
Single-cell RNA sequencing
analysis to explore immune cell
heterogeneity and novel
biomarkers for the prognosis of
lung adenocarcinoma

Yong Xu†, Yao Wang†, Leilei Liang* and Nan Song*

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University,
Shanghai, China

Background: Single-cell RNA sequencing is necessary to understand tumor

heterogeneity, and the cell type heterogeneity of lung adenocarcinoma (LUAD)

has not been fully studied.

Method:We first reduced the dimensionality of the GSE149655 single-cell data.

Then, we statistically analysed the subpopulations obtained by cell annotation

to find the subpopulations highly enriched in tumor tissues. Monocle was used

to predict the development trajectory of five subpopulations; beamwas used to

find the regulatory genes of five branches; qval was used to screen the key

genes; and cellchart was used to analyse cell communication. Next, we used the

differentially expressed genes of TCGA-LUAD to screen for overlapping genes

and established a prognostic risk model through univariate and multivariate

analyses. To identify the independence of the model in clinical application,

univariate andmultivariate Cox regressionwere used to analyse the relevant HR,

95% CI of HR and p value. Finally, the novel biomarker genes were verified by

qPCR and immunohistochemistry.

Results: The single-cell dataset GSE149655 was subjected to quality control,

filtration and dimensionality reduction. Finally, 23 subpopulations were

screened, and 11-cell subgroups were annotated in 23 subpopulations.

Through the statistical analysis of 11 subgroups, five important subgroups

were selected, including lung epithelial cells, macrophages, neuroendocrine

cells, secret cells and T cells. From the analysis of cell trajectory and cell

communication, it is found that the interaction of five subpopulations is very

complex and that the communication between them is dense. We believe that

these five subpopulations play a very important role in the occurrence and

development of LUAD. Downloading the TCGA data, we screened the marker

genes of these five subpopulations, which are also the differentially expressed

genes in tumorigenesis, with a total of 462 genes, and constructed 10 gene

prognostic risk models based on related genes. The 10-gene signature has

strong robustness and can achieve stable prediction efficiency in datasets

from different platforms. Two new molecular markers related to LUAD, HLA-

DRB5 and CCDC50, were verified by qPCR and immunohistochemistry. The

results showed that HLA-DRB5 expression was negatively correlated with the
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risk of LUAD, and CCDC50 expression was positively correlated with the risk

of LUAD.

Conclusion: Therefore, we identified a prognostic risk model including CCL20,

CP, HLA-DRB5, RHOV, CYP4B1, BASP1, ACSL4, GNG7, CCDC50 and SPATS2 as

risk biomarkers and verified their predictive value for the prognosis of LUAD,

which could serve as a new therapeutic target.

KEYWORDS

lung adenocarcinoma, single-cell sequencing, tumor heterogeneity, tumor immunity,
prognosis

Introduction

Lung cancer is still one of the main types of cancer, and its

mortality is still the highest of all cancers (Siegel et al., 2021).

Lung adenocarcinoma (LUAD) is the most common histological

subtype of lung cancer, accounting for almost half of all lung

cancer deaths (Kenfield et al., 2008; Houston et al., 2014).

Because of the decline in smoking rates, the incidence and

mortality of many other types of lung cancer, such as

squamous cell lung cancer and small cell lung cancer, have

been decreasing. The incidence rate and incidence rate of

LUAD are increasing (Remen et al., 2018; Barta et al., 2019;

Choi et al., 2019; Tseng et al., 2019). At present, the treatment of

patients with advanced LUAD is still limited to targeted therapy

and radiotherapy and chemotherapy, and the prognosis is still

very poor. Therefore, finding accurate prognostic biomarkers

and effective therapeutic targets is still of great significance to

improve the poor prognosis of LUAD patients.

In recent decades, high-throughput sequencing technology

has been widely used in various fields of biology and medicine,

which has greatly promoted related research and applications.

However, traditional transcriptome sequencing technology

(bulkRNA-seq) is based on tissue samples or cell populations,

which reflect the average expression level of genes in the cell

population, but there is extensive heterogeneity between cells,

which is of great significance for targeted therapy of tumors

(Dagogo-Jack and Shaw, 2018). In recent years, single-cell RNA

SEQ (scRNA-seq) technology has developed vigorously. ScRNA-

seq can reveal the expression of all genes in the whole genome at

the single-cell level and study cell heterogeneity more intuitively

(Lavin et al., 2017). At present, scRNA-seq has been widely used

in different types of tissues and cell lines of various species

(especially human and mouse), including normal and diseased

cells. Single-cell sequencing has been used in the study of

pancreatic cancer, colon cancer, and so on, but (Moncada

et al., 2020; Zhang L. et al., 2020; Liang et al., 2021) it has not

been widely studied in lung cancer. We found and defined the cell

subsets of LUAD by single-cell analysis and explored their

predictive ability in the prognosis of LUAD.

This study screened cell types with significant differences in

subpopulation abundance through single-cell analysis and

screened cell types with different subpopulation abundance.

At the same time, combined with LUAD bulkRNA-seq in

TCGA data, the marker genes related to prognosis were

screened, and the risk model was constructed accordingly.

Finally, we identified a prognostic risk model and verified its

predictive value for the prognosis of LUAD, which could serve as

a new therapeutic target.

Materials and methods

Data acquisition and preprocessing

The single-cell sequencing data GSE149655 were

downloaded from the GEO database. A total of four samples

were detected, including two LUAD samples and two normal

samples. The bulkRNA-seq data of LUAD were downloaded

from the TCGA database and further processed and transformed

into TPM data.

The clinical phenotype data of TCGA-LUAD were

downloaded, and the samples lacking survival time and

survival status were eliminated. GSE31210 of LUAD was

downloaded from the GEO database. By transforming the

probe into a gene symbol, multiple gene symbols

corresponding to one probe were removed, and the average

value of one symbol corresponding to the probe was taken.

Clustering dimensionality reduction of
single-cell data

First, the single-cell data were filtered by setting each gene

to be expressed in at least three cells and each cell to express at

least 250 genes, calculating the proportion of mitochondria

and rRNA through the percentagefeatureset function, and

ensuring that the gene expressed by each cell was greater

than 500 and the mitochondrial content was less than 35%.

Then, we counted the number of cells in each sample before

and after filtration. Then, the merged data are standardized

through log normalization. Find highly variable genes through

the findvariablefeatures function (identify variable
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characteristics based on variance stabilization transformation

(“VST”) and then scale all genes by using the scaledata

function and PCA dimensionality reduction to find anchor

points. We selected dim = 40 and clustered the cells through

the findneighbors and findclusters functions (set

resolution = 0.5).

Subgroup definition

We downloaded the marker genes of human cells from the

official website of CellMarker (http://biocc.hrbmu.edu.cn/

CellMarker/). At the same time, the corresponding subgroups

of cluster profilers are selected through the corresponding

functions of cluster profilers.

Subgroup statistical analysis

A total of 11 subpopulations were obtained through cell

annotation. We counted the number of cells in tumor samples

and normal samples, constructed a 2 * 2 contingency table,

calculated the p value using Fisher’s test (bilateral test), and

calculated the corresponding difference multiple (TVSN). To

define the development trajectories of the five cell subsets, we

used Monocle to predict the development trajectories of the five

subsets. Then, we used the BEAM (branched expression analysis

modelling) method to find the regulatory genes of five branches,

screened the key genes with qval (corrected P), screened the

100 genes with the smallest qval, drew the heatmap and enriched

the pathway.

Screening of key genes and construction,
evaluation and validation of the
prognostic risk model

The expression profile data of FPKM of TCGA were

downloaded and further transformed into TPM. The

standard deviation of each gene expressed in all samples was

greater than 0.5 for filtering. The expression profile matrix of

LUAD was analysed by the limma package, and the

differentially expressed genes were screened by | logfc | >
1 and FDR <0.05.

First, single-factor risk analysis is carried out. Using the

expression profile data of TCGA, for the related genes and

survival data, the univariate Cox proportional hazards

regression model was carried out by using the R-package

survival Cox function, and p < 0.01 was selected as the

threshold for filtering.

Next, multivariate analysis is carried out. Lasso regression

was used to further compress the genes to reduce the number of

genes in the risk model. Next, 10-fold cross validation was used to

build the model and analyse the confidence interval under each

lambda.

The risk score of each sample was calculated according to

the expression level of the sample, and the risk score

distribution of the sample was drawn. ROC analysis of the

prognostic classification of the risk score was carried out by

using the R software package timeROC, and the prognostic

prediction and classification efficiency at 1, 3 and 5 years were

analysed. Finally, we calculated the z score for the risk score,

divided the samples with risk scores greater than zero into a

high-risk group and a low-risk group, and drew a KM curve.

Lasso regression and the risk score were performed as

previously described (Yu et al., 2021).

Finally, we used the GEO dataset (GSE31210) to verify the

model.

Univariate and multivariate analysis of the 10-gene signature

and its relationship with pathways.

To identify the independence of the 10-gene signature model

in clinical application, the relevant HR, 95% CI of HR and p value

were analysed by univariate and multivariate Cox regression in

the clinical information carried by all TCGA data. The clinical

information recorded by TCGA patients was systematically

analysed, including sex, stage and risk type.

To further observe the relationship between the risk scores

of different samples and biological functions, the expression

profiles corresponding to TCGA samples were analysed by

single-sample GSEA (ssGSEA) with the R software package

GSVA, and the scores of each sample on different functions

were calculated; that is, the ssGSEA scores of each sample

corresponding to each function were obtained, and the

correlation between these functions and risk scores was

further calculated. A function with a correlation of no less

than 0.3 was selected.

Tissue samples

Samples of LUAD and normal tissues were collected from

15 patients (all >16 years of age), immediately placed in liquid

nitrogen and preserved at −80°C. None of the LUAD patients

received preoperative antitumor therapies. Patients and their

families in this study were fully informed, and informed

consent was obtained from all participants. This study was

approved by the Ethics Committee of Shanghai Pulmonary

Hospital (K20-148Y).

RNA isolation and quantitative real-
time PCR

Briefly, total RNAwas isolated from tissues and cells by using

TRIzol® reagent (Thermo Fisher Scientific, Inc.) and then reverse

transcribed using a QuantiTect Reverse Transcription Kit
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(QIAGEN, Valencia, CA) according to the manufacturer’s

specifications. qPCR amplification was performed by using

SYBR-Green PCR mix (Takara), and the expression levels of

target genes were normalized to the level of GAPDH. The primer

sequences were as follows: HLA-DRB5 Forward Sequence-

GAACAGCCAGAAGGACTTCCTG and Reverse Sequence-

GCAGGATACACAGTCACCTTAGG. CCDC50 Forward

Sequence-AGTGATGAACCTCACCATTCTAAG and Reverse

Sequence-GAAATGCCGTGTGGAACTCTGC.

Immunohistochemistry

Each group of sarcoma samples was fixed in 10% formalin,

embedded in paraffin, and processed into 5 µm continuous

sections. Samples were incubated in rabbit anti-HLA-DRB5

(Origene, OTI4G7; 1:1,200) anti-CCDC50 (Abcam, ab127169;

1:1,200) overnight at 4°C, followed by incubation with

horseradish peroxidase-coupled goat anti-rabbit secondary

antibody at 37°C for 30 min. The experimental procedure was

FIGURE 1
Umap dimensionality reduction. (A) Cell distribution map of four tissue samples. (B) Cell distribution map of tumor tissue and normal tissue
samples. (C) Cell distribution map of 23 subpopulations. (D) The abundance of each subgroup of the two tissue types is normal and Turkish from
inside to outside.
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performed according to strict adherence to the manufacturers’

instructions. The IHC quantitation analysis was calculated by

ImageJ software.

Results

Screening and definition of single-cell
subsets of LUAD

First, the genes were screened. Supplementary Figure S1

is the quality control chart before filtration, and

Supplementary Figure S2 is the quality control chart after

filtration. Then, we counted the number of cells in each

sample before and after filtration, as shown in

Supplementary Figure S3A.

Supplementary Figure S3B (left) shows the distribution of

hypervariable genes and non-hypervariable genes, and the top

20 hypervariable genes are shown in Supplementary Figure S3B (right).

Then, all genes were scaled by using the scaledata function, and

anchor points were found by PCA dimensionality reduction

(Supplementary Figure S3C). Next, the cells were clustered, and

23 subpopulations were obtained. Then, we select the first 40 PCs

and use umap to further reduce the dimension. The distribution of the

four samples is shown in Figure 1A. Two of the four samples were

tumor tissues, and twowere normal tissues. The distribution of cells in

tumor tissues and normal tissues is shown in Figure 1B, and Figure 1C

shows the distribution of 23 cell subsets. At the same time, we counted

the abundance of these 23 subpopulations in each sample (Figure 1D).

Next, we used the findallmarkers function to screen marker genes of

23 subgroups by logfc = 0.5 (differential multiple), minpct = 0.3

(minimum expression ratio of differential genes) and screened them

FIGURE 2
The findallmarkers function to screen marker genes. (A) Expression of the top 5 marker genes in 23 subpopulations. (B) Umap diagram of the
distribution of 11 subpopulations. (C) Pseudotime measures the degree of cell differentiation. (D) The five subgroups can be divided into five
branches. (E) Track of differentiation of the five subgroups. (F) Cell trajectories of five different types of subpopulations.
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with corrected p < 0.05. Here, we only show the expression of the top

5 marker genes with the most prominent contribution in each

subgroup (Figure 2A). The results of marker genes are shown in

Supplementary Table S1.

We downloaded the marker genes of human cells from the

official website of CellMarker (http://biocc.hrbmu.edu.cn/

CellMarker/), selected the corresponding organization of the

lung, and Supplementary Table S2 was the list of marker

genes of cells. At the same time, through the enricher

function of the clusterprofiler package, the definition of

23 subsets is finally completed. As shown in Table 1,

23 clusters are annotated to 11 subgroups. By merging these

subgroups, 11 subgroups (ciliated cells, dendritic cells,

endothelial cells, fibroblasts, monocyte cells, lung epithelial

cells, macrophages, neuroendocrine cells, secretory cells,

SLC16A7+ cells and T cells) were obtained. Figure 2B is the

umap diagram of the distribution of these 11 subgroups.

Cell trajectory analysis of single-cell
subsets in LUAD

A total of 11 subpopulations were obtained through cell

annotation, which were counted according to the method. The

statistical results are shown in Table 2. On the premise of p <
0.05, five subpopulations of lung epithelial cells, macrophages,

neuroendocrine cells, secret cells and T cells were highly enriched

in LUAD tissues. We used Monocle to predict the developmental

trajectories of five subpopulations.

In previous studies, LUAD tumor samples contained 18.2%

tumor cells and 53.4% T cells, while normal samples contained

10.4% epithelial cells and 44.1% T cells, indicating that T cells are

the dominant cell type in tumor and normal samples. Tumor-

associated macrophages have strong plasticity and, if

reprogrammed, can clear tumor cells and regulate the

adaptive immune system for cancer immunotherapy. These

studies suggested that the five cell subpopulations obtained

from our analysis are potentially valuable in identifying

tumors from normal tissue and in tumor treatment.

First, pseudotime was used to measure the degree of cell

differentiation (Figure 2C). Next, we show the trajectory of

differentiation of the five subpopulations (Figure 2E). The five

subpopulations could be divided into five branches and states

(Figure 2D).

The seraut_cluster of the four subgroup trajectory diagrams.

Figure 2F shows that lung epithelial cells were mainly in the 0 and

16 subgroups. In the trajectory diagram, these two subgroups are

on the branches of state 4 and state 5. In these subgroups,

macrostat1 and macrostat15 were mainly enriched.

Neuroendocrine cells were mainly enriched in subgroup 22,

which was mainly on the branch of State 2 in the trajectory

diagram. Secret cells were mainly enriched in subgroups 2, 5, 6,

12 and 21. In the trajectory diagram, 2 and 12 are mainly on the

branches of state 4, states 5, 5 and 6 are mainly on the branches of

state 1 and state 2, and 21 is mainly on the branch of state 2.

T cells were mainly enriched in subgroup 13. In the trajectory

diagram, 13 is mainly on the State2 branch (Supplementary

Figure S4A).

Then, we used branched expression analysis modelling

(BEAM) to find the regulatory genes of five branches,

screened the key genes with qval (corrected P), and screened

the 100 genes with the smallest qval. Therefore, we used these

100 genes to draw the pedigree heatmap (of which 100 genes are

listed as cells) (Figure 3A). Information on these 100 genes is

shown in Supplementary Table S3.

Pathway enrichment of subpopulations

To further study the functions of these five subpopulations,

we extracted the marker genes of these five subpopulations,

conducted KEGG enrichment analysis through the webgestalt

package, and screened the key pathways with FDR <0.05. The
enrichment results are shown in Supplementary Table S4. The

first three pathways were screened by enrichment ratio, the first

50 marker genes were screened for each subgroup, and the

expression heatmap was drawn (Figure 3B).

TABLE1 Subgroups define information.

cell_type seraut_cluster

Lung epithelial cell 0

SLC16A7+ cell 1

Secretory cell 2

Endothelial cell 3

Dendritic cell 4

Secretory cell 5

Secretory cell 6

Fibroblast 7

Ionocyte cell 8

Endothelial cell 9

Ciliated cell 10

Endothelial cell 11

Secretory cell 12

T cell 13

Ionocyte cell 14

Macrophage 15

Lung epithelial cell 16

Ionocyte cell 17

Macrophage 18

SLC16A7+ cell 19

Fibroblast 20

Secretory cell 21

Neuroendocrine cell 22
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TABLE2 Cell subpopulation statistics.

cell_name T_celltype T_no_celltype N_celltype N_no_celltype p.val fc

Ciliated cell 94 3,439 134 4,503 0.542639269 0.918528902

Dendritic cell 316 3,217 188 4,449 1.87E-19 2.324559025

Endothelial cell 232 3,301 842 3,795 9.42E-57 0.316768618

Fibroblast 275 3,258 175 4,462 5.70E-15 2.152152942

Ionocyte cell 229 3,304 331 4,306 0.250804955 0.901657242

Lung epithelial cell 119 3,414 1,647 2,990 7.36318877704002e-318 0.063279208

Macrophage 30 3,503 183 4,454 3.41E-20 0.208439604

Neuroendocrine cell 60 3,473 6 4,631 4.15E-16 13.33429312

Secretory cell 1,466 2067 424 4,213 4.41E-264 7.047240555

SLC16A7+ cell 694 2,839 575 4,062 5.17E-19 1.726895876

T cell 18 3,515 132 4,505 9.57E-17 0.174770464

FIGURE 3
The regulatory genes of five branches. (A) Pedigree heatmap of 100 genes. (B) Enrichment analysis results of five key subgroups. Left: Expression
map of the first 50 specifically expressed genes in each cell type. The value of each gene is a Z score scaled by row. Right: A representative KEGG
pathway. (C) The interaction of cell subsets predicts that the thickness of the line is the change in the number and intensity of ligand‒receptor
interactions.
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Communication analysis of cell subsets

Cell communication of 11-cell subsets was analysed by

CellChart. Supplementary Table S5 shows the results of the

cell communication analysis. From Figure 3C, it can be seen

that the interaction of these 11 subsets changes in the number

and intensity of ligand‒receptor interactions.

The predicted ligand receptor interactions of the five

important subpopulations screened above were used to draw

the interaction network between cell subpopulations and ligand

receptors. Figure 4 shows that the cell communication of these

five subpopulations is very complex, and many ligand receptors

are involved, which also shows that the changes in the body

microenvironment are very complex in the process of tumor

occurrence and development. These five subpopulations may all

play a very important role in tumorigenesis and development.

Screening of key genes and construction
and validation of prognostic risk model

The expression profile data of FPKM of TCGA were

downloaded and further converted into TPM. First, we

filtered through the standard deviation of the expression of

each gene in all samples greater than 0.5, used the limma

package to analyse the difference in the expression profile

FIGURE 4
The cell communication of these five subpopulations is very complex, and there are many ligand receptors involved, which also shows that the
changes in the body microenvironment are very complex in the process of tumor occurrence and development.
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matrix of LUAD, and screened the differentially expressed

genes with | logfc | > 1 and FDR <0.05. A total of

2,812 differentially expressed genes were screened, of which

1,110 genes were upregulated and 1702 genes were

downregulated. Supplementary Table S6 shows the results of

all gene difference analyses. Through overlap analysis, we found

that 462 differentially expressed genes were marker genes of

these five subgroups (Supplementary Figure S4B).

Using the expression profile data of TCGA, for the relevant

genes and survival data, the R package survival coxph was used to

carry out the univariate Cox proportional hazards regression

model, and p < 0.01 was selected as the threshold for filtering.

Finally, there were 16 genes with differences. The univariate Cox

analysis results are shown in Supplementary Table S7.

At present, 16 genes related to prognosis in TCGA have been

identified, but the large number of these genes is not conducive to

clinical detection, so we need to further narrow the range of

immune genes under the condition of maintaining high accuracy.

We further compressed these 16 genes using lasso regression to

reduce the number of genes in the risk model. First, we analysed

the change trajectory of each independent variable. It can be seen

that with the gradual increase in lambda, the number of

independent variable coefficients tending to 0 also gradually

increases. We used 10-fold cross validation to build the

FIGURE 5
The risk model constructed and evaluated. (A) The change track of each independent variable. The horizontal axis represents the log value of
the independent variable lambda, and the vertical axis represents the coefficient of the independent variable. (B) Confidence intervals under each
lambda. (C) Risk score, survival time, survival status and 10-gene expression in TCGA. ROC curve and AUC classified by the 10-gene signature. KM
survival curve distribution of the 10-gene signature. The model has a high AUC offline area, and patients with a higher risk score had a poorer
prognosis. (D) Risk score, survival time, survival status and expression of 10 genes in GSE31210; ROC curve and AUC classified by the 10-gene
signature. KM survival curve distribution of the 10-gene signature. (E)Comparison of the distribution of the risk score of TCGA among clinical feature
groups. We found that there were significant differences among N stage, stage and smoking. (F)Univariate Cox regression analysis found that the risk
score was significantly correlated with survival, and the corresponding multivariate Cox regression analysis found that risk type was still significantly
correlated with survival.
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model. Analyse the confidence interval under each lambda.

Figure 5A,B shows that when lambda = 0.0198, the model

reached the optimum. Therefore, we selected 10 genes when

lambda = 0.0198 as the target genes in the next step.

Finally, we obtained 10 genes: CCL20, CP, HLA-DRB5,

RHOV, CYP4B1, BASP1, ACSL4, GNG7, CCDC50, and

SPATS2. The final 10-gene signature formula is as follows:

RiskScore �0.089*CCL20 + 0.054*CP − 0.058*HLA − DRB5

+ 0.084*RHOV − 0.029*CYP4B1 + 0.027*BASP1

− 0.055*ACSL4 − 0.118*GNG7 + 0.306*CCDC50

+ 0.002*SPATS2

We calculated the risk score of each sample according to the

expression level of the sample and drew the risk score distribution

of the sample (Figure 5C).We used the R software package timeroc

to analyse the ROC curve of the prognostic classification of the risk

score. We analysed the classification efficiency of prognosis

prediction at 1, 3, and 5 years, from which we can see that the

model has a high AUC offline area. Finally, we calculated the z

score for the risk score, divided the samples with risk scores greater

than zero into a high-risk group and a low-risk group, and drew

Kaplan‒Meier survival curves, fromwhich we can see that patients

with a higher risk score had a poorer prognosis (p < 0.0001).

To better evaluate the risk model constructed in this study,

we used GSE31210 for verification. We calculated the risk score

of each sample according to the expression level of the sample

and drew the risk score distribution of the sample (Figure 5D).

Similarly, we used the R software package timeROC to analyse

the ROC of prognosis classification of risk score. We analysed the

classification efficiency of prognosis prediction at 1, 3, and

5 years, from which we can see that the model has a high

AUC offline area. Finally, we calculated the z score for the

risk score, divided the samples with risk scores greater than

zero into a high-risk group and a low-risk group, and drew a KM

curve, from which we can see that there was a very significant

difference between them (p < 0.0001).

The risk score suggests that LUAD is
related to smoking

By comparing the distribution of the risk score of TCGA

among clinical feature groups, we found that there were

significant differences among N stage, stage and smoking (p <
0.05) (Figure 5E).

Univariate and multivariate analysis of the
10-gene signature

To identify the independence of the 10-gene signature risk

model in clinical application, we used univariate and multivariate

Cox regression to analyse the relevant HR, 95% CI of HR and p

value in the clinical information carried by all TCGA data. We

systematically analysed the clinical information recorded by

TCGA patients, including sex, stage and risk type. In the

TCGA datasets, univariate Cox regression analysis found that

the risk score was significantly correlated with survival, and the

corresponding multivariate Cox regression analysis found that

risk type (HR = 1.75, 95% CI = 1.23–2.5, p < 0.05) was still

significantly correlated with survival (Figure 5F). The above

situation shows that our model 10-gene signature risk model

has good prediction performance in clinical application value.

Relationship between risk score and
channel

To further observe the relationship between the risk scores of

different samples and biological functions, we used the R

software package GSVA for single-sample GSEA of the

expression profile corresponding to TCGA samples, calculated

the scores of each sample on different functions, obtained the

ssGSEA score of each sample corresponding to each function

(Supplementary Table S8), further calculated the correlation

between these functions and the risk score (Supplementary

Table S9), and selected the function with a correlation no less

than 0.3, as shown in Figure 6A. It can be seen that 11 are

negatively correlated with the sample risk score, and 10 channels

are positively correlated with the sample risk score. KEGG

P53 SIGNALING PATHWAY, KEGG_CELL CYCLE and

KEGG_OOCYTE MEIOSIS were positively correlated with the

risk score. KEGG_VALINE LEUCINE AND ISOLEUCINE

DEGRADATION and KEGG FATTY ACID METABOLISM

were negatively correlated with the risk score. Twenty-two

KEGG pathways with correlations no less than 0.3 were

identified, and cluster analysis was performed according to

their enrichment scores (Figure 6B).

Expression of the unreported signature
genes HLA-DRB5 and CCDC50 in LUAD

CCL20, CP, RHOV, CYP4B1, BASP1, ACSL4, GNG7 and

SPATS2 have been reported, and their dysregulation is associated

with the prognosis of LUAD. However, the expression and

function of HLA-DRB5 and CCDC50 have not yet been reported.

We applied immunohistochemistry and qRT‒PCR to detect

the differences in the expression of HLA-DRB5 and

CCDC50 between paired tumor tissues and normal tissues.

The qRT‒PCR results revealed that the levels of HLA-DRB5

were lower and the levels of CCDC50 were higher in five high-

risk tumor tissues (Figure 7A). The protein (Figure 7C) levels of

HLA-DRB5 were lower and the levels of CCDC50 (Figures 7B,D)

were higher in high-risk tumor tissues.
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Discussion

At present, most studies on LUAD focus on the

transcriptome level, and there are few studies on the single-

cell level and tumor microenvironment (Guo et al., 2018; He

et al., 2021; Spella and Stathopoulos, 2021). The heterogeneity

between and within tumors is closely related to tumor

progression and metastasis and will affect the response to

targeted therapy and the final survival results (Chen Z. et al.,

2021; Spella and Stathopoulos, 2021). Therefore, it is necessary to

screen marker genes related to prognosis at the single-cell level of

LUAD and construct a risk model accordingly.

First, we obtained bulkRNA-seq data for LUAD samples

based on the TCGA database and downloaded the single-cell

sequencing data GSE149655 from the GEO database. A total of

four samples were detected, including two LUAD samples and

two normal samples. The single-cell dataset GSE149655 was

subjected to quality control, filtration and dimensionality

reduction through the seraut package, and finally, 23 subsets

were screened. Next, 23 subpopulations were annotated by the

marker gene of cellmarkers, and a total of 11-cell types were

annotated by 23 subpopulations. Through statistical analysis of

11 subpopulations of LUAD and normal samples, five

important subpopulations were selected, namely, lung

epithelial cells, macrophages, neuroendocrine cells, secret

cells and T cells. Next, we screened the differentially

expressed genes in TCGA-LUAD, constructed a prognostic

risk model based on key genes by using univariate risk

analysis and multivariate risk analysis, and verified it with

the independent GSE31210 dataset. Finally, we verified the

genes in the model through experiments. The above

situation shows that our model 10 gene signature has good

prediction performance in clinical application value.

A growing number of studies have shown that cancer

usually becomes more heterogeneous in the process of

disease. Due to this heterogeneity, large tumors may include

a variety of cell collections, which have different molecular

characteristics and different sensitivities to treatment. This

FIGURE 6
(A)Clustering of correlation coefficients between KEGGpathways and risk scorewith a correlation greater than 0.4. (B) For KEGG pathways with
a correlation greater than 0.4 with the risk score, the change relationship of the ssGSEA score in each sample with the increase in risk score. The
horizontal axis represents the sample, and the risk score increases from left to right.
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heterogeneity may lead to an uneven distribution of tumor cell

subsets with different genes between and within the disease site

(spatial heterogeneity) or temporal changes in the molecular

composition of cancer cells (temporal heterogeneity) (Dagogo-

Jack and Shaw, 2018). ScRNA-seq can reveal the expression of

all genes in the whole genome at the single-cell level and can

study cell heterogeneity more intuitively (Navin et al., 2011;

Francis et al., 2014). We screened the cell types with significant

differences in subpopulation abundance between LUAD and

normal tissues through single-cell analysis, screened the cell

types with different subpopulation abundance during the

occurrence and development of LUAD at the single-cell

level, screened the marker genes of these key cell types,

combined with TCGA data, screened the marker genes

related to prognosis, and constructed the risk model

accordingly.

The model we constructed includes 10 genes, including

CCL20, CP, HLA-DRB5, RHOV, CYP4B1, BASP1, ACSL4,

GNG7, CCDC50, and SPATS2. CCL20 is a member of the

chemokine family (Chen et al., 2020). Recent studies have

shown that high levels of CCL20 are associated with

malignancies of various cancers (Kapur et al., 2016; Zhang

et al., 2016). CCL20 can also recruit immune cells, such as

DCs and Tregs, which further connect CCL20 with the tumor

microenvironment. CCL20 upregulation can recruit CD8+

T cells to the immune microenvironment of LUAD, which

is helpful for immunotherapy (Luo et al., 2017; Lyu et al.,

2019; Ma et al., 2022). CP (ceruloplasmin) is a multi copper

oxidase and a mammalian plasma ferrous oxidase (Hellman

and Gitlin, 2002). Recent evidence suggests that

ceruloplasmin is also associated with tumor development

and progression. The expression of plasma ceruloplasmin

in LUAD is significantly upregulated and significantly

correlated with clinicopathological stage (Matsuoka et al.,

2018). The expression of plasma ceruloplasmin was also

significantly upregulated in high-grade clear cell renal cell

carcinoma samples (Thibodeau et al., 2016). HLA-DRB5,

whose expression products play a central role in the

immune system by presenting peptides derived from

extracellular proteins (Su et al., 2021). Studies have shown

FIGURE 7
Expression of the unreported signature genes. The qRT‒PCR results revealed that the levels of (A) HLA-DRB5 were lower and the levels of (B)
CCDC50 were higher in five high-risk tumor tissues. The protein levels of (C) HLA-DRB5 were lower and the levels of CCDC50 (D) were higher in
high-risk tumor tissues.
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that HLA-DRB5 is associated with risk factors for cervical

cancer (Bao et al., 2018). HLA-DRB5 was expressed at low

levels in all patients with multiple myeloma, in a subgroup of

patients with ulcerative mucositis and in a control group

(Marcussen et al., 2017). RHOV has been shown to promote

cell differentiation and act as an important regulator of neural

crest induction (Guémar et al., 2007; Song et al., 2015).

RHOV is highly expressed in many lung cancer cell lines

and promotes the growth and metastasis of LUAD cells

(Zhang Y. et al., 2020; Chen H. et al., 2021; Zhang et al.,

2021). CYP4B1 belongs to the mammalian CYP4 enzyme

family and is mainly expressed in human lungs (Wiek et al.,

2015). Studies have suggested that CYP4B1 is a prognostic

biomarker and potential therapeutic target of LUAD and can

also be used as a target of cancer treatment (Lim et al., 2020;

Liu et al., 2021). BASP1 can regulate many types of cell

biological behavior, including proliferation, apoptosis and

differentiation (Sanchez-Niño et al., 2010; Tang et al., 2017).

High expression of BASP1 is associated with poor prognosis

of human LUAD and head and neck squamous cell carcinoma

and promotes tumor progression (Jaikumarr Ram et al., 2020;

Wang et al., 2021). ACSL4 is mainly located in mitochondria,

peroxisomes and the endoplasmic reticulum and plays a

crucial regulatory role in ferroptosis (Quan et al., 2021). In

most cases, ACSL4 plays a carcinogenic role. The high

expression of ACSL4 indicates that the prognosis of

patients with ovarian cancer is poor. In LUAD,

ACSL4 plays a tumor suppressor role by inhibiting tumor

survival/invasion and promoting ferroptosis (Ye et al., 2016;

Ma et al., 2021; Yang et al., 2021). GNG7 belongs to the large

G protein γ family (Shibata et al., 1998). Many studies have

shown that GNG7 is a tumor suppressor gene in squamous

cell carcinoma, pancreatic cancer, esophageal cancer,

gastrointestinal cancer and clear cell renal cell carcinoma.

In LUAD, GNG7 is significantly downregulated in LUAD

tissues and cell lines. Low expression of GNG7 is related to

poor prognosis in LUAD patients, and GNG7 overexpression

inhibits the proliferation and invasion of LUAD cells.

(Shibata et al., 1999; Demokan et al., 2013; Liu et al., 2019;

Xu et al., 2019; Fang et al., 2022). CCDC50 is a tyrosine

phosphorylated protein that mediates apoptosis through the

NF-κB pathway (Bohgaki et al., 2008). However, research on

CCDC50 in cancer is still insufficient. Some studies have

shown that different splice variants of CCDC50 play opposite

tumorigenic roles in vitro and in vivo. CCDC50-S promotes

the metastasis of renal clear cell carcinoma, but CCDC50-FL

and sh-CCDC50 inhibit the metastasis of renal clear cell

carcinoma (Sun et al., 2020). SPATS2 is a cytoplasmic

RNA-binding protein that plays an important role in

spermatogenesis (Fang et al., 2022). In recent studies, the

expression of SPATS2 was upregulated in HCC tissues. High

expression of SPATS2 was associated with poor

clinicopathological features and poor prognosis in HCC

patients. SPATS2 knockdown significantly inhibited the

growth and invasion of HCC cells and promoted apoptosis

and G1 arrest of HCC cells in vitro (Senoo et al., 2002).

SPATS2 is also highly expressed in liver cancer and may be a

new diagnostic and prognostic biomarker of liver cancer. In

recent studies, SPATS2 has also been used as a diagnostic

biomarker of LUAD (Dong et al., 2020; Xing et al., 2020). The

above reports of gene dysregulation associated with LUAD

are consistent with our risk gene prediction results, which

showed that the 10-gene signature can be used as an effective

prognostic tool for LUAD patients. However, there are still

some deficiencies: 1. We need to use more clinical samples for

further verification in the follow-up. The biological functions

of newly discovered HLA-DRB5 and CCDC50 risk genes in

lung cancer were further explored.

Conclusion

By analysing the single-cell sequencing data of LUAD, we

established a 10-gene signature related to the prognosis of LUAD.

This 10-gene signature has strong robustness and can achieve

stable prediction efficiency in datasets from different platforms.

We also performed qPCR and immunohistochemical sample

verification on CCDC50 and HLA-DRB5, two genes that have

not been verified in LUAD. The results are consistent with our

prediction. These findings will contribute to a more accurate

diagnosis of LUAD, which is very important for the precise

treatment of LUAD.
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