the concomitant variable, and h (t,X)

indicates the risk function associated with X at time t]. The

samples in TCGA and GSE14520 datasets were categorized

into high- and low-OSRG score groups according to the

median cutoff value of the OSRG score. Kaplan‒Meier

analysis was employed to assess the difference in survival

between patients in the high- and low-OSRG score groups.

In addition, the correlations between high and low OSRG

scores and clinical information (age, sex, grade, pathological

T/N/M ratio, and stage) were evaluated using the chi-

squared test.

2.7 Immune microenvironment

The microenvironment cell population counter

(MCPcounter) algorithm was employed to assess the

immune cell infiltration score, and the GSVA algorithm

(Shi et al., 2020) was used to calculate the enrichment

score of 16 immune gene sets obtained from the Immport

FIGURE 3
The results of weighted gene co-expression network analysis. (A) Estimation of the scale independence index of the 1–30 soft threshold power
(β = 6). (B) Determination of the mean connectivity of the 1–30 soft threshold power. (C) Tree diagram for module division (different color represent
different modules). (D) Relationships of the module with the cluster and immune and stromal scores.
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database (Bhattacharya et al., 2014). The Wilcoxon test was

used to compare the immune cell infiltration and enrichment

scores of the 16 immune gene sets between the high- and low-

OSRG score groups.

2.8 Gene set enrichment analysis (GSEA)

Based on the expression profile in patients with liver cancer,

GSEA (Reimand et al., 2019) was performed to compare the

differences in the HALLMARK gene set between the high- and

low-OSRG score groups with cutoff values of p < 0.05 and

normalized enrichment score (NES) > 1.

2.9 Nomogram construction

Univariate and multivariate Cox regression analyses were

conducted to investigate the relationships between clinical

factors and the OSRG score to screen for independent

prognostic factors with a cutoff value of p < 0.05.

Additionally, the screened independent prognostic factors

and OSRG scores were used to build a nomogram with the

“rms” package (Zhang et al., 2019) in R. The performance of

the nomogram was validated by measuring the concordance

index (C-index), calibration curves, and receiver operating

characteristic (ROC) curve.

3 Results

3.1 Immune microenvironment between
normal and tumor samples

In total, nine DICs were obtained between the normal and

tumor groups (Figure 1A), and the tumor group had the lowest

immune and stromal scores and the highest score of tumor purity

(Figures 1B‒D).

3.2 Identification of three immune
subtypes

Based on the nine DICs, unsupervised hierarchical cluster

analysis was performed, and the optimal tumor subtype was

K = 3 (Figure 2A). Three subtypes were obtained, namely

clusters 1, 2, and 3, with 146, 154, and 65 liver cancer samples,

respectively (Figure 2B). Proportion of ambiguous clustering

(PAC) analysis further verified that the optimal tumor

subtype was K = 3 (Figure 2C). Survival analysis showed

that cluster 1 had the best prognosis among all the clusters

(Figure 2D). The correlations between the prognostic

subtypes and clinical information are shown in Figures

2E‒G.

3.3 Immune-related OSRGs

Based on the 758 OSRGs, the soft threshold power for matrix

transformation was determined to be 6, where the square of the

correlation coefficient between log2k and log2p k) was 0.85

(Figures 3A, B). Six modules were screened, and the

correlation between clinical features and each module was

calculated. The brown and green modules, which had the

highest correlation with clinical features, were selected as the

key modules and had 80 and 58 immune-related OSRGs,

respectively (Figures 3C, D).

3.4 OSRG score prognostic model

Based on 138 immune-related OSRGs, 29 prognosis-related

OSRGs were obtained after univariate Cox regression analysis

(Figure 4A). LASSO regression analysis was conducted on the

29 prognosis-related OSRGs, resulting in 18 OSRGs (Figures 4B,

C). Stepwise Cox regression analysis resulted in seven OSRGs,

BDNF, FASLG, KLF2, MMP9, S100A9, SGCB, and TNFRSF1B,

which were used to build the OSRG score prognostic model

(Figure 4D). Patients in the high-OSRG score group had a poorer

prognosis than those in the low-OSRG score group (p < 0.05;

Figures 5A,B). The distribution of the OSRG score and survival

status in TCGA and GSE14520 datasets are shown in Figures 5C,

D, respectively. The areas under the curve (AUCs) at 1, 3, and

5 years for OS in the TCGA dataset were 0.753, 0.791, and 0.737,

respectively, and in the GSE14520 dataset were 0.711, 0.700, and

0.673, respectively (Figures 5E,F). In addition, the correlations

between high and lowOSRG scores and clinical information (age,

sex, grade, pathological T/N/M, and stage) were evaluated, and

the results showed that OSRG scores were significantly related to

clusters, grade, pathological T, and stage (Figure 5G).

3.5 Immune microenvironment between
the high and low OSRG score groups

The MCPcounter algorithm was used to evaluate the

immune cell infiltration score according to the expression

profile data of TCGA samples, and the results showed six

DICs between the high- and low-OSRG score groups

(Figure 6A). The enrichment scores of the 16 immune gene

sets showed significant differences between the high- and low-

OSRG score groups (Figure 6B).
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3.6 GSEA

GSEA was performed to compare the differences in the

HALLMARK gene set between the high- and low-OSRG score

groups with a cutoff value of p < 0.05 and NES >1. The results

showed that the enrichment pathways of the eight HALLMARK

genes were significantly different between the two groups (Figure 6C),

including fatty acid metabolism, glycolysis, and bile acid metabolism.

FIGURE 4
Oxidative stress-related gene (OSRG) score prognostic signature. (A)Univariate analysis of immune-relatedOSRGs. (B) Least absolute shrinkage
and selection operator (LASSO) coefficient profiles of the 29 survival-related genes. (C) Coefficient profile plot produced against the log(lambda)
sequence in the LASSO model. The optimal parameter (lambda) was selected as the first black dotted line indicated. (D) Stepwise Cox regression
analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.7 Construction of a nomogram for
predicting patient OS

To explore the relationship between clinicopathological

features and the prognostic model, age, sex, pathological

MNT, stage, grade, and OSRG score in TCGA samples were

analyzed, which revealed that pathological T and OSRG scores

were independent prognostic factors (p < 0.05; Figures 7A, B),

and the C-indices of the pathological T and OSRG scores were

0.600 and 0.687, respectively. Moreover, a nomogram was built

with pathological T and OSRG scores (Figure 7C), and its

performance was validated by measuring the C-index,

calibration curves, and ROC curve. The results showed that

the C-index of the nomogram was 0.703, and calibration plots

revealed that the nomogram accurately estimated mortality

(Figure 7D). Survival analysis revealed that the nomogram

was significantly associated with the patient’s prognosis

(Figure 7E). The nomogram ROC curves showed that the

AUCs at 1, 3, and 5 years were 0.725, 0.751, and 0.720,

respectively (Figure 7F). These findings suggest the

appreciable reliability of the nomogram.

4 Discussion

Liver cancer is a common malignant tumor worldwide (Sia

et al., 2017). Oxidative stress significantly affects various

functions and processes, such as cell proliferation,

differentiation, angiogenesis, and metabolism, and is related to

the pathophysiology of various diseases (Klaunig, 2018). Thus,

FIGURE 5
Generation, evaluation and validation of an OSRG score prognostic signature. Kaplan-Meier analysis of the low and high OSRG score groups in
The Cancer Genome Atlas (TCGA) cohort (A) and GSE14520 dataset (B). Risk score distribution and survival status in TCGA cohort (C) and
GSE14520 dataset (D). The areas under the receiver operating characteristic curves (AUCs) for predicting 1-, 3-, and 5-year overall survival (OS) in
TCGA cohort (E) and GSE14520 dataset (F). (G) the correlations between high and low OSRG scores and clinical information.

Frontiers in Genetics frontiersin.org07

Wang and Liu 10.3389/fgene.2022.975211

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.975211


this study aimed to screen for OSRGs and build an oxidative

stress-related signature to predict liver cancer prognosis. Nine

DICs were found between the normal and tumor groups,

including regulatory T cells (Tregs), monocytes, and

M0 macrophages. Tregs are a subset of T cells specifically

used to control immune responses and have been shown to

play a vital role in regulating autoimmune diseases, cancers, and

infectious diseases (Sakaguchi et al., 2020). Wang et al. (2014)

found that methionine enkephalin improved peripheral blood

lymphocyte subsets by inhibiting Tregs in 50 cancer patients.

Monocytes are innate immune cells of the monocyte phagocyte

system that have become an important regulatory factor in tumor

development (Olingy et al., 2019). Tumor-associated

macrophages are vital in promoting tumor progression (Pucci

et al., 2021). Therefore, these nine DICs may play an important

role in liver cancer progression. In addition, unsupervised

hierarchical cluster analysis was performed based on the nine

DICs, and three subtypes were obtained: clusters 1, 2, and 3.

Survival analysis showed that cluster 1 had the best prognosis

among the clusters, and cluster 1 had a lower grade and

pathological T, according to the survival analysis results.

Seven OSRGs were included in the OSRG score prognostic

model: BDNF, FASLG, KLF2, MMP9, S100A9, SGCB, and

TNFRSF1B. Brain-derived neurotrophic factor (BDNF) is a

potent neurotrophic factor (Numakawa et al., 2018) that

promotes breast cancer cell growth and metastasis (Tajbakhsh

et al., 2017). Oyama et al. revealed that tropomycin receptor

kinase B (TrkB)/BDNF signaling could be a novel therapeutic

target in pancreatic cancer (Oyama et al., 2021). Liu et al. (2009)

found that Fas ligand (FASLG) polymorphisms were correlated

with cancer risk. In a study by Wang G. et al. (2021), lncRNA

CASC7 inhibited breast cancer malignant behaviors by

regulating the miR-21-5p/FASLG axis. Gao et al. (2019)

showed that Kruppel-like factor 2 (KLF2) prevents

osteoarthritis in vitro and in vivo by activating the Nrf2/ARE

signaling pathway to inhibit oxidative responses. Lu et al. (2021)

revealed that in clear-cell renal cell carcinoma (RCC),

KLF2 regulated ferroptosis through GPX4, thereby inhibiting

cell migration and invasion. Matrix metallopeptidase-9 (MMP-9)

has been widely associated with cancer pathology (Huang, 2018).

S100A9 is an oxidative stress gene (Saheb Sharif-Askari et al.,

2021), and Lv et al. (2020) found that S100A9 enhances prostate

cancer cell invasion by activating TLR4/NF-κB/integrin β1/FAK
signaling. Chen et al. (2021) found that β-sarcoglycan (SGCB) is a
prognostic metabolism-related gene in clear-cell RCC. Yu et al.

(2014) found that mutations in the inflammation-related gene

TNFRSF1B might alter the risk of colorectal cancer. These seven

OSRGs were used to build an OSRG score prognostic model.

Patients in the high OSRG score group had a poorer prognosis

than those in the low OSRG score group. Regarding OS, the

FIGURE 6
Immunemicroenvironment and gene set enrichment analysis (GSEA) analysis between the high and lowOSRG score groups. (A) Six differential
immune cells were obtained between the high and low OSRG score groups. (B) The enrichment score of 16 immune gene sets showed significant
differences between the high and low OSRG score groups. (C) Eight HALLMARK gene set enrichment pathways were significantly different between
the high- and low-OSRG score groups. *p < 0.05, **p < 0.01, ***p < 0.001, -P > 0.05.
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AUCs at 1, 3, and 5 years were 0.753, 0.791, and 0.737,

respectively, for the TCGA dataset and 0.711, 0.700, and

0.673, respectively, for the GSE14520 dataset, suggesting that

the performance of the risk signature is reliable.

In addition, the MCPcounter algorithm was used to assess

the immune cell infiltration score based on the expression profile

data of TCGA samples. The results showed six DICs between the

high- and low-OSRG score groups, including CD8 T cells,

cytotoxic lymphocytes, and natural killer (NK) cells. CD8+

T cells have been reported to play a vital role in protective

immunity against intracellular pathogens and tumors (Ando

et al., 2020). Stanton et al. found that tumor-infiltrating

lymphocytes play vital roles in mediating chemotherapy

response and improving the clinical outcomes of all breast

cancer subtypes (Stanton and Disis, 2016). NK cells are

powerful effectors of innate immunity and constitute the first

line of defense against cancer (Guillerey, 2020). Moreover, GSEA

results showed that the enrichment scores of the 16 immune gene

sets were significantly different between the high- and low-OSRG

score groups. In addition, eight HALLMARK gene set

enrichment pathways, including fatty acid metabolism,

glycolysis, and bile acid metabolism, showed significant

differences between the two groups. Thus, these eight

HALLMARK gene set enrichment pathways may be associated

with liver cancer progression. Glycolysis is the key to supplying

energy and producing metabolic end products to maintain the

survival of tumor cells (Ganapathy-Kanniappan and Geschwind,

2013). Hu et al. (2017) revealed that phosphoglycerate kinase 1

(PGK1) is an important enzyme in the metabolic glycolytic

pathway, and its acetylation enhances the proliferation and

tumorigenesis of hepatocellular carcinoma cells. Feng et al.

(2021) revealed that dysregulation of bile acid metabolism was

associated with cancer cachexia. Thus, we speculated that these

six DICs and eight HALLMARK gene enrichment pathways

might be involved in liver cancer progression.

In addition, correlations between high and low OSRG scores

and clinical information were evaluated, and the results showed

that OSRG scores were significantly related to cluster, grade,

pathological T, and stage. In addition, the stage and risk score

were independent prognostic factors for clinical decision support

in patients with lung adenocarcinoma. Furthermore, a

nomogram was built using the stage and risk scores.

Nomograms have become a popular tool for tumor prognosis

owing to their intuitive visual performance and personalized

application (Iasonos et al., 2008; Liu et al., 2019). Consistently,

the nomogram in this study accurately estimated the survival

FIGURE 7
Construction of a nomogram. (A) Univariate analysis of OSRG score and clinicopathological characteristics. (B) Multivariate analysis of OSRG
score and clinicopathological characteristics. (C) A nomogram for predicting 1-, 3-, and 5-year OS. (D)Calibration curves for predicting 1-, 3-, and 5-
year OS. (E) Kaplan‒Meier analysis of the nomogram. (F) The AUCs for predicting 1-, 3-, and 5-year OS.
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probabilities of patients with liver cancer, and the performance of

the nomogram was validated by measuring the C-index,

calibration curves, and ROC curves. The results showed that

the C-index of the nomogram was 0.703, and calibration plots

revealed that the nomogram accurately estimated mortality. The

nomogram ROC curve showed that the AUCs at 1, 3, and 5 years

were 0.725, 0.751, and 0.720, respectively. Liu et al. (2020)

identified a prognostic signature of epithelial ovarian cancer

based on tumor immune microenvironment exploration, and

the results showed that the AUCs of the nomogram were 0.70,

0.653, 0.723 for 1-year, 3-year, and 5-year OS, respectively,

suggesting that the prognostic nomogram constructed in this

study showed a good predictive ability and could accurately

predict the survival of patients with liver cancer.

However, this study had numerous limitations. First, the data

analyzed in this study were obtained from public databases, and

external validation is needed. Second, the CIBERSORT algorithm

was only used to evaluate the fractions of tumor-infiltrating

immune cells, and other tools and flow cytometry are

required to verify further the robustness of the results

obtained in this study. Third, the seven OSRGs screened in

this study should be tested in other cohorts and through

further experimental analyses.

In summary, we constructed a reliable OSRG-related

prognostic signature that is closely associated with the

immune system, can accurately predict survival, and provides

insights into predictive biomarkers or potential targets for

patients with liver cancer.
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