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Introduction: Molecular chaperones and long non-coding RNAs (lncRNAs)

have been confirmed to be closely related to the occurrence and

development of tumors, especially lung cancer. Our study aimed to

construct a kind of molecular chaperone-related long non-coding RNAs

(MCRLncs) marker to accurately predict the prognosis of lung

adenocarcinoma (LUAD) patients and find new immunotherapy targets.

Methods: In this study, we acquired molecular chaperone genes from two

databases, Genecards and molecular signatures database (MsigDB). And then,

we downloaded transcriptome data, clinical data, and mutation information of

LUAD patients through the Cancer Genome Atlas (TCGA). MCRLncs were

determined by Spearman correlation analysis. We used univariate, least

absolute shrinkage and selection operator (LASSO) and multivariate Cox

regression analysis to construct risk models. Kaplan-meier (KM) analysis was

used to understand the difference in survival between high and low-risk groups.

Nomogram, calibration curve, concordance index (C-index) curve, and receiver

operating characteristic (ROC) curve were used to evaluate the accuracy of the

risk model prediction. In addition, we used gene ontology (GO) enrichment

analysis and kyoto encyclopedia of genes and genomes (KEGG) enrichment

analyses to explore the potential biological functions of MCRLncs. Immune

microenvironmental landscapeswere constructed by using single-sample gene

set enrichment analysis (ssGSEA), tumor immune dysfunction and exclusion

(TIDE) algorithm, “pRRophetic” R package, and “IMvigor210” dataset. The stem

cell index based on mRNAsi expression was used to further evaluate the

patient’s prognosis.

Results: Sixteen MCRLncs were identified as independent prognostic indicators

in patients with LUAD. Patients in the high-risk group had significantly worse

overall survival (OS). ROC curve suggested that the prognostic features of

MCRLncs had a good predictive ability for OS. Immune system activation
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was more pronounced in the high-risk group. Prognostic features of the high-

risk group were strongly associated with exclusion and cancer-associated

fibroblasts (CAF). According to this prognostic model, a total of 15 potential

chemotherapeutic agents were screened for the treatment of LUAD.

Immunotherapy analysis showed that the selected chemotherapeutic drugs

had potential application value. Stem cell index mRNAsi correlates with

prognosis in patients with LUAD.

Conclusion: Our study established a kind of novel MCRLncs marker that can

effectively predict OS in LUAD patients and provided a new model for the

application of immunotherapy in clinical practice.

KEYWORDS

TCGA, LUAD, lncRNA, molecular chaperone-related lncRNA index, prognosis,
immunotherapy

Introduction

Lung cancer is a malignant tumor originating from the

bronchi and alveoli. Worldwide, 1.77 million lung cancer

deaths occur each year, and it is the leading cause of cancer

death in the world (Siegel et al., 2021). LUAD is a subtype of

lung cancer and a highly heterogeneous malignancy,

accounting for approximately half of all lung cancers

(Sivakumar et al., 2017; Xu et al., 2020a). Studies have

shown that the risk factors for LUAD mainly come from

direct exposure to tobacco. LUAD tends to occur early in

East Asian women who do not smoke (Chen et al., 2020;

Devarakonda et al., 2021). This is related to the presence of

Epidermal growth factor receptor (EGFR) mutations in East

Asian LUAD patients (Choong and Sung, 2021; He et al.,

2021). Lung cancer usually involves pleura and has a poor

prognosis. The 5-year survival rate is less than 20% (Zhang

et al., 2021). LUAD is prone to distant metastasis, and the

common sites of metastasis are brain, liver, bone, adrenal

gland and pleura (Klikovits et al., 2018). In the past few

decades, treatment of LUAD has mainly included surgery,

chemotherapy, and emerging immunotherapies. Although

recent advances in LUAD have greatly improved the

prognosis of LUAD patients, the OS of advanced LUAD

patients is still very low. Therefore, developing new

biomarkers to predict the prognosis of LUAD patients and

find potential therapeutic targets for LUAD is crucial.

Molecular chaperones are molecular assistants that assist

in the folding and assembly of intracellular proteins and play

an important role in intracellular life activities (Shan et al.,

2020; Wei et al., 2022). Studies have shown that molecular

chaperones play an important role in the occurrence and

development of tumors, and it has also been confirmed as a

prognostic marker for tumors (Zhu et al., 2013; Lu et al.,

2020). Jia et al. (Jia et al., 2021) found that heat shock protein

90 (HSP90) can promote the metastasis of LUAD cells by

interacting with the oncogene EEF1A2. It ultimately leads to

the poor prognosis of LUAD patients. In addition, drugs

targeting molecular chaperone-related genes are also widely

used in clinical practice. chaperones-related related genes with

great clinical potential, such as HSP90 and P53, making

immunotherapy become an important means of tumor

treatment (Armstrong et al., 2018; Kaida and Iwakuma,

2021). Although molecular chaperones can be used as

prognostic indicators in patients with LUAD, the utility of

using only a single biomarker is limited. Therefore,

establishing reliable biomarkers for the construction of

LUAD prognostic models is an urgent clinical task.

LncRNAs refer to a class of RNAs longer than

200 nucleotides that cannot encode complete proteins

(Vollmers and Carpenter, 2022). Studies have shown that

lncRNAs play a crucial role in the occurrence and

development of tumors, including LUAD (Dong et al., 2018).

Meanwhile, studies have reported that immune infiltrating cells

play a crucial role in the progression and invasion of tumor cells

(Li et al., 2020a). LncRNA is a key regulatory element in the

immune system, which has the functions of antigen presentation,

antigen release, immune migration, immune infiltration, and

immune activation (Xia et al., 2020; Zhang et al., 2020). With the

deepening of research, the role of lncRNAs as ideal diagnostic

markers for tumors has been gradually discovered (Peng et al.,

2016). These all suggest that lncRNAs may be used as a new

biomarker to improve the prognosis and treatment of LUAD

patients. Zhou et al. (Zhou et al., 2022) found that lncRNAs can

promote the occurrence and development of LUAD by binding

to HSP90. However, the current research on the pathogenesis of

MCRLncs in LUAD is still lacking. Therefore, we attempted to

use transcriptome data and clinical data from the TCGA database

to develop a marker of MCRLncs with guiding significance for

immunotherapy. This study provides a new model with

prognostic value for LUAD patients and establishes a new

feature to predict LUAD patients’ response to immunotherapy.
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Materials and methods

The data source

The Genecards is a comprehensive bioinformatics database

from 125 web sources such as NCBI and UCSC, which provides

detailed information on all currently annotated and predictable

genes. It covers information including genome, proteome,

transcription, and function (Safran et al., 2010; Stelzer et al.,

2011). Through the Genecards database portal (https://www.

genecards.org/), we obtained 233 genes related to chaperones

(Relevance score ≥ 5). MSigDB is a treasure trove database for

analyzing gene enrichment pathways (Liberzon et al., 2011). We

downloaded 17 GSEA functional pathways from MsigDB

(Supplementary Table S1). These pathways enriched 517 genes in

total, and we removed duplicated genes to get 312 genes. Finally, we

pooled the 233 genes obtained based on the Genecards database and

the 312 genes obtained based on theMsigDB, removed the duplicate

genes, and finally obtained 417 molecular-chaperone genes.

TCGA is a landmark Human Cancer Genome Project that

has collected molecular numbers frommore than 20,000 primary

cancer samples, including LUAD (Cai et al., 2021a). In this study,

we from the TCGA data portal website (https://portal.gdc.cancer.

gov/) downloaded transcriptome data, clinical data, and

mutation data in LUAD. Clinical data included OS, survival

status, age, sex, tumor grade, and tumor node metastasis (TNM)

stage. In this study, the samples were randomly divided into a

training subgroup (n = 330) and a validation subgroup (n = 164).

The training subgroup was used to construct a molecular

chaperone-related lncRNAs risk model. The validation

subgroup and the whole group were used to validate the risk

model. In addition, the IMvigor210 dataset, a cohort of

atezolizumab (anti-PD-L1 monoclonal antibody) for the

treatment of bladder cancer, was extracted to evaluate the

response of MCRLncs markers to immunotherapy efficacy

(Powles et al., 2014).

Identification of molecular chaperone-
related lncRNAs in patients with LUAD

We used the Spearman correlation analysis (| cor | > 0.4 and

p < 0.001) to identify MCRLncs. The heatmap showed the

expression correlation between molecular chaperone genes

and lncRNAs.

Molecular chaperones-related lncRNAs
risk models were constructed

We divided all patients with lung adenocarcinoma into a

training subgroup (n = 330) and a validation subgroup (n = 164).

FIGURE 1
Flow chart of this study.
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FIGURE 2
(Continued).
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Data from the training subgroupwere used to construct a prognostic

model.We screened 301MCRLncs by using univariateCox regression

analysis (p values less than 0.05 were considered significant). To

narrow down the independent variables and avoid overfitting

prognostic features, we performed the LASSO regression analysis

on these MCRLncs (Meier et al., 2008). Next, we performed

multivariate Cox regression analysis on the MCRLncs obtained by

LASSO regression analysis, and finally screened 16 MCRLncs as

candidate genes. The 16 candidate genes were used to construct

prognostic models. To construct risk characteristics and calculate risk

scores, the coefficients and expressive values of MCRLncs screened

out from LASSO regression were used to calculate an individual risk

score. The risk score represents a prognostic feature of chaperone-

related lncRNAs, which helps us to distinguish high-risk LUAD

patients from low-risk LUAD patients. Our risk score calculation

formula is as follows:

FIGURE 2
(Continued). Risk models based on univariate and multivariate cox regression in patients with LUAD. (A) molecular chaperones-related long
non-coding RNAs co-express network graph. (B,C) Establishment of the LASSO regression. (D–G) Prognostic value of risk models in the training
subgroup. (H–K) Prognostic value of risk models in the validation subgroup. (L–O) Prognostic value of risk models in the whole group. Risk
assessment for clinicopathological features, including (P) fustat, (Q) N stage, (R) T stage, (S) tumor grade. (T) Univariate cox regression model
showed that tumor stage (p < 0.001, HR = 1.552, 95%CI: [1.303–1.849]), T stage(p = 0.001, HR = 1.481, 95%CI: [1.162–1.888]), M stage (p = 0.250,
HR = 1.469, 95%CI: [0.763–2.827]), N stage (p < 0.001, HR = 1.827, 95%CI: [1.454–2.296]), Riskscore (p < 0.001, HR = 1.009, 95%CI: [1.005–1.013])
were statistically different. (U) Multivariate cox regression model showed that only risk score (p < 0.001, HR = 1.011, 95%CI: [1.007–1.016]) was an
independent prognostic factor.
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Coefi was the coefficient of lncRNA in LASSO regression.

Coefficient xi is the expression value of selected MCRLncs (Li

et al., 2020b; Li et al., 2020c; Liu et al., 2020; Liang et al., 2021).

This formula is used to calculate the risk score.

To build a more intuitive model, we divided LUAD patients

into high-risk and low-risk groups using the median risk score as

a cutoff point. Next, we plotted KM survival curves, risk score

distribution maps, and heatmaps to identify differences in the

expression of MCRLncs between high- and low-risk groups.

Validation of risk prognostic models

We plotted the ROC curve and C-index curve to verify the

prognostic value of our constructed prognostic model. Based on

the results of multivariate Cox regression analysis, we constructed

a nomogram that can predict the occurrence of 1-, 3-, and 5-year

OS survival in patients with LUAD. Nomogram is widely used for

graphical calculations of complex formulas with practical accuracy.

We can obtain the score of each clinical feature from the

nomogram and predict the 1-year, 3-year, and 5-year survival

rates of LUAD patients through the total score. Next, we evaluated

the performance of the nomogram by drawing a calibration curve.

Correlation analysis of risk score and
clinicopathological features

To further validate the accuracy and specificity of the prognostic

model, we used univariate and multivariate Cox analyses to screen

variables and further explore independent risk factors associated

with LUAD prognosis. We mapped two forests based on

independent prognostic analyses to determine whether the

prognostic model can be used as an independent prognostic

indicator without reference to other clinical characteristics,

including age, sex, race, tumor grade, primary tumor (T),

regional lymph nodes (N), distant metastasis (M), and risk score.

Principal component analysis was used to
assess high-risk and low-risk patients

To assess whether LUAD patients were discriminative

between high and low-risk groups, we visualized gene

expression profiles using dimensionality reduction techniques.

The expression of coding genes, lncRNA genes, all genes and

high-risk lncRNAs genes in the risk model was analyzed by PCA

analysis.

TABLE 1 Clinical data of training subgroup, validation subgroup and whole group.

Covariates Type Total n =
494

Test Subgroup
n = 164<

Train Subgroup
n = 330

p-Value

fustat Alive 190(64.63%) 63(62.38%) 127(65.8%) 0.649

Dead 104(35.37%) 38(37.62%) 66(34.2%)

age ≤65 147(50%) 53(52.48%) 94(48.7%) 0.6233

>65 147(50%) 48(47.52%) 99(51.3%)

gender FEMALE 155(52.72%) 54(53.47%) 101(52.33%) 0.9506

MALE 139(47.28%) 47(46.53%) 92(47.67%)

race AMERICAN INDIAN OR ALASKA NATIVE 1(0.34%) 1(0.99%) 0(0%) 0.4592

ASIAN 5(1.7%) 2(1.98%) 3(1.55%)

BLACK OR AFRICAN AMERICAN 27(9.18%) 11(10.89%) 16(8.29%)

WHITE 261(88.78%) 87(86.14%) 174(90.16%)

stage Stage I 153(52.04%) 49(48.51%) 104(53.89%) 0.5155

Stage II 72(24.49%) 30(29.7%) 42(21.76%)

Stage III 51(17.35%) 16(15.84%) 35(18.13%)

Stage IV 18(6.12%) 6(5.94%) 12(6.22%)

T T1 96(32.65%) 35(34.65%) 61(31.61%) 0.644

T2 162(55.1%) 57(56.44%) 105(54.4%)

T3 23(7.82%) 6(5.94%) 17(8.81%)

T4 13(4.42%) 3(2.97%) 10(5.18%)

M M0 276(93.88%) 95(94.06%) 181(93.78%) 1

M1 18(6.12%) 6(5.94%) 12(6.22%)

N N0 189(64.29%) 63(62.38%) 126(65.28%) 0.7674

N1 60(20.41%) 23(22.77%) 37(19.17%)

N2 45(15.31%) 15(14.85%) 30(15.54%)
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FIGURE 3
Evaluation of prognostic models and establishment of a nomogram. (A) AUC values of the prognostic model of molecular chaperones-related
lncRNAs at 1, 3, and 5 years. The abscissa represents 1-specificity and the ordinate represents sensitivity. Interpretation of AUC results:
AUC ≤0.5 indicates no predictive power. 0.5 < AUC ≤0.7 indicates low prediction accuracy. 0.7 < AUC ≤0.9 indicates moderate prediction accuracy.
AUC >0.9 indicates high prediction accuracy. (B) C-index curve to assess the quality of a patient’s clinically independent prognostic model.
(C–E) Calculate the AUC for risk score, age, gender, grade, and TNM stage of the total survival risk score according to 1-, 3-, and 5-year ROC curve.
(F) Nomogram predicts 1-, 3-, and 5-year OS survival in patients with LUAD. (G) Calibration curve for nomogram. The x-axis is the nomogram
predicted survival and the y-axis is the actual survival.
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FIGURE 4
(Continued).
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Go functional pathway and KEGG
enrichment analysis of differential
MCRLncs in LUAD

To understand the differential expression of MCRLncs between

high and low-risk groups, we used the “limma”R package to perform

differential expression analysis of lncRNAs in high and low-risk

groups, and extracted differentially expressed genes (DEGs) for

the risk model. Next, we performed GO functional

annotation and KEGG pathway enrichment analysis on

the significant DEGs using the “clusterProfiler” R package,

and the false discovery rate (FDR) of 0.05 was considered

statistically significant (Mazandu et al., 2017; Kanehisa et al.,

2019; Zou et al., 2021; Liang et al., 2022). GO database

standardized description of gene products from three

levels of biological process (BP), cellular component (CC),

and molecular function (MF). Through GO functional

annotation, we can understand the biological

functions and pathways of DEGs enrichment. KEGG

enrichment analysis can know in which pathways DEGs

are enriched.

Immune infiltration analysis was based on
the single-sample gene set enrichment
analysis

In order to study the immune infiltration of individual samples

from the high-risk group and the low-risk group, we first

downloaded the expression levels of specific marker genes under

13 immune function pathways. Next, we calculated the enrichment

score for 13 immune function pathways in each LUAD sample by

using ssGSEA (Barbie et al., 2009). We used heatmaps to display the

immune infiltration of prognostic lncRNAs in high-risk and low-

risk groups.

Calculation of tumor mutational burden

High tumor mutational burden (TMB) is defined as the total

number of somatic gene coding errors, base substitutions, gene

insertions or deletions detected per megabyte (Tang et al., 2019;

Li et al., 2020d). Recent studies have shown that TMB is

associated with OS after immunotherapy in multiple cancer

FIGURE 4
(Continued). Kaplan-Meier survival analysis stratified by clinicopathological features. (A) Patients with alive. (B) Patients with dead. (C) Patients
with age ≤ 65. (D) Patients with age >65. (E) Male patients. (F) Female patients. (G) Patients with BLACK OR AFRICAN AMERICAN. (H) Patients with
ASIAN. (I) Patients with WHITE. (J) Patients with Stage I. (K) Patients with Stage II. (L) Patients with Stage III. (M) Patients with Stage IV. (N) Patients with
T1. (O) Patients with T2. (P) Patients with T3. (Q) Patients with T4. (R) Patients with N0. (S) Patients with N1. (T) Patients with N2. (U) Patients with
M0. (V) Patients with M1.
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types, and suggest that TMB can be used as a predictive

biomarker of immune checkpoint inhibitor treatment response

(Xu et al., 2020b; Lin et al., 2020; Tan et al., 2020). As suggested

by the reviewer, we cited references to supplement the judgment

that the higher the TMB, the better the outcome of tumor

immunotherapy (Snyder et al., 2014). We performed TMB

differential analysis for high-risk and low-risk groups, and

combined TMB for KM analysis of both groups.

Immune escape and immunotherapy
analysis

The TIDE algorithm has been used inmany articles to predict

response to immunotherapy. TIDE data comes from the TIDE

website (http://tide.dfci.harvard.edu/) (Fu et al., 2020). It is

frequently used to predict response to immune checkpoint

inhibitors such as the cluster of differentiation 274 (CD274)

and cytotoxic T lymphocyte-associated antigen 4 (CTLA4) in both

low-risk and high-risk groups (p-values < 0.05 were considered

statistically significant). In this study, we used the TIDE scoring

algorithm to predict tumor susceptibility to immune checkpoint

inhibition, and then to evaluate the effect of immunotherapy.

Immune checkpoints we used for prediction include TIDE,

microsatellite instability (MSI) (Young et al., 1993; Bonneville et al.

, 2017), CAF (Sahai et al., 2020), tumor-associated macrophages M2

(TAMM2) (Rey-Giraud et al., 2012), CD8, CD274, dysfunction,

exclusion (Nishino et al., 2017; Wang et al., 2019a), myeloid-

derived suppressor cell (MDSC) (Gabrilovich, 2017), Merck18 and

interferon-G (IFN-G) (Nishino et al., 2017). A lower immune cell

proportion score (IPS) indicates a good response to immunotherapy.

Comprehensive scoring of immune checkpoints can help us identify

the role of lncRNAs in tumor immune escape in high- and low-risk

groups, and further predict the effects of immunotherapy models.

Chemical drug sensitivity prediction

To explore the sensitivity of each LUAD patient from the

TCGA database to different chemotherapeutic agents, we used

the “pRRophetic” R package to identify potential therapeutic

agents for LUAD patients. In the results, we used IC50 to

represent the sensitivity of each patient to different

chemotherapeutics (Zhu et al., 2012; Yang et al., 2021; Lai

et al., 2022). High-risk and low-risk groups were used for

comparison. The “pRRophetic” software package, which has

been widely used in clinical studies of tumors, predicts

IC50 by creating a statistical model based on drug sensitivity

FIGURE 5
Principal component analysis of high and low risk groups based on TCGA whole group. (A) all genes. (B) 417 molecular chaperone genes. (C)
3,597 molecular chaperone-related lncRNAs. (D) 20 molecular chaperone-related lncRNAs in the risk model.
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FIGURE 6
(Continued).
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and RNA-seq data from genomics of drug sensitivity in cancer

(GDSC) (www.cancerrxgene.org/) (Cai et al., 2021b).

Stem cell index mRNAsi in LUAD patients
and its clinical significance

Stemness indices, which describes the similarity of

tumor cells to stem cells, can be used as prognostic

indicators to help predict the risk of tumor recurrence and

guide treatment (Malta et al., 2018). MRNAsi is indices

calculated based on gene expression data. We merged

clinical data and stem cell data from LUAD and

performed survival analysis on the merged data by

using the “survival” R package. Meanwhile, we used the

Wilcoxon test to investigate whether the stem cell index

was correlated with age, gender, T, and M stage of LUAD

patients.

FIGURE 6
(Continued). Evaluation of the tumor immune microenvironment using a molecular chaperones-related lncRNA model in LUAD patients. (A,B)
GO enrichment analysis. (C,D) KEGG pathway enrichment analysis. (E–G) Study on the immune function of lncRNA in training subgroup, validation
subgroup and whole group samples under high and low risk groups. (H–J) Difference analysis of TMB between high-risk and low-risk patients in
training, validation, and full-group samples. (K–M) Kaplan-Meier curve analysis of OS was performed on the patients in the training subgroup,
the validation subgroup and the whole group according to the TMB and molecular chaperone-related lncRNA models. (N–R) Results of immune
evasion assays suggest that tumors are sensitive to immune checkpoint therapy, such as (N) Exclusion, (O) TAMM2, (P)CAF, (Q)MDSC, and (R) TIDE.
*p < 0.05, **p < 0.01, ***p < 0.001.
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Statistical analysis

We performed all statistical analyses using R software

(version 4.1.3). Target genes were screened using the Cox

regression algorithm, a risk prediction model was established

and a risk score was calculated. The prognostic value of the risk

scoring model was assessed using the ROC curve, and the area

under the curve (AUC) was calculated using the “timeROC” R

package. In addition, we divided patients into high-risk and low-

risk groups based on risk scores. KM analysis was used to

compare differences in survival between patients with high

and low-risk groups and to analyze differences in survival

between different subgroups. Finally, we performed univariate

and multivariate Cox regression analyses to identify independent

prognostic factors for LUAD.

Results

The flowchart of the present study was summarized in

Figure 1.

Identification of molecular chaperone-
related lncRNAs in LUAD patients

We identified a total of 3,597 MCRLncs by Spearman

correlation analysis (|cor| > 0.4 and p < 0.001). We also

mapped the molecular chaperone-lncRNAs co-expression

network (Figure 2A). At the same time, in order to reflect the

correlation between molecular chaperones and lncRNAs, we

visualized the relationship between the two in a heatmap

manner (Supplementary Figure S1). Finally, we merged the

co-expressed lncRNAs with clinical information from patients

with LUAD.

Risk signatures based on molecular chaperone-related

lncRNAs were associated with prognosis in patients with LUAD.

We screened 301 MCRLncs by using univariate Cox

regression analysis. LASSO regression analysis further

screened 330 MCRLncs (Figures 2B,C). Multivariate Cox

regression analysis showed that 16 MCRLncs were significant (p <
0.05) (Supplementary Table S2). The 16 prognostic MCRLncs

were AL359513.1, AC004830.2, ‘ZEB1-AS1′, LINC02802,

AC026355.2, AC106038.1, AC022034.4, AC093911.1, AC079466.1,

AC108136.1, LINC01887, AC019211.1, AL031600.2, AL162632.3,

AL024497.2 and LINC00862. In addition, we randomly divided

the whole LUAD samples into two groups, the training

subgroup (n = 330) and the validation subgroup (n = 164). To

verify that the grouping was reasonable, we generated a clinical file by

multivariate Cox regression analysis. The results showed that the p

values of the clinical information between the two groups were all

greater than 0.05, which indicated that there was no statistical

significance in each clinical index between the two groups, that is,

the grouping was good, and the statistical deviation error could be

avoided (Table 1).

Based on the median risk score, we divided LUAD

patients into high-risk and low-risk groups. We performed

survival analysis on LUAD samples using the “survival”

package of R software and plotted survival curves. The

distribution of risk scores in the low-risk group and the

high-risk group is shown in Figure 2D. The survival status

and survival time of patients in the two different risk groups

are shown in Figure 2E. The relative expression criteria of

MCRLncs for each patient is shown in Figure 2F. KM survival

analysis showed that patients in the low-risk group lived

longer than those in the high-risk group (p < 0.001)

(Figure 2G). The distribution of risk classes, the

corresponding survival status, and the relative expression

levels of the 16 MCRLncs suggested that high-risk indices are

associated with high mortality (Figures 2D–F). At the same

time, we found that lncRNAs LINC02802, AC022034.4,

AC079466.1, AC108136.1 and AL024497.2 were

significantly associated with a higher risk of tumor death

(Figure 2F). We also found that LINC01887, AC019211.1 and

AL031600.2 were highly expressed in the high-risk subgroup

and low expressed in the low-risk subgroup. To test the

prognostic power of this risk model, we calculated a risk

score for each patient in the validation and whole groups

using a unified risk formula. Figures 2H–K, 2L-O represent

the distribution of risk score, survival status and survival

time, and the expression of MCRLncs in the validation

subgroup and the whole group, respectively. KM survival

analysis between the validation subgroup and the whole

group showed no difference in the TCGA group, and

patients in the high-risk group had lower OS than those in

the low-risk group (Figures 2K,O). This indicates that the

prognostic model of LUAD constructed by us is effective.

Clinical assessment using risk assessment
models

We used the “ggpubr” R package to perform a correlation

analysis of clinical information and risk score. Figure 2P–S shows

that the fustat, T stage, regional lymph nodes (N) stage, and

tumor grade are significantly correlated with the calculated risk

score. We found an increased risk of death from stage I to stage

III (p < 0.05) (Figure 2S). Patients who died had higher risk scores

(p < 0.05) (Figure 2P).

Next, we performed univariate and multivariate Cox

analyses to identify prognostic factors in patients with

LUAD (Supplementary Table S3). Univariate Cox analysis

showed tumor grade stage (p < 0.001, Hazard ratio (HR) =

1.552, 95% confidence interval (95%CI): [1.303–1.849]), T

stage (p = 0.001, HR = 1.481, 95%CI: [1.162–1.888]), N

stage (p < 0.001, HR = 1.827, 95%CI: [1.454–2.296]), Risk
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score (p < 0.001, HR = 1.009, 95%CI: [1.005–1.013]) showed

statistical difference (Figure 2T). However, by multivariate

Cox analysis only the risk value risk score (p < 0.001, HR =

1.011, 95%CI: [1.007–1.016]) showed a statistical difference.

This just shows that risk score is closely related to the survival

time of LUAD patients (Figure 2U).

FIGURE 7
(Continued).
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FIGURE 7
(Continued). Evaluation of chemosensitivity by the risk model. The model showed high risk scores were associated with a lower IC50 for
chemotherapeutics such as (A) bicalutamide, (B) BMS.509744, (C) Bortezomib, (D) CMK, (E) Docetaxel, (F) Doxorubicin, (G) erlotinib, (H)
Gemcitabine, (I)Obatoclax. Mesylate, (J) Parthenolide. Themodel showed low risk scores were associated with a lower IC50 for chemotherapeutics
such as (K) EHT. 1864, (L) Lenalidomide, (M) Methotrexate, (N) PD.0332,991, (O) Temsirolimus.

FIGURE 8
Predictive value of MCRLncs for immunotherapy response in the IMvigor210 cohort. (A) Kaplan-Meier estimates of overall survival for patients in
the low-risk or high-risk groups suggest that survival in the low-risk group was not statistically significant. (B) In the IMvigor210 cohort, the AUC
values of themolecular chaperones-related lncRNA prognostic model screened by Lasso regression at 1, 3 and 5 years were 0.475, 0.526 and 0.525,
respectively. (C) Comparison of risk scores between partial response and progressive disease suggests that lower MCRLncs scores may predict
better immunotherapy response.

Frontiers in Genetics frontiersin.org15

Xu et al. 10.3389/fgene.2022.975905

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.975905


Evaluation and validation of risk
prognostic models

To evaluate the specificity and sensitivity of these

prognostic factors, we evaluated our prognostic model

using AUC and C-index. The 1-year, 3-year, and 5-year

ROC curves showed that the AUC for predicting 1-year, 3-

year, and 5-year survival rates of LUAD patients were 0.798,

0.779, and 0.845, respectively (Figure 3A). All the AUC were

greater than 0.5, indicating that the predictive power of the

prognostic model was credible. The results of the 5-year ROC

curve showed that most of the clinical indicators we used

could be used as predictors of 5-year survival in LUAD

patients, except for age and sex. It is noteworthy that in the

constructed prognostic model, the risk score was significantly

better than other clinical variables in predicting 1-year, 3-year,

and 5-year survival in LUAD patients (Figures 3C–E). Then,

we used the C-index curve to further verify the prediction

ability of the model. We found that the C-index value of risk

score, stage, N, and T is greater than 0.5, indicating that the

model has good prediction ability. Among them, the C-index

of risk score was the largest and the prediction ability is the

best (Figure 3B).

In order to predict the OS of patients with LUAD, we

developed a nomogram widely used to predict the prognosis

of cancer patients. The nomogram is based on two predictors, the

risk score and associated clinical factors. We found that the

nomogram was a good predictor of 1-, 3-, and 5-year survival in

patients with LUAD (Figure 3F). This has certain significance for

guiding clinicians to predict the survival time of LUAD patients.

Further calibration curves showed that the 1-year and 3-year

overall survival rates in the nomogram were consistent with the

actual survival rates, indicating that the nomogram model can

accurately predict the survival of patients with LUAD. Then, we

performed KM survival analysis on LUAD patients grouped

according to clinicopathological characteristics to validate our

constructed clinically independent prognostic model. The results

showed that patients in the high and low-risk groups had a

shorter survival time over time, and patients in the high-risk

group had a poorer prognosis, which was also expected

(Figure 4B). We observed that compared with patients with

low risk scores, male patients (p < 0.001), female patients (p <
0.001) (Figures 4E,F), patients younger than 65 years of age (p <
0.001), patients older than 65 years of age (p < 0.001) (Figures

4C,D), and black or African American patients (p = 0.006),White

patients (p < 0.001) (Figures 4G,I), stage I patients (p < 0.001),

FIGURE 9
Relationship between stem cell index and prognosis and clinicopathological features in LUAD. (A) Differences in mRNAsi between normal and
tumor tissues. (B) Kaplan–Meier survival curves of mRNAsi in LUAD. Comparison between mRNAsi expression level and clinical characteristics in
LUAD, including (C) gender, (D) tumor grade, (E) T stage, (F) M stage.
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stage II patients (p < 0.001) (Figures 4J,K), stage T1 patients (p =

0.006), stage T2 patients (p < 0.001), stage T3 patients (p < 0.001)

(Figure 4–P), N0 stage patients (p < 0.001), N1 stage patients (p =

0.003), (Figure 4R, S), and M0 stage patients (p < 0.001)

(Figure 4U). However, in the high-risk and low-risk groups,

survival was not associated with risk scores for stage III (p =

0.077) and IV (p = 0.207) (Figure 4L, M), T4 (p = 0.167)

(Figure 4Q), N2 (p = 0.153) (Figure 4T), and M1 (p = 0.207)

(Figure 5). Asian patients were deleted due to insufficient data

(Figure 4H).

In conclusion, patients in the low-risk group continued to

survive longer than the high-risk group according to subgroups

by survival status, age, ethnicity, and tumor grade. Therefore,

after preliminary validation, it was shown that 16 MCRLncs

markers we used to construct the risk model were closely related

to clinical characteristics and could predict the survival time of

LUAD patients.

Use principal components analysis to
verify the performance of risk models

We used PCA dimensionality reduction analysis to examine

the different distribution of all gene expression profiles,

417 molecular chaperone gene expression profiles,

3,597 MCRLncs expression profiles, and 16 risk-related

MCRLncs expression profiles (Figures 5A–D). The results

showed that the patients in the high and low-risk groups

divided by the 16 molecular chaperone-related lncRNAs in

the risk model were obviously distributed in different

directions. The distribution of patients divided by the other

three methods is relatively scattered, which indicates that the

constructed prognostic model is of great help in identifying

patients in the high-risk group and the low-risk group, which

just shows that there are significant differences in immunity

between the two groups of patients.

Functional characteristics of risk
prognosis models

To further elucidate the potential biological functions and

major signaling pathways of prognostic lncRNAs, we performed

GO functional pathways and KEGG enrichment analysis

(FDR <0.05). The results showed that the differential

lncRNAs genes we studied played a role in regulating the

malignant processes such as BP, CC, and MF in LUAD

(Figure 6A). BP found that these genes were mainly enriched

in epidermis development-related pathways. In terms of CC,

these genes were mainly enriched in apical plasma membrane-

related pathways. In terms of MF, these genes were mainly

enriched in signaling receptor activator activity and receptor

ligand activity related pathways. Figure 6B shows which

functional pathways the differential lncRNAs are clustered in.

We also found that lncRNA CFAP100, CFAP65, TCTE1,

DNAI2, TTC29, DNAH9, DNAAF6, and HOATZ are all

involved in the functional pathway of cilium movement

(Figure 6B). Figures 6C,D shows that differential lncRNA

genes were mainly enriched in two metabolic pathways,

Metabolism of xenobiotics by cytochrome P450 and drug

metabolism - cytochrome P450. We also found that lncRNA

CYP2F1, CYP2A6, ADH1C, GSTA2, ADH7, and GSTA1 genes

are all involved in regulating the metabolic pathway of

Metabolism of xenobiotics by cytochrome P450 (Figure 6C).

In conclusion, we found that many immune-related biological

processes play a role in the risk assessment of chaperone-related

lncRNA models.

Risk models to assess the tumor immune
microenvironment

Based on the results of functional enrichment, we speculate that

the tumor immune microenvironment of LUAD patients may be

related toMCRLncs. We used the “GSVA” R package to analyze the

immune infiltration of lncRNAs in high and low-risk groups with

13 immune functions, and the results were presented in the form of

heatmaps (Figures 6E–G). In the training subgroup, we found that

lncRNAs were correlated with the two immune function pathways,

Parainflammation and MHC_class_I, and were highly expressed in

the high-risk group. In addition, the immune function pathway

MHC_class_I was found to be correlated with lncRNAs in the

training set, validation set, and all samples. This indicated that there

were significant differences in the expression of lncRNAs in the low-

risk group and the high-risk group in the expression of immune

markers.

TMB is frequently used as a predictive biomarker for

response to immune checkpoint inhibitor therapy. The

results in Figures 6H–J show that high and low-risk groups

were not associated with TMB. In the survival analysis, we

found that the low-risk group with high TMB in blue had the

highest probability of survival, followed by the low-risk group

with low TMB in green. In contrast, both the high-risk purple

group with low TMB and the high-risk red group with high

TMB had poor survival probabilities (Figure 6K). Results in

the validation group and the whole group were not statistically

significant (Figure 6L, M). These results suggest that high

TMB can be considered a protective factor in patients with

LUAD. Although the relationship between the risk model and

mutational burden was not clear, in the pooled survival

analysis, the high-risk group with high TMB in red was

significantly different from the other three groups. This is

helpful for our prognosis.

Currently, immune checkpoint inhibition therapy is a

promising modality for cancer treatment. We used the

TIDE score to simulate tumor immune escape to predict
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the efficacy of immune checkpoint inhibitor therapy.

Immunoassay results showed that TIDE scores were not

statistically significant in high and low-risk groups

(Figure 6R). The comprehensive score of exclusion and

CAF is higher in the high-risk group, which suggests that

the higher the score of exclusion and CAF, the lower the risk of

tumor (Figure 6N, P). TAMM2 and MDSC were lower in the

high-risk group, indicating that the lower the TAMM2 and

MDSC score, the higher the risk of tumors, which contradicts

the actual (Figure 6O, Q). Analysis of other immune

checkpoints showed no statistical significance

(Figure 6S–Z). Therefore, we speculate that the addition of

Exclusion and CAF will promote the development of LUAD in

high-risk groups.

Prediction of chemosensitivity in patients
with LUAD using risk scores

To analyze the prediction of LUAD patients’ response to

chemotherapy agents, we used the “pRRophetic” R package to

study the sensitivity of the high and low-risk groups to

different chemotherapy agents. Figures 7A–J shows that,

Bicalutamide, BMS.509,744, Bortezomib, CMK, Docetaxel,

Doxorubicin, erlotinib, Gemcitabine, Obatoclax. The lower

the semi-inhibitory concentration of mesylate and patlactone

in the high-risk group, the higher the risk score. This suggests

that these drugs are good for the treatment of LUAD patients

in the high-risk group. Instead, we found that. EHT. 1864,

Lenalidomide, Methotrexate, PD.0332991, and Temsirolimus

had higher sensitivity in the low-risk group (Figure 7J–O). In

conclusion, the analysis of chemotherapy sensitivity of LUAD

patients can provide thoughts for the clinical treatment of

LUAD patients.

Immunotherapy model validation and
immunotherapy response analysis

To verify the reliability of the immunotherapy model we

constructed, we analyzed the IMvigor210 cohort of bladder

cancer patients enrolled in immunotherapy. KM survival

analysis showed that when the target gene was expressed in

the IMvigor210 cohort, the survival probability between high

and low-risk groups was not statistically significant (p > 0.05)

(Figure 8A). Next, we used the ROC curve to verify the

immunotherapy model we constructed. Unfortunately, the

ROC curve was not a good predictor (Figure 8B). The

results of immunotherapy response analysis showed that

the risk score of target genes in the IMvigor210 cohort was

significantly different (p < 0.05), indicating that

immunotherapy drugs have a good therapeutic effect on

target genes (Figure 8C).

Stem cell index mRNAsi and clinical
features correlated with prognosis

By analyzing the stem cell index mRNAsi expressed in LUAD

patients, the results showed that the mRNAsi of lung cancer

samples and normal samples showed significant statistical

differences (p < 0.05) (Figure 9A). KM survival analysis

showed that there was no statistical significance in survival

probability between high and low-risk groups (p > 0.05)

(Figure 9B). Next, we explored the relationship between stem

cell index and clinical indicators. We found significant

differences in stem cell indexes of LUAD patients by gender,

stage, and T and M stages (Figures 9C–F). This indicates that

mRNAsi in LUAD patients is highly correlated with clinical

indicators, and the study of stem cell index plays an important

role in improving the prognosis of LUAD patients and

developing new immunotherapy.

Discussion

Lung cancer is a malignant tumor with the highest morbidity

andmortality in China and the world, and the 5-year survival rate

is less than 20% (Zhu et al., 2019; Siegel et al., 2022). The main

risk factors for lung cancer are smoking and second-hand smoke.

LUAD is the most important pathological type of lung cancer,

accounting for about half of all lung cancers, and its incidence is

gradually increasing in China. In recent years, a large number of

studies have shown that tumor markers in LUAD have achieved

positive outcomes in terms of prognosis and treatment (Liang

et al., 2020; Song et al., 2021a). Despite progress in LUAD

treatment, there are still a large number of LUAD patients

who do not have appropriate treatment. This may be due to

the fact that LUAD is a highly heterogeneous tumor and

individual differences between LUAD patients are obvious.

Therefore, there is an urgent need to construct a new

prognostic model to accurately predict the prognosis of

LUAD patients at an early stage and improve new

immunotherapy targets.

Previous studies have shown that molecular chaperones can

promote the development of lung adenocarcinoma. For example,

Huang, Z. C. et al. (Huang et al., 2018) found through

bioinformatics studies that high expression of HSPB1 could

promote the growth of lung adenocarcinoma cells, and further

lead to poor prognosis of patients. In addition, lncRNAs have

also been found to play a role in the pathogenesis of LUAD (Xu

et al., 2021a; Ye et al., 2021). A growing number of studies

demonstrate the potential of lncRNAs as biomarkers for various

cancers (Xu et al., 2021b; Xie et al., 2021). Yue, N. et al. (Yue et al.,

2020) found that the high expression of lncRNA pSMG3-AS1

played a carcinogenic role in the development of LUAD. At the

same time, recent studies have also shown that it is possible to

predict the prognosis of cancer patients by exploring the
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potential relationship between coding genes and lncRNAs (Wang

et al., 2019b; Ye et al., 2022). In this study, we were inspired by the

mechanism by which both molecular chaperones and lncRNAs

can be involved in the occurrence and development of LUAD.

We attempted to construct an independent prognostic model of

MCRLncs and explore its value in immune infiltration,

immunotherapy effect and prognosis of LUAD.

First, we identified 16 MCRLncs by univariate and

multivariate Cox regression analysis. They were AL359513.1,

AC004830.2, ‘ZEB1-AS1′, LINC02802, AC026355.2,

AC106038.1, AC022034.4, AC093911.1, AC079466.1,

AC108136.1, LINC01887, AC019211.1, AL031600.2,

AL162632.3, AL024497.2 and LINC00862’. Using these

16 MCRLncs markers, we constructed a risk-prognostic model

to predict OS in patients with LUAD. We then divided LUAD

patients into high-risk and low-risk groups based on the risk

score. KM survival analysis showed that the survival time of

LUAD patients in the high-risk group was significantly lower

than that of LUAD patients in the low-risk group. LncRNA

LINC02802, AC022034.4, AC079466.1, AC108136.1 and

AL024497.2 were highly expressed in LUAD in the high-risk

group and could be used as predictors for predicting high-risk

LUAD. LINC01887, AC019211.1 and AL031600.2 were highly

expressed in the high-risk subgroup and low expressed in the

low-risk subgroup, indicating that they were protective genes in

LUAD patients. We also explored the relationship between

clinicopathological factors and OS. Univariate Cox regression

analysis showed that tumor stage, T stage, N stage and Riskscore

showed statistical differences. However, multivariate Cox

regression analysis only found that Riskscore was closely

related to the survival time of LUAD patients. This indicates

that MCRLncs is an independent prognostic factor in the risk

model. The ROC curve and C-index showed that the prognostic

model was superior to conventional clinical features in predicting

survival in LUAD. We also established a graph that predicted 1 -,

3 -, and 5-year survival in LUAD patients. The calibration curve

confirms the good performance of the line chart. KM survival

analysis based on clinical variables showed that the clinical

outcomes of the high-risk group were significantly worse,

which further verified the reliability of our prognostic model.

In the same time, the risk model was also confirmed to be

significantly associated with sex, age, race, stage I, II, T1, T2,

T3, N0, N1, M0 and OS of LUAD patients. The prognosis of

LUAD patients is closely related to liver metastases, brain

metastases and bone metastases. Unfortunately, there was no

statistical significance between the risk model we constructed and

the M1 stage.

GO and KEGG pathway enrichment analysis confirmed the

Metabolism of xenobiotics by cytochrome P450 and drug

metabolism − cytochrome P450 are related to these two

metabolic pathways. The genes CYP2F1, CYP2A6, ADH1C,

GSTA2, ADH7 and GSTA1 have been shown to be involved

in the metabolic pathway regulating the metabolism of

cytochrome P450 to xenobiotics. Previous studies have found

that the drug-metabolizing enzyme CYP plays an important role

in tumor cell progression, which provides new insights into the

development of targeted drugs for lung adenocarcinoma (Song

et al., 2021b).

Immunotherapy has made great strides in cancer treatment in

recent years. Studies have shown that immune checkpoints such as

immunosuppressants PD-1 and CTLA4 show important value in

inhibiting the occurrence and development of a variety of malignant

tumors (Shojaie et al., 2021; Yi et al., 2021). Functional enrichment

analysis showed that 16 MCRLncs markers were involved in many

immune-related biological processes. To further explore the

relationship between MCRLncs and tumor immune

microenvironment, we found a positive correlation between the

prognostic model and Parainflammation and MHC_class_I

pathways by ssGSEA analysis. TMB is the total number of

somatic coding mutations. Previous studies have found that

higher TMB is associated with OS after immunotherapy for a

variety of cancer types, suggesting that TMB can be used as an

effective marker of immunotherapy response (Topalian et al., 2016).

The prognostic model constructed in this study has no correlation

with TMB. In addition, a growing number of studies are using the

TIDE score to predict immunotherapy efficacy (Jiang et al., 2018). In

our study, the comprehensive score of Exclusion and CAF was

higher in the high-risk group. This shows that patients in the high-

risk group respond better to immunotherapy, which helps us further

screen drugs for LUAD. Next, we discovered bicalutamide,

BMS.509,744, Bortezomib, CMK, Docetaxel, Doxorubicin,

erlotinib, Gemcitabine, and Obatoclax. Mesylate and Parthenolide

as potential therapeutics in the high-risk group through the

“pRRophetic” R package. EHT. 1864, Lenalidomide,

Methotrexate, PD.0332,991, and Temsirolimus can be used to

treat low-risk patients. The IMvigor210 cohort validated the

efficacy of immunotherapy agents against target genes. In

addition, we found that the stem cell index mRNAsi of LUAD is

highly correlated with clinical indicators, indicating that mRNAsi is

related to the prognosis of patients.

The pathological stage of the tumor is often used as the

basis for clinicians to proceed with the next treatment, because

the pathological stage is a decisive factor affecting the

prognosis of LUAD (Jurisic et al., 2018). However, studies

have shown that LUAD patients at the same pathological

stage can have different outcomes (Tan et al., 2021).

Therefore, it is necessary to explore new predictive and

therapeutic biomarkers to assess the prognosis of patients

with LUAD. The MCRLncs model constructed by our study

can provide a new approach for the prognosis and

immunotherapy of LUAD patients.

Undeniably, our study has certain limitations. Firstly, in our

study, we used multiple methods to construct our prognostic

model, and our prognostic model was validated to be reliable.

However, the clinical data we used to construct the prognostic

model were only from the TCGA database. If we tried to validate
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our prognostic model with an external dataset, we might get

different results. Secondly, the prognostic model for the Asian

population was not statistically significant. C-index showed that

the four clinical variables, age, gender, M, and race, were not well

combined with the prognostic model, which may be related to

too little sample size. Therefore, we need to recover samples and

expand the sample size to improve our prognostic model.

Thirdly, the nomogram does not include potential factors

such as smoking history, PD-L1, tumor proportion score

(TPS), brain metastases, bone metastases, and liver metastases

that are associated with the prognosis of patients with LUAD

(Yang et al., 2018; Cheng et al., 2019; Wang et al., 2020; Ni et al.,

2021; Takamochi et al., 2022). Fourthly, in this study, the

IC50 value was used to evaluate drug sensitivity. But in

clinical practice, we rarely use parameters to evaluate the

efficacy of drugs. Fifthly, we did not clarify the relationship

between MCRLncs and tumor-infiltrating immune cells.

Finally, we lack clinical follow-up data to validate the value of

our prognostic model.

Conclusion

This study constructed a risk model for 16 MCRLncs in

LUAD. This model can effectively predict the OS of LUAD

patients. This will help clinicians more accurately identify high-

risk patients and further improve the outcome of patients with

LUAD. Meanwhile, we transformed LUAD’s risk model into a

nomogram prediction model to provide clinicians with a

quantitative and convenient prognostic tool and greatly

improve the ability of personalized treatment for LUAD

patients. We also used an immune checkpoint-based TIDE

score to assess the efficacy of immunotherapy. This score

predicts sensitivity to certain chemotherapeutic agents and

expression of immune checkpoint genes (PD-1/CTLA-4). In

addition, risk models play an important role in predicting

the immune landscape of LUAD patients. MCRLncs markers

can be used as potential therapeutic targets for molecular

mechanism studies, which provide an important basis for

future studies on the relationship between MCRLncs markers

and immunotherapy.
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