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Background: Colon cancer is the fifth most common cause of cancer-related

death worldwide, and despite significant advances in related treatment, the

prognosis of colon cancer patients remains poor.

Objective: This study performs systematic bioinformatics analysis of

prognostic-associated RNA processing factor genes in colon cancer using

the Cancer Related Genome Atlas database to explore their role in colon

carcinogenesis and prognosis and excavate potential therapeutic targets.

Methods: Data sets of colon cancer patients were obtained from GEO and

TCGA databases. Univariate cox analysis was performed on the

GSE39582 training set to identify prognosis-associated RNA processing

factor genes and constructed a muticox model. The predictive performance

of the model was validated by Correlation curve analysis. Similar results were

obtained for the test dataset. Functional analyses were performed to explore

the underlying mechanisms of colon carcinogenesis and prognosis.

Results: A constructed muticox model consisting of βi and prognosis-related

RNA processing factor gene expression levels (Expi) was established to evaluate

the risk score of each patient. The subgroup with a higher risk score had lower

overall survival (OS), higher risk factor, and mortality. We found that the risk

score, age, gender, and TNM Stage were strongly associated with OS, and the

13-gene signature as an independent prognostic factor for colon cancer. The

model has good accuracy in predicting patient survival and is superior to

traditional pathological staging.

Conclusion: This study proposes 13 RNA processing factor genes as a

prognostic factor for colon cancer patients, which can independently

predict the clinical outcome by risk score. The gene expression profile in

this model is closely related to the immune status and prognosis of colon

cancer patients. The interaction of the 13 RNA processing factor genes with the

immune system during colon carcinogenesis provides new ideas for the

molecular mechanisms and targeted therapies for colon cancer.
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Key messages

1. 13 RNA processing factor genes as a prognostic factor for

colon cancer patients.

2. The gene expression profile is closely related to the immune

status and prognostic survival of patients.

3. Immune system are involved in the interaction of the 13 RNA

processing factor genes.

Introduction

Colon cancer is the fourth most frequently diagnosed cancer

and the fifth leading cause of cancer-related death globally,

accounting for almost 1.2 million new cases and 0.8 million

deaths per year (Siegel et al., 2020; Sung et al., 2021). Owing to the

absence of early symptoms, most patients diagnosed with colon

cancer are at an advanced stage. Surgical resection is currently the

primary therapy for colon cancer, which is prone to recurrence

and metastasis after resection, dramatically decreasing the

survival time of patients (Siegel et al., 2017; Han et al., 2019;

Jung et al., 2021; Le et al., 2021). Despite advances in the

diagnosis and treatment of colon cancer in recent years, the

low survival time, high recurrence rate, and poor prognosis are

still challenging (Yang et al., 2019; Cerrito and Grassilli, 2021;

Hoehn et al., 2021). The clinicopathologic staging system

remains the gold standard for prognosis prediction and

therapeutic decision-making in colon cancer. However, people

with the same stage and therapy might have quite varied

outcomes because of the high heterogeneity. As a result, it is

critical to explore the molecular mechanisms behind colon

cancer’s occurrence and progression in detail to reveal novel

prognostic biomarkers and therapeutic targets.

Studies have shown that prognosis-associated RNA

processing factor genes of human play an essential role in

tumorigenesis and progression (Obeng et al., 2019; Lou et al.,

2021). Thus, there is of great importance to actively search for

relevant RNA processing factor genes that predict the prognosis

of colon cancer patients to improve the curative effect and

prognosis of patients. For instance, it has been shown that the

expression of ubiquitination-related RNA processing factor

genes in cancer tissues is closely related to the prognosis of

patients with colon cancer (Ishii et al., 2014; Sanchez-Jimenez

et al., 2015; Hopkins et al., 2016; Wurth et al., 2016). The

construction of a systematic model of prognosis-related RNA

processing factor gene expression levels facilitates the

identification of concrete mechanisms and therapeutic targets

of colon cancer pathogenesis, which carry great significance for

precise therapy and improvement of patient prognosis.

In recent years, tumor survival models based on the

expression of prognosis-related RNA processing factor genes

have been established to assess prognosis and screen

therapeutic targets, but it has not been reported in colon

cancer (Li et al., 2020a; Li et al., 2020b). In this study, RNA

processing factor genes associated with colon cancer were

obtained from the Cancer Genome Atlas (TCGA) database,

and a muticox model consisting of prognosis-associated RNA

processing factor gene expression levels and their corresponding

coefficients was established. The 13 gene signature was found to

be an independent prognostic factor for colon cancer after

multifactorial analysis, and also had good accuracy for

predicting patient survival, even better than conventional

pathological staging. In addition, further investigation on the

interaction between these genes and the immunity will contribute

to the discovery of potential molecular mechanisms and

therapeutic targets of colon cancer.

Methods

Data retrieval and preprocessing

First, we obtained mRNA expression information of colon

cancer from GEO (Gene Expression Omnibus) database and

TCGA database and excluded patients with incomplete survival

data. RNA-seq data were merged and standardized with “limma”

package and combat algorithm. RNA processing factor genes

were obtained from the AmiGO database.

Identification of prognosis-related RNA
processing factor genes and assessment
of their value

We used the “survival” package to perform univariate cox

analysis on the GSE39582 training set to identify prognosis-

related RNA processing factor genes. To clarify the value of

prognosis-related RNA processing factors further, we performed

unsupervised consensus clustering to identify new subtypes using

the ConsensusClusterPlus R package and performed Kaplan-

Meier survival analysis and log-rank tests on the subtypes using

the “survival” and “survminer” packages. Stromal and immune

cells in malignant tissues were estimated using the Estimate

algorithm, and the stromal score, immune score, and

ESTIMATE score were calculated for the different molecular

subtypes (Yoshihara et al., 2013). Stromal and immune cells in

malignant tissues were estimated using the Estimate algorithm,

and the stromal score, immune score, and ESTIMATE score were
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calculated for the different molecular subgroups. The abundance

of immune cells in different molecular subgroups was evaluated

with MCP-Counter. Although the MCP-Counter score does not

represent the actual proportion of each immune cell

subpopulation in the tumor tissue, it has some numerical

advantages in downstream statistical analysis. In the MCP-

Counter method, the abundance of the 10 immune cells was

expressed as the log2 geometric mean of the transcriptional

markers of these immune cells, called the MCP-Counter score.

Construction and evaluation of prognostic
models

In the training dataset, “glmnet” and “survival” packages

were used to further screen prognosis-associated RNA processing

factor genes. Then a muticox model consisting of prognosis-

associated RNA processing factor gene expression levels (Exp)

and their corresponding coefficients (β) was constructed with

Risk score = ∑(β1*Exp1+β2* Exp2 +β3* Exp3+/+βn* Expn) to

evaluate the risk score of each patient. 70% of the patients were

randomized into the training group, and the remaining 30% were

in the test group. We divided patients into high-risk and low-risk

groups using the median risk score as the cut-off value. The

overall survival (OS) between the high-risk and low-risk groups

was compared by Kaplan—Meier survival analysis and log-rank

test. The model’s predictive effect was evaluated using receiver

operator characteristic (ROC) curve analysis. Survival risk curves

and scatter plots were used to illustrate the risk scores and

survival status of each sample. The samples from the TCGA

database were set as a validation cohort also for the above analysis

to validate the performance of the constructed prediction model

in predicting survival. In addition, we assessed the prognostic

significance of risk scores and clinical variables such as age, sex,

and T, N, and M staging by univariate and multivariate Cox

regression analyses on the training set, described the relative risk

in terms of hazard ratio (HR) and 95% confidence interval (CI),

and used decision curve analysis (DCA) to determine whether

the model could benefit patients.

Application model

To facilitate the better application of our model by clinicians,

we constructed the nomogram jointly with age, sex, and T, N, and

M staging and evaluated the predictive effect of the nomogram

using C-index, ROC curve, and calibration curve analysis.

Notably, since chemotherapy is a common treatment for

colon cancer, we used the GDSC (Genomics of Drug

Sensitivity in Cancer) database to calculate the difference in

the IC50 (half maximal inhibitory concentration) of

chemotherapy drugs between patients in the high- and low-

risk groups, with a smaller IC50 implying greater sensitivity to

the drug. In addition, we used the cellminer database to calculate

the correlation between the genes in the model and the Z score

value of chemotherapeutic drug sensitivity; a higher Z score value

means greater sensitivity to the drug.

Exploring potential mechanisms

ssGSEA (single sample GSEA) is an implementation method

proposed mainly for the single sample that cannot do GSEA and

is similar to GSEA in principle. We calculated the immune cell

and function gene set scoring in each sample and performed

survival analysis by the ssGSEA method, and the difference

analysis was performed between high-risk and low-risk

groups. We also performed the differential analysis of genes in

the model to clarify their differential expression in high and low-

risk groups. In addition, we evaluated the differences of risk

scores in microsatellite instability groupings. A gene set

enrichment study was performed between the high- and low-

risk groups to elucidate the potential biological mechanisms and

signaling pathways associated with the 13-gene signature.

Immunohistochemistry staining

Paraffin-embedded cancer and adjacent normal tissues were

cut into 5-μm thick tissue sections and slides prepared using

standard techniques. The sections were deparaffinized and

rehydrated with graded alcohol, and then antigens were

retrieved by heating in citric acid (pH6.0) buffer in a

microwave oven. 3% hydrogen peroxide and 3% BSA were

used to quench endogenous peroxidase activity and reduce

non-specific binding respectively. According to the

instruction, anti-BICD1 (dilution 1:100, HPA041309, Sigma-

Aldrich) were incubated on the sections overnight at 4°C.

Then, the sections were incubated with a horseradish

peroxidase conjugated secondary antibody, and staining was

visualized using DAB color developing solutions. At last, the

sections were counterstained with hematoxylin and mounted

with mounting medium.

Statistical analysis

All statistical analyses were performed by R version 4.0.4

(Institute of Statistics and Mathematics, Vienna, Austria, https://

www.r-project.org), taking the mean of duplicate values,

removing missing values, and RNA-seq data were combined

and standardized by the R package “limma.” Correlations were

determined using Spearman correlation analysis, clinical

variables were compared using Wilcoxon test and t-test,

survival status was assessed by Cox regression analysis,

Knowledge management analysis was performed using the R
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package “survival” and “survminer,” OS was generated using the

Kaplan-Meier method and assessed by log-rank test, and two-

tailed p < 0.05 was considered statistically significant. The

sensitivity and specificity of the model were assessed using

ROC curves from the R package “survivalROC,” and the heat

map was presented through the R package “heat map.” In

addition, we validated the confidence of the model using the

test dataset and the whole dataset, using hazard ratios (HRs) and

95% confidence intervals (CIs) to describe the relative risk.

Results

Data retrieval and pre-processing

First, we downloaded the GSE39582 dataset from the GEO

database to obtain gene expression data and related survival

information of 523 colon cancer patients. During further

validation, HTSeq-FPKM expression information of colon

cancer was obtained from the TCGA database, and 372 colon

cancer patients with complete follow-up information were

included in the training set after excluding patients with

incomplete survival information. The RNA-seq data were

merged and normalized using the “limma” package

processing. 929 RNA-processing factor genes were obtained

from the AmiGO database, and 806 previously reported

human RNA-processing genes were included in both the

GSE39582 database and TCGA dataset.

RNA processing factor genes could
classify colon cancer patients into two
significantly distinguishable subtypes

Univariate cox analysis based on the training group obtained

80 prognosis-related RNA processing factor genes (p < 0.05) and

could classify colon cancer patients into two subgroups, G1 and

G2 (Figure 1A). Survival analysis revealed that patients in the

G1 group had a better prognosis (Figure 1B). Tumor

microenvironment analysis suggested that the stromal,

immune, and ESTIMATE scores were lower in the G1 group

than in the G2 group (Figure 1C). Immune cell infiltration

FIGURE 1
Subgroups of COAD (Colon Adenocarcinoma) defined by prognosis-associated RNA processing factor genes. (A) The TCGA cohort’s
consensus scorematrix for all samples when K = 2. When two samples had a higher consensus score in distinct interactions, they weremore likely to
be clustered together. (B) OS curves based on COAD patients from the TCGA cohort for the two RNA processing factor clusters. (C) Comparations
between the two subgroups in terms of stromal score, immune score, and ESTIMATE score in tumor tissues. (D)Comparations between the two
subgroups in abundance of immune filtrating cells in tumor tissues.
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analysis showed a difference in a large number of immune cells

between the G1 and G2 subgroups, and the level was lower in the

G1 group (Figure 1D). This implies that there may be an immune

barrier mediating immune escape in the G2 group, which we

hypothesize is the reason for the poor prognosis in the

G2 group. It also implies that the subtypes we identified are

highly distinguishable and that prognosis-related RNA

processing factor genes are of great value to explore.

The 13-gene signature is an independent
prognostic factor for colon cancer

In the training dataset, 13 prognosis-related RNA processing

factor genes were further extracted by using the “glmnet” and

“survivor” packages to filter and remove collinearity. Then, a

muticox model consisting of prognosis-associated RNA processing

factor gene expression levels and their corresponding coefficients was

FIGURE 2
Construction of the RNA processing factors related risk signature model. (A,B) Partial likelihood deviance of variables revealed by the Lasso
regression model. The red dots represented the partial likelihood of deviance values, the gray lines represented the standard error (SE), the two
vertical dotted lines on the left and right represented optimal values by minimum criteria and 1-SE criteria, respectively.

FIGURE 3
Survival analysis and ROC analysis of two risk groups of the 13-gene signature in training cohort (A,E), testing cohort (B,F), all patients (C,G), and
validation cohort (D,H).
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FIGURE 4
The risk score distribution and COAD cancer patients’survival status in the training cohort (A,E), test cohort (B,F), all patients (C,G), and validation
cohort (D,H) based on the risk score of the 4-gene signature.

FIGURE 5
Independence detection and decision curve analysis of the constructed risk prediction model. (A,B) Independent prognostic-related factors
screened out by COX regression analysis. (C). The y-axismeasures the net benefit. The red line represents the constructed risk predictionmodel. The
purple line represents the assumption that all the patients were predicted using none indicators. The blue line represents the assumption that the
patients were predicted using all indicators. The decision curve showed that using this constructed risk prediction model in the current study to
predict COAD patients’ survival risk adds more benefit than the indicator-all-patients scheme or the indicator-none scheme.
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constructed to evaluate the risk score of each patient. The risk score=

(CLK3*1.47577934073505) + (SNRPF*-0.498316806572549) +

(CELF1*1.2745982697241) + (WDR43*-0.573978763865487) +

(DEDD2*0.642794727626439) + (CMTR1*-1.24415055820031) +

(SNRPA1*0.80184898855264) + (GTF2H5*0.699623576827454) +

(FTSJ3*-0.576267186683901) + (ADAD1*-5.01566990560331) +

(HNRNPUL1*-0.628475085028677) + (BICD1*1.07079849381416)

+ (THUMPD3*-0.551211262513779). We used the 13-gene

signature risk score to quantify patients’ risk and used the median

value as the cutoff (Figure 2). The results showed that the OS of the

low-risk group was significantly better than that of the high-risk

group, and the ROC curve analysis suggested an excellent sensitivity

and specificity (Figure 3). Risk curves and scatter plots showed that

patients in the high-risk group had higher hazard ratios andmortality

rates than those in the low-risk group, and similar results were

obtained in the test set (Figure 4). Univariate Cox regression showed

that risk score and age, sex, and T, N, M stage were strongly

associated with OS, and multivariate Cox analysis found that 13-

gene signature was an independent prognostic factor for colon cancer

(p < 0.001) (Figures 5A,B). DCA revealed that using our model to

predict patients’ survival can make benefits (Figure 5C).

The 13-gene signature has significant
application value

We combined clinical traits to construct a line graph to

determine the prognosis of patients more accurately, and the

calibration curve and ROC suggest that our model has good

calibration and predictive performance. It predicts patient

survival better than conventional pathology and is a good

complement to conventional pathology (Figure 6). In the drug

sensitivity analysis, we found differences in the sensitivity of

many chemotherapeutic drugs in high and low-risk groups

(Figure 7). The genes in the model were moderately correlated

with a large number of drugs (Figure 8). This implies that our

signature can guide clinical drug use with significant

application.

FIGURE 6
Construction and calibration of nomogram. (A) Nomogram integrating risk and clinical characteristics. (B) Calibration of the nomogram at 1-y,
3-y, and 5-y survival in the TCGA cohort. (C,D) C-index estimates the probability that the predicted results are consistent with the actual observed
results. (E) Time-dependent ROC curve of the constructed nomogram model.
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Immune escape and mismatch repair are
risk factors for poor prognosis in colon
cancer patients

The ssGSEA results suggested that the ssGSEA scores of

iDCs, Inflammation-promoting, MHC_class_I, and Th2_cells

were higher in the low-risk group, and the survival was better

in the high-scoring group, which might be the reason why

patients in the low-risk group had better survival (Figures

9A–G). In addition, risk scores were higher in the high

microsatellite instability group than in the stable group,

suggesting that defects in mismatch repair may be closely

associated with the risk of colon cancer patients (Figure 9H).

Notably, GO (Gene ontology) and KEGG (Kyoto Encyclopedia of

Genes and Genomes) enrichment analysis based on the GSEA

method suggested that many pathways and biological processes

were different in the high- and low-risk groups, which may be the

potential mechanism behind our constructed signatures

(Figure 10).

Discussion

Colon cancer is characterized by high relapse rate and

poor prognosis, and accurate prediction of the prognosis of

colon cancer patients is critical to guide their treatment. The

construction of prognostic models with RNA processing

factors may be an essential complement to predicting the

prognosis of colon cancer. We analyzed the GSE39582 dataset

in the GEO database and screened 80 prognosis-related RNA

processing factors. These genes were highly exploratory and

could separate colon cancer patients into two subtypes with

significant differentiation, with lower survival in subtypes

with a higher stromal score, immune score, and immune

cell infiltration. Throughout tumor development and

progression to metastasis, the immune system, stromal

cells, and tumor cells have a close interaction. This

complex interaction can both inhibit and promote tumor

growth (Pancione et al., 2014; Vinay et al., 2015). In

general, CD8+ cytotoxic T cells (CTL) and CD4+ helper T

(Th)1 cells suppress cancer development through the

production of interferons (IFN) and cytotoxins, but chronic

inflammation that persists in colon cancer may override these

effects and promote cancer development (Balkwill and

Mantovani, 2001; Zamarron and Chen, 2011; Murata,

2018). There is also convincing evidence in animal tumor

models and human cancers that the formation of an

inflammatory microenvironment plays a vital role in the

development and progression of CRC (Grivennikov et al.,

2010). These results align with the previously mentioned

subtype with a poorer prognosis in terms of a higher

stromal score, immune score, and immune cell infiltration.

FIGURE 7
Immunotherapeutic and chemotherapeutic responses in high- and low-risk patients with COAD.
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In further investigation, we finally identified 13 prognosis-

related RNA processing factors to construct the signature. Our

findings indicated that DEDD2, GTF2H5, SNRPA1, BICD1,

CELF1, and CLK3 were prognostic risk factors for colon

cancer, while ADAD1, CMTR1, HNRNPUL1, FTSJ3, WDR43,

THUMPD3, SNRPF were prognostic protective factors. Among

the prognostic risk factors, SNRPA1 was reported to be highly

expressed in colorectal cancer tissues and promoted cancer

progression through the regulation of PIK3R1, VEGFC,

MKI67, and CDK1 (Zeng et al., 2019). V-ets avian

erythroblastosis virus E26 oncogene homolog 2 (ETS2) is a

protooncogene that regulates numerous cellular functions,

including proliferation, apoptosis, differentiation,

transformation, and migration, and is overexpressed in

various human cancers, including CRC (Hsu et al., 2004).

CELF1 was reported to promote proliferation, migration, and

invasion of CRC cells in vitro and in vivo through upregulating

ETS2 and induced resistance to oxaliplatin (Wang et al., 2020).

GTF2H5, BICD1, and CLK3 have been reported to be oncogenes

in ovarian cancer and hepatocellular carcinoma and are strongly

associated with prognosis (Gayarre et al., 2016; Li et al., 2019;

Jiang et al., 2020). We used random forest and found that

BICD1 is the most critical gene for prognosis in signature,

and there is high expression of BICD1 at bulk-RNA level

based on TCGA dataset (Supplemental Figure S1). We then

performed immunohistochemistry to compare the expression

levels of BICD1 in normal and cancer tissues in colon cancer

patients, but the results showed that BICD1 expressed negatively

in both tissues (Supplemental Figure S2). As alterations in

mRNA stability and/or translational efficiency are increasingly

reported in colorectal cancer, we hypothesize that post-

transcriptional alterations of BICD1 may be present in colon

cancer tissues and are conducting related experiments. Among

the protective prognostic factors, high levels of ADAD1 have

been reported to be strongly associated with the prognosis of

colon cancer patients, and its improvement of patient prognosis

may be associated with CD4+ T cells (Yang et al., 2020). Arginine

methylation is a post-translational modification required to

FIGURE 8
The correlation between genes in the signature and z-score values of chemotherapeutic drug sensitivity was calculated based on cellminer
database.
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maintain genomic integrity. Arginine methylation of

HNRNPUL1 regulates the interaction with NBS1 and recruits

it to sites of DNA damage; therefore, it is hypothesized that

HNRNPUL1 plays an important role in the repair of DNA

damage and suppresses tumorigenesis (Gurunathan et al.,

2015). Other prognosis-related genes have been rarely

reported in colon cancer and other cancers, so the

mechanisms of these genes in colon carcinogenesis

progression deserve further investigation as potential

therapeutic targets.

Subsequently, we built a convincing column line graph

including age, gender, TNM stage, and risk score. ROC curve

analysis, C-index, and calibration curve validated the

predictive ability of the model. It may enable clinicians to

assess patient survival more accurately and effectively.

Furthermore, we scored immune cells and immune

function by ssGSEA. We found that the pro-inflammatory

response was significantly upregulated in the high-risk

group. Notably, in addition to tumor cell resistance to

apoptosis and autophagy, necroptosis pro-inflammation is

another mechanism of resistance to death (Niu et al.,

2022). Unlike autophagy, tumor cells release cytokines into

the tumor microenvironment after necrosis, and the cytokines

recruit immune cells to clear the necrotic tissue, but

immunosuppressive cells also promote the metastasis of

tumor cells and enhance invasiveness. Immune evasion and

inflammatory responses are hallmarks of tumors, and the

interaction between immune responses and inflammatory

responses also has a significant role in the progression of

colon cancer (Vinay et al., 2015; Mortezaee, 2020). For

example, TGF-β increases the risk of cancer associated with

chronic inflammation in the intestine, while TGF-β also

induces immune evasion through suppressing the function

of many components of the immune system (Hong et al.,

2010). This is consistent with our previous findings of poorer

prognosis in the high immune score group and the immune

cell infiltration group in disease subtypes. Thus, the interplay

between chronic inflammation and immune evasion in colon

cancer progression and the specific mechanisms should be

taken into account.

We explored the potential mechanisms of 13-gene

signature in colon cancer by GO enrichment analysis and

KEGG pathway analysis and found that a large number of

pathways differed in high- and low-risk groups. Among them,

numerous pathways related to cell adhesion were enriched in

the high-risk group, and cell adhesion plays an essential role in

tumor cells leaving the primary site, surviving in the

circulation, extravasating to distant organs for implantation

and finally metastatic foci growth (Strilic and Offermanns,

2017; Laubli and Borsig, 2019). In addition, because cell

adhesion receptors are linked to intracellular signaling

pathways, interactions between tumor cells and other cells

and the extracellular matrix regulate cell phenotype,

proliferation, differentiation, and migration, ultimately

leading to immune evasion and metastasis of tumor cells

(Cooper and Giancotti, 2019). The poorer prognosis of

FIGURE 9
Degree of differentiation of the model. (A) Boxplots were used to display the expressions difference of Immune function score quantified by
ssGSEA. pp < 0.05; ppp < 0.01; pppp < 0.001. (B–E) Survival analysis of two group divided by the median of Immune function score. (F,G)Heatmap
display the expressions difference of gene mRNA in the 13 gene signature. (H) Rank-sum test was used to identify risk scores differences in
microsatellite instability.
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patients in the high-risk group may be related to the enhanced

adhesion of shed cancer cells which increases immune evasion

and tumor metastasis, leading to poorer patient prognosis.

Pathways associated with DNA replication and mismatch

repair were more enriched in the low-risk group. Mismatch

repair (MMR) excises base mismatches to ensure high genome

fidelity and intact replication, and MMR defects and loss of

MMR function play an essential role in the development and

progression of colon cancer (Baretti and Le, 2018; Cortez,

2019). In contrast, patients in the low-risk group have a

stronger DNA replication and mismatch repair capacity

than those in the high-risk group, resulting in slower

progression of colon cancer and a better prognosis. In

addition, DNA mismatch repair (MMR) defects result in

high mutational phenotypes due to frequent

polymorphisms and single nucleotide substitutions in short

repetitive DNA sequences, termed microsatellite instability

(MSI) (Ozcan et al., 2018). This is consistent with the previous

results of a higher risk score and worse prognosis in the high

microsatellite instability group.

However, our study has some limitations. It was a

retrospective study with data from the GEO and TCGA

databases and lacked information such as treatment and

relapse records. Our conclusions need to be validated by in

vivo or in vitro experiments and prospective clinical studies.

Conclusion

In summary, this study identified a 13-gene signature with

prognostic value for colon cancer patients. The RNA

processing factor may regulate the pathogenesis of colon

cancer by mediating the immune evasion and mismatch

repair pathway.

FIGURE 10
Functional enrichment analyses. (A,B)GeneOntology and (C,D) Kyoto Encyclopedia of Genes and Genomes pathways enriched between high-
risk group and low-risk group in the TCGA-COAD dataset.
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