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Background: Although a majority of early-stage lung adenocarcinoma (es-

LUAD) patients have a favorable prognosis, there are still some cases with a risk

of recurrence and metastasis. Cuproptosis is a new form of death that differs

from other programmed cell death. However, no study has been reported for

setting a prognostic model of es-LUAD using cuproptosis pattern-related

genes.

Methods: Using multiple R packages, the data from the GEO database was

processed, and es-LUAD patients was classified into two patterns based on

cuproptosis-related genes. Key differentially expressed genes (DEGs) in the two

patterns were screened to construct a prognostic signature to assess

differences in biological processes and immunotherapy responses in es-

LUAD. Tumor microenvironment (TME) in es-LUAD was analyzed using

algorithms such as TIMER and ssGSEA. Then, a more accurate nomogram

was constructed by combining risk scores with clinical factors.

Results: Functional enrichment analysis revealed that DEGs in two patterns

were correlated with organelle fission, nuclear division, chromosome

segregation, and cycle-related pathways. Univariate Cox regression and

Lasso-Cox regression analyses identified six prognostic genes: ASPM,

CCNB2, CDC45, CHEK1, NCAPG, and SPAG5. Based on the constructed

model, we found that the high-risk group patients had higher expression of
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immune checkpoints (CTLA4, LAG3, PD-L1, TIGIT and TIM3), and a lower

abundance of immune cells. Lastly, the nomogram was highly accurate in

predicting the 1-, 3-, and 5-year survival status of patients with es-LUAD based

on risk scores and clinical factors.

Conclusion: The cuproptosis pattern-related signature can serve as a potential

marker for clinical decision-making. It has huge potential in the future to guide

the frequency of follow-up and adjuvant therapy for es-LUAD patients.
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Introduction

Lung cancer has the highest mortality rate and the second

incidence of all cancer worldwide (Alexander et al., 2020; Sung

et al., 2021). Non-small cell lung cancer (NSCLC) comprises

approximately 85% of lung cancers, and lung adenocarcinoma

(LUAD) is the most common histological subtype of NSCLC

(Anusewicz et al., 2020). With the development of targeted

therapy and immunotherapy, the prognosis of lung cancer has

been greatly improved. Through the promotion of low-dose chest

computerized tomography (CT) scan, the diagnosis rate of early-

stage lung cancer (es-LUAD) is getting higher (National Lung

Screening Trial Research et al., 2013). Early diagnosis can

improve the prognosis of lung cancer, with 5-year relative

survival increasing from 6% for distant-stage disease to 33%

for regional stage and 60% for localized-stage disease (Siegel et al.,

2022). Low-dose chest CT scan for lung cancer has become a

standard of care in the United States (Mazzone et al., 2021).

However, not all the early-diagnose LUAD can be cured. A

reliable prognostic signature for es-LUAD patients is needed

to improve treatment strategies.

Programmed cell death (PCD) is necessary for the process of

eliminating the loss of the damaged infected or senescent cells.

The mechanism of PCD included Apoptosis (Kerr et al., 1972),

Necroptosis (Sun et al., 2012), Autophagy (Bergmann, 2007),

Ferroptosis (Dixon et al., 2012), Proptosis (Shi et al., 2015), and

Necrosis (Vanlangenakker et al., 2012). Recently, cuproptosis as a

potential factor for cancer disease, can lead to a new form of

programmed copper-induced cell death by the mitochondrial

tricarboxylic acid (TCA) cycle (Tsvetkov et al., 2022). Too little or

too much copper is toxic to cells. The accumulation of copper in

the mitochondria results in aggregated lipoylated proteins,

including dihydrolipoamide S-acetyl transferase (DLAT)

(Tsvetkov et al., 2022). However, whether cuproptosis-related

genes could become an important biological marker for

predicting early lung cancer needs to be further explored.

Immunotherapy is a promising treatment for es-LUAD,

which kills tumor cells by stimulating specific immune

responses to diminish tumor immune escape. Clinical studies

showed that immunotherapy has a good effect on advanced

NSCLC (Garon et al., 2019). Moreover, early-stage surgically

respectable LUAD may benefit from Immunotherapy (Linehan

and Forde, 2020). Bioinformatics analysis of immune checkpoint

expression levels and immune cell infiltration is warranted to

help predict immunotherapy efficacy and facilitate precision

treatment of es-LUAD.

Considering the findings, we performed a study to find out

the relationship between cuproptosis-related genes and es-

LUAD. In addition, a clinical prediction model based on the

cuproptosis patterns was developed to investigate the correlation

of risk scores with prognosis and TME.

Methods

Data source

All data of es-LUAD, including RNA-seq data and

corresponding clinical date (GSE31210, GSE50081,

GSE72094), were retrieved from the Gene Expression

Omnibus (GEO) database from the NCBI (https://www.ncbi.

nlm.nih.gov/gds/). The expression profiles in the datasets were

normalized. After removing the samples with missing survival

data, 353 samples with pathological stage I and II in

GSE31210 and GSE50081 datasets were obtained.

Subsequently, the two datasets were merged by the R package

“inSilicoMerging” (Taminau et al., 2012). The ComBat method

in the “sva” package was used to eliminate batch effects of the

merged dataset (Johnson et al., 2007). In addition, the LUAD

patients were extracted from the GSE72094 database with

pathological stage I and II as an external validation set to

assess the predictive accuracy of the signature. The details of

the databases are placed in Supplementary Table S1.

Consensus clustering

By using the R package “ConsensusClusterPlus” (Wilkerson

and Hayes, 2010), unsupervised consensus clustering was applied

to the expression profile of the 10 cuproptosis-related genes in

the training dataset. Agglomerative km clustering was used with a

euclidean distances and resampling 80% of the samples for
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1000 repetitions. The stability between different subtypes is best

when parameter K = 2. The detailed information was showed in

Supplementary Figure S1.

Functional enrichment analysis

The R package “limma” was used to screen cuproptosis-

related differentially expressed genes (CR-DEGs) between two

patterns (cut-off criteria: |Fold Change|>1.5 and FDR<0.05)
(Ritchie et al., 2015). GO (Gene Ontology) and KEGG (Kyoto

Encyclopedia of Genes and Genomes) analyses were performed

using R package “clusterProfiler” (FDR<0.05) (Kanehisa et al.,

2021). Gene Set Enrichment Analysis (GSEA) was achieved by

GSEA software (v 3.0), and different functional phenotypes

between two patterns were detected based on KEGG gene sets

(Subramanian et al., 2005). R package “GSVA” was used to

investigate the biological processes related to high- and low-

risk groups. Hallmark gene sets were downloaded from MsigDB

(http://www.gsea-msigdb.org/gsea/msigdb/) (Hanzelmann et al.,

2013).

Construction of risk model and
nomogram

Protein-Protein Interaction (PPI) network was performed

with the STRING database. Cytoscape software was used to

screen hub CR-DEGs. On the basis of hub DEGs, the

prognostic model was constructed through univariate Cox

regression and Lasso-cox regression analyses. The model

formula is Risk score = coef1*exp (gene1) +coef2*exp (gene2)

+. . .. . .+coefi*exp (genei). Combining risk scores with clinical

factors, we constructed a nomogram utilizing R package “rms.”

The 1-/3-/5-year overall survival (OS) probabilities were

estimated by time-dependent ROC curves and the

Concordance index (C-index) was used to evaluate

discriminative ability.

Statistical analysis

Based on the R package “survminer” and “survival,” Kaplan-

Meier (KM) survival analysis was performed to assess prognostic

differences. In addition, the correlation between immune cell

infiltration and risk score was investigated by the TIMER

algorithm and single sample GSEA (ssGSEA) algorithm.

Lasso-Cox regression analysis was conducted using the R

package “glmnet” (Tibshirani, 1997; Wang et al., 2019). A

predictive Nomogram was further constructed based on Cox

regression analysis. Time-dependent ROC curves were drawn by

R package “timeROC.” The chi-square test was utilized to

evaluate differences between categorical variables, and the

t-test was applied to continuous variables, in which a nominal

p-value < 0.05 was significant, and p ≥ 0.05 was equal to no

significance (NS).

Result

Identification of es-LUAD patterns by
cuproptosis-related genes

The flowchart was shown in Supplementary Figure S2. After

normalization, GSE31210 and GSE50081 were combined as the

training set and the batch effects were eliminated. These

processes were a prerequisite for subsequent bioinformatics

analysis. cuproptosis-related genes derived from recent studies

(Kahlson and Dixon, 2022; Tsvetkov et al., 2022) were associated

with the LA pathway (FDX1, LIAS, LIPT1, DLD), and the PDH

pathway (DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A)

(Figure 1A). In addition, we used an empirical cumulative

distribution function (CDF) to determine the optimal number

of clusters. Briefly, to identify tumors with common genetic

signatures, the training set was subjected to a consensus

clustering algorithm (input k = 2–10), based on the

cuproptosis-related gene expression profiles (Supplementary

Figure S2). When the parameter K = 2, the stability between

the two patterns was the best. The cluster1 pattern contained

256 patients, and the cluster2 pattern contained 97 patients

(Figures 1B,C). Remarkably, the predicted prognosis was

analyzed by the Kaplan-Meier (KM) survival curve. The

cluster2 group had notably shorter overall survival compared

with the cluster1 group (hazard ratio (HR): 2.11, CI: 1.37–3.25),

as was disease-free survival (HR: 2.14, CI: 1.39–3.30). All cohorts

showed a significant p-value (p < 0.001) (Figures 1D,E). In

addition, the heat map displayed the expression of

cuproptosis-related genes in the two patterns and the

demographic information of patients (Figure 1F). Importantly,

the results displayed that cuproptosis genes may be essential for

es-LUAD patients, and the clinical value was related to overall

and disease-free survival.

Functional enrichment analysis of CR-
DEGs

The volcano plot identified 415 CR-DEGs in cluster 1 and

cluster 2. The heat map contained the top 50 up- and down-

regulated genes, with the columns representing sample

groups, and rows representing genes (Figures 2A,B).

Functional enrichment analysis was applied to estimate the

functions of the CR-DEGs in LUAD. The results of GO

enrichment analysis showed that most DEGs were

correlated with organelle fission, nuclear division, and

chromosome segregation, which belong to the category of
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biological processes. The most abundant terms in the cellular

composition categories were chromosomal region, spindle,

and condensed chromosome. For the molecular functions,

the strongest enrichment terms were ATPase activity, tubulin

binding, and microtubule-binding (Figures 2C–E). KEGG

results showed that CR-DEGs were mainly enriched in

cycle-related pathways, for example, cell cycle,

P53 signaling pathway, and Oocyte meiosis (Figure 2F).

FIGURE 1
Identification of cuproptosis-related patterns. (A) cuproptosis-related genes; (B,C) Consensus clustering analysis by the cuproptosis-related
genes (k = 2); (D,E) KM analysis was used to plots OS and DFS curves of es-LUAD patitents (blue represented cluster1 pattern while red represented
cluster2 pattern); (F) The heat map showed the expression and clinicopathological characteristics of the cuproptosis-related genes in two clusters.
KM: Kaplan-Meier; OS: Overall survival; DFS: Disease-free survival; es-LUAD: early-stage lung adenocarcinoma.
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FIGURE 2
Functional enrichment analyses of CR-DEGs. (A) Volcano plot for the CR-DEGs with statistical significance (the green dots represented down-
regulated genes, and the red dots represented up-regulated genes); (B) The heatmap showed the expression of top 50 up-and down-regulated CR-
DEGs; (C–E) GO analysis of CR-DEGs (|Fold Change|>1.5 and FDR<0.05); (F) KEGG analysis of CR-DEGs (|Fold Change|>1.5 and FDR<0.05). CR-
DEGs: cuproptosis-related differentially expressed genes; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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More detailed information is shown in Supplementary Table

S2. Furthermore, GSEA was implemented to assess the

functional differences between the two patterns. The results

showed that cluster2 pattern has the actively enrichment of

cell cycle pathways, such as cell cycle (NES = 2.16), DNA

replication (NES = 1.98), Mismatch repair (NES = 1.96), and

FIGURE 3
Identification hub genes in PPI network. (A)GSEA analysis of two patterns; (B) The STRING database and Cytoscape software was used to obtain
hub CR-DEGs; (C) The hub 50-DEGs analyzed by Univariate Cox regression. PPI: Protein-Protein Interaction; GSEA: Gene Set Enrichment Analysis.
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FIGURE 4
Construction of risk model by six genes. (A) Construction of prognostic signature by Lasso regression and 10-fold cross validation; (B) Risk
factor diagram of es-LUAD patients; (C) KM prognostic curve of training group; (D) ROC curve of training group; (E) Univariate Cox analysis and
Multivariate Cox analysis of risk score. Lasso: Least absolute shrinkage and selection operator; KM: Kaplan-Meier; ROC: receiver operating
characteristic.
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Oocyte meiosis (NES = 1.81) in cluster2 group (Figure 3A;

Supplementary Table S3)

Protein-protein interaction networks
(PPIs) of CR-DEGs

To explore the interrelationships among DEGs and to find

the critical DEGs for subsequent analysis, we used the STRING

database and Cytoscape software for visualization. The

STRING database is a powerful tool which was used to

efficiently perform protein interaction analysis and build PPI

network. All hub genes in the PPI network were obtained by the

Cytoscape software, and the CytoHubba plugin was used to

calculate each Degree score (Figure 3B). Finally, the TOP50 hub

DEGs were screened and univariate Cox regression was

conducted to define the candidate prognosis-correlated CR-

DEGs (Figure 3C).

Development of prognostic signature

To further explore the prognostic guidance of the top 50 CR-

DEGs for patients with es-LUAD, the Lasso-Cox regression was

conducted (10-fold cross-validation). Ultimately, we identified

six prognostic genes: ASPM, CCNB2, CDC45, CHEK1, NCAPG,

and SPAG5 (Figure 4A). These six prognostic genes were used to

construct the risk model, and Figure 4B displayed the risk score

and survival status of LUAD patients. Moreover, the heat map

showed the expression of six prognostic genes between the high-

FIGURE 5
Relationship between risk score and clinicopathological characteristics. (A–D) Differences in risk score by gender, age, smoking history and
pathological stage; (E–L) Prognostic significance of risk score in different clinical factors.
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and low-risk groups. According to the survival probability

analysis, the survival probability of the high-risk group was

markedly lower than that of the low-risk group (HR = 6.37,

CI: 3.59–11.30) (Figure 4C). Then, time-dependent ROC curves

were used to verify the diagnostic efficiency of the signatures. The

results showed that the predicted AUC values of 1-, 3-, and 5-year

survival in pathological stage I and II LUAD patients were 0.726,

0.755, and 0.764, respectively (Figure 4D). Univariate and

multivariate Cox analyses were applied to further investigate

the prognostic correlation of risk scores. Results showed that risk

score was an independent prognostic factor in es-LUAD patients

(Figure 4E).

Risk scores correlated with
clinicopathological factors and reveal
differences in biological functions

The correlation between risk scores and clinicopathological

factors, including gender, age (≤65/>65), smoking history, and

pathological stage were evaluated in order. Results indicated that

female patients had lower risk scores (Figure 5A), patients with

smoking history had higher risk scores (Figure 5C), and patients

with pathological stage II had higher risk scores than those with

pathological stage I (Figure 5D), yet there was no statistical

difference in risk scores by age group (Figure 5B). Indeed, the

FIGURE 6
Different characteristics were exhibited between high- and low-risk groups. (A) Differences in biological functions between high- and low-risk
groups; (B) The expression of immune checkpoints in high- and low-risk groups; (C) Immune infiltration of 6 immune cell types calculated by TIMER
algorithm.
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results of the KM curve were accomplished on different

clinicopathological factors. Figures 5E–L showed that the

high-risk patients had poor survival time regardless of gender,

age, smoking history, and pathological stage. The Hallmark gene

sets were downloaded from the MsigDB for Gene Set Variation

Analysis (GSVA) to investigate the correlation between risk

scores and potential biological functions, and revealed that the

low-risk group had higher levels of bile acid metabolism. The

high-risk group had higher enrichment levels at the DNA repair,

EMT, hypoxia, MTORC1 signaling, glycolysis, and G2/M

checkpoint (Figure 6A).

Distinction of tumor microenvironment
based on risk score

The expression levels of immune co-inhibitory molecules

were closely reflected the response to immunotherapy. The

FIGURE 7
Immune landscape and differences in 24 immune cell types between the high- and low-risk. (A,B) The correlation between risk score and
24 immune cell types; (C) ssGSEA algorithm analyzed the different abundance of immune cells in the high- and low-risk groups. ssGSEA: single
sample Gene Set Enrichment Analysis.
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comparison of the immune checkpoints between the high- and

low-risk groups showed that the high-risk group had higher

expression of CTLA4, LAG3, PD-L1, TIGIT and TIM3, while

there was no significant difference in the expression of PD-1

(Figure 6B). In addition, the correlation between immune

infiltration and risk score was investigated by the TIMER

algorithm. The results revealed that the high-risk group had

lower abundance of CD4+ T cells, while higher abundance of

neutrophils (Figures 6C). Further, the ssGSEA algorithm was

used to investigate the relationship between the infiltration

abundance of 24 immune cell types and the risk score. As

shown in Figure 7A,B, risk score was inversely correlated with

FIGURE 8
Validation of risk signature. (A) Risk factor diagram of es-LUAD patients in GSE72094 dataset; (B) ROC curve for GSE72094 dataset; (C) KM curve
in validation group based on risk score. (D) Univariate and Multivariate Cox analysis of risk score and clinical factors. ROC: receiver operating
characteristic; KM: Kaplan-Meier.
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FIGURE 9
Development of Nomogram. (A) Construction of Nomogram by gender, age, pathological stage, and risk score. (B,C) 1-, 3- and 5-year ROC
curves for training group and validation group; (D,E) KM curve for training group and validation group (Based on Nomogram score). KM: Kaplan-
Meier.
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most cells, including mast cells (r = 0.47) and CD8+T cells (r =

0.23), and was positively correlated with Th2 (r = 0.67). In

addition, the comparison of immune cell infiltration

abundances between high- and low-risk groups showed the

same results. High-risk group had lower abundance of CD8+

T cells, DC cells, Mast cells, Tcm cells, TFH cells, while higher

abundance of Th2 cells (Figure 7C). These results suggested that

tumor progression and tumor escape may occur in patients with

a high-risk score.

Validation of prognostic signatures risk
model with GSE72094

To better evaluate the prognostic value of our model in

patients with es-LUAD, we used an external validation set:

GSE72094. Three hundred and twenty-one lung

adenocarcinoma patients with pathological stage I and II were

processed and extracted. As shown in Figure 8A, there was higher

mortality in the es-LUAD patients with a high-risk score, and

there were also significant differences in the expression of the six

prognostic genes that formed the high accuracy model.

Furthermore, we tested the model’s accuracy in predicting

survival. The results revealed that the AUC values for 1-year,

3-year, and 5-year overall survival of es-LUAD patients were

0.730, 0.672, and 0.764, respectively (Figure 8B). Es-LUAD

patients showed significant prognostic differences at different

risk score levels, with worse outcomes in high-risk groups

(Figure 8C). Further, Univariate and Multivariate Cox

analyses were performed to validate the risk score as an

independent prognostic factor (Figure 8D), indicating that the

developed model is highly accurate in predicting the es-LUAD

prognosis.

Nomogram based on risk score and
clinical factors

To further improve the predictive efficacy of the model,

gender, age, pathological stage and risk score were combined

to construct a nomogram by using the R package “rms.”

Prognostic significance was exhibited in 353 samples (The

C-index = 0.77 (95% CI: 0.72–0.82), p-value < 0.001)

(Figure 9A). KM curve analysis showed that the high- and

low-levels of nomogram scores could significantly distinguish

the prognostic status of es-LUAD patients, and patients with high

scores had poor prognoses (Figure 9D). ROC curve analysis

showed that the constructed nomogram had higher accuracy in

predicting patient survival (Figure 9B). The predicted AUC

values for 1-, 3-, and 5-year survival status reached 0.778,

0.806, and 0.791, respectively. To further validate this result,

the external data, named the GSE72094, was used to construct

and examine the nomogram. The results showed that the model

still maintains high accuracy. In the GSE72094 set, patients with

es-LUAD with high nomogram scores had a poor prognosis

(Figure 9E). Thus, the predicted AUC values of 1-, 3-, and 5-year

survival status of patients with es-LUAD significantly reached

0.749, 0.697, and 0.877, respectively (Figure 9C). Taken together,

the nomogram model of risk score and clinicopathological

characteristics can accuracy the predictive survival in es-

LUAD patients.

Discussion

Copper is a vital “micronutrient” responsible for balancing

cell structure and function: excessive copper can hurt various

cells and organisms, causing copper-induced cell death. In the

presence of unbalanced copper in human serum and tissues,

copper promotes tumorigenesis through cancer progression,

angiogenesis, and metastasis and acts as a critical cofactor for

antioxidant enzymes and multiple forms of cell death (Masuri

et al., 2021; Jiang et al., 2022). Previous studies have shown that

copper-induced cell death is the mechanism by which inhibition

of reactive oxygen species and mitochondrial permeability

transition pore affects mitochondrial membrane function

(Belyaeva et al., 2012). Another cell death way for

inflammatory cells can occur is through cuprizone

demyelination and is exhibited in two types: 1) internal death:

oxidative stress caused by the alteration of cuprizone contributes

to cell body damage of oligodendrocytes; 2) external death:

accumulation of immune responses due to disruption of pro-

inflammatory cytokines and regulators (Pasquini et al., 2007; Stys

et al., 2012; Hooijmans et al., 2019; Zirngibl et al., 2022).

Furthermore, the hepatic copper scores were correlated to

hepatic neuroinflammatory, apoptosis, malondialdehyde, and

fibrosis in various liver diseases (Yamkate et al., 2022), and

excessive accumulation of copper can could inhibit mitophagy

and promote apoptosis in hepatocytes (Yu et al., 2021).

Excitingly, an increasing number of studies have focused on

copper-induced cell death. Until recently, Peter Tsvetkov et al.

reported a novel type of programmed death: cuproptosis, which

has attracted great attention (Tsvetkov et al., 2022). However, no

studies have been reported the significance and value of

cuproptosis-related genes for guiding clinical treatment of es-

LUAD patients. Consequently, it is of great practical importance

to classify es-LUAD patients based on cuproptosis-related genes,

and to construct a more accurate prognostic model.

LUAD makes up the major histological subgroup of NSCLC.

Recently, diagnostic tests for detecting early-stage lung cancer are

chest low dose computerized tomography (LDCT) and chest

X-rays. However, some es-LUAD patients still have recurrence

and metastasis beyond receiving the recommending treatment of

the clinical guidelines (Nooreldeen and Bach, 2021; Fu et al.,

2022; James et al., 2022). Discovery of new diagnostic tools is

essential for evaluating cancer prognosis. With the rapid
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development of genomics and epigenomics, nearly researches in

genomics and epigenomics have paid more attention in the risk

stratification, which is also requisite for es-LUAD (Wadowska

et al., 2020). In the study, we obtained ten cuproptosis-related

genes. Based on expression profile of ten cuproptosis-related

genes, the patients were classified into two distinct molecular

patterns (cluster1 and cluster2) with notability differences in

overall survival (OS) and disease-free survival (DFS): patients

with cluster2 had a significantly worse prognosis compared to

cluster1. To explore the potential mechanisms underlying the

differences in prognosis between the two patterns, we the DEGs

of two patterns were identified the DEGs of two patterns and

performed functional enrichment analysis of the obtained CR-

DEGs. The results of enrichment analysis showed that the CR-

DEGs were related to ATPase active molecules, which was

consistent with the mechanism that copper induced cell death

by TCA cycle proteins (Kahlson and Dixon, 2022; Tsvetkov et al.,

2022). Furthermore, we performed the GSEA enrichment

analysis showed that cell cycle-related pathways were mostly

enriched in cluster2. The results implied that the two different

molecular patterns were truly different in the cell cycle function.

To judge the prognosis of individual patients with es-LUAD

during the early period, we constructed a cuproptosis pattern-

related prognostic model based on hub DEGs that play a central

role in two es-LUAD patterns. The prognostic model is an initial

exploration of the potential role of cuproptosis pattern-related

biomarkers. Briefly, according to the univariate Cox and Lasso-

Cox regression analyses, six specific biomarkers were explored in

our signature (ASPM, SPAG5, CHEK1, NCAPG, CCNB2, and

CDC45). The research has shown that spindle-associated

proteins (ASPM and SPAG5), serine/threonine protein kinases

(CHEK1), and NCAPG regulated mitotic spindle, segregating

chromosome, and coordination of mitotic processes (Ashrafi

et al., 2021). ASPM played a substantial role in Wnt signaling

which could predict the outcome and survival of pancreatic

cancer, as well as promote hepatocellular progression via

autophagy (Hsu et al., 2019; Zhang et al., 2021a). Similarly,

cyclin family proteins were the key to cancer death signatures.

CCNB2 belonged to certain cell cycle control/manufacture

proteins and elevates metastatic resistance to synergistic

carcinogenesis (Glinsky, 2006). Recent studies have also

shown that CDC45 regulated MCM7 in acute myeloid

leukemia through the PI3K/AKT pathway, and another

mechanism whereby replication partially disrupted eukaryotic

DNA replication and triggered by ubiquitination of replication

helicases (Zhang et al., 2021b; Jenkyn-Bedford et al., 2021).

In our study, risk score was calculated based on the

expression of the six genes, and was considered as an

integrated clinical parameter. Depending on the risk score, we

could determine the prognosis of es-LUAD patients. In addition,

risk score was identified as an independent prognostic factor by

univariate Cox and multivariate Cox analyses. The risk score was

a powerful complement to pathological stage. It could guide the

risk stratification of patients and help clinicians to identify the

population with poorer prognosis in es-LUAD early. By

combining clinical parameters with the risk score, a more

accurate nomogram was constructed. The results of the time-

dependent ROC analysis revealed that the predictive efficacy of

the nomogram was higher than the risk score. Notably, the

predicted AUC values of 1-, 3-, and 5-year survival status

reached 0.778, 0.806, and 0.791, respectively, demonstrating a

high degree of accuracy. The same results are also obtained in the

external independent validation set, which proves the good

stability and generalizability of our constructed model.

To further explore the prognostic differences of es-LUAD

patients between high- and low-risk groups at the level of

molecular mechanisms, we performed GSVA enrichment

analysis. We found that high- and low-risk groups showed

significant heterogeneity in the enrichment levels of Hallmark

gene sets. The high-risk group had higher enrichment levels for

functional features such as DNA repair, EMT, hypoxia,

MTORC1 signaling, glycolysis, and G2/M checkpoint, while

the low-risk group had higher enrichment levels for Bile acid

metabolism. This result explained the high activation of tumor

progression and metastasis in patients with high-risk scores. The

TME, where tumor cells live, plays a pivotal role in

tumorigenesis, development and metastasis. Research has

shown that the TME of LUAD patients is highly

heterogeneous, and this difference in TME may also indirectly

contribute to the poor survival status of some es-LUAD patients

(Hinshaw and Shevde, 2019). In our study, we performed the

immune infiltration analysis for patients in the high- and low-

risk groups separately to look for differences in immune cell

abundance. Excitingly, the high-risk score of es-LUAD had lower

abundance of CD8+ T cells, DC cells, Tcm cells, and TFH cells.

CD8+T cells, as key immune cells in tumor immunity, can

specifically recognize and kill tumor cells (Raskov et al., 2021).

In addition, numerous studies have also shown that DC cells,

Tcm cells, and TFH cells are involved in fighting tumor

progression (Liu et al., 2020; Wculek et al., 2020; Cui et al.,

2021). Therefore, patients in the high-risk group exhibit an

immunosuppressed TME that contributes more to tumor

immune escape.

Due to the highly effective therapeutic effects, immune

checkpoint inhibitors (ICIs) have made great progress in the

application of cancer treatment, yet studies have found that only

a fraction of patients are sensitive to immunotherapy (Zhang and

Zhang, 2020). Therefore, an in-depth exploration of the model

we constructed has potential value to guide the strategy of ICIs

usage. In this study, we analyzed the expression of immune co-

inhibitory molecules in the high- and low-risk groups separately.

We found that the high-risk group had higher expression levels

of CTLA4, LAG3, PD-L1, TIGIT, and TIM3. Previous studies

have shown that the expression of immune co-inhibitory

molecules correlates with the level of tumor escape and the

effect of immunotherapy, so this result offers a new idea to

Frontiers in Genetics frontiersin.org14

Tang et al. 10.3389/fgene.2022.977156

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.977156


identify es-LUAD with higher malignant risk and provide

targeted adjuvant treatment strategies. In conclusion, unlike

other prognostic models that include advanced lung

adenocarcinoma, we focused on es-LUAD patients, an easily

overlooked population (Fane and Weeraratna, 2020; Stoletov

et al., 2020). By constructing a cuproptosis pattern-related

prognostic model with high accuracy, we uncovered the

potential clinical application of the risk score, which is

expected to help clinicians in the future.

Nowadays, numerous cell death-related prognostic models

have been published, such as apoptosis-related gene model (Zou

et al., 2022), ferroptosis-related gene model (Zhong et al., 2022),

and autophagy-related gene model (Deng et al., 2022). Unlike

them, we for the first time confirm that the expression of

cuproptosis pattern-related genes correlates with es-LUAD

patients prognosis, and have a high predictive efficacy.

However, there are certain shortcomings in our study. Our

study is mainly based on secondary analysis of public

databases, and therefore further experimental validation for

the mechanism of cuproptosis in cancer is needed.

Conclusion

Cuproptosis-related genes may contribute to the classification

of es-LUAD. The model constructed by cuproptosis pattern-

related genes allowed risk stratification of es-LUAD patients

and revealed differences in tumor microenvironment between

different risk groups. In addition, the Nomogram based on risk

score and clinical factors can accurately predict the survival status

of es-LUAD patients, and may serve as an essential reference to

guide clinical decision-making.
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