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Head and neck squamous cell carcinoma (HNSCC) represents one of the most

prevalent and malignant tumors of epithelial origins with unfavorable

outcomes. Increasing evidence has shown that dysregulated long non-

coding RNAs (lncRNAs) correlate with tumorigenesis and genomic instability

(GI), while the roles of GI-related lncRNAs in the tumor immune

microenvironment (TIME) and predicting cancer therapy are still yet to be

clarified. In this study, transcriptome and somatic mutation profiles with

clinical parameters were obtained from the TCGA database. Patients were

classified into GI-like and genomic stable (GS)-like groups according to the

top 25% and bottom 25% cumulative counts of somatic mutations. Differentially

expressed lncRNAs (DElncRNAs) between GI- and GS-like groups were

identified as GI-related lncRNAs. These lncRNA-related coding genes were

enriched in cancer-related KEGG pathways. Patients totaling 499 with clinical

information were randomly divided into the training and validation sets. A total

of 18 DElncRNAs screened by univariate Cox regression analysis were

associated with overall survival (OS) in the training set. A GI-related lncRNA

signature that comprised 10 DElncRNAs was generated through least absolute

shrinkage and selection operator (Lasso)-Cox regression analysis. Patients in the
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high-risk group have significantly decreased OS vs. patients in the low-risk

group, which was verified in internal validation and entire HNSCC sets.

Integrated HNSCC sets from GEO confirmed the notable survival

stratification of the signature. The time-dependent receiver operating

characteristic curve demonstrated that the signature was reliable. In

addition, the signature retained a strong performance of OS prediction for

patients with various clinicopathological features. Cell composition analysis

showed high anti-tumor immunity in the low-risk group which was evidenced

by increased infiltrating CD8+ T cells and natural killer cells and reduced cancer-

associated fibroblasts, which was convinced by immune signatures analysis via

ssGSEA algorithm. T helper/IFNγ signaling, co-stimulatory, and co-inhibitory

signatures showed increased expression in the low-risk group. Low-risk

patients were predicted to be beneficial to immunotherapy, which was

confirmed by patients with progressive disease who had high risk scores vs.

complete remission patients. Furthermore, the drugs that might be sensitive to

HNSCC were identified. In summary, the novel prognostic GILncRNA signature

provided a promising approach for characterizing the TIME and predicting

therapeutic strategies for HNSCC patients.

KEYWORDS

head and neck squamous cell carcinoma, genomic instability (GI), long non-coding
RNA (IncRNA), tumor immune environment, therapy

Introduction

Head and neck squamous cell carcinoma (HNSCC)

represents a highly heterogeneous and malignant epithelial-

derived tumor occurring in the tongue, oral cavity,

nasopharynx, oropharynx, larynx, sinus, salivary gland, and

thyroid gland (Siegel et al., 2022). It is estimated that heavy

alcohol use, tobacco consumption, and viral infection such as

Epstein–Barr virus and human papillomavirus are the main

carcinogenic factors (Dhull et al., 2018). The complexity of

genetic etiology is the enabling cause of HNSCC

tumorigenesis. Current treatment modalities for HNSCC

patients include surgery, radiation therapy, chemotherapy, and

targeted therapy, while the risk of recurrence is high (Marur and

Forastiere, 2016). Early cancer screening for HNSCC is impotent

for the population without symptoms (Witek et al., 2017). Most

patients are diagnosed at advanced stages which leads to a poor

prognosis. Insufficient early diagnostic approaches and

deficiency in the clinical use of specific prognostic markers

posed an urgent need to identify effective signatures and

develop new therapies.

Cell malignant transformation is controlled by many aspects

such as genomic instability (GI). GI, including chromosomal

instability, microsatellite instability, and epigenetic instability, is

characterized by the accumulation of somatic mutations, which

are caused by the defects in the process of cell division that may

include mutations in DNA damage repair genes or mistakes in

DNA replication (Negrini et al., 2010). Although GI increases

genetic diversity to accommodate evolution, growing evidence

demonstrated that GI acts as one of the major driving

determinants during tumorigenesis which occurs in almost

human cancers (Yang et al., 2020). Genome-wide profiling has

revealed a high burden of genomic mutations in HNSCC that

promote substantial inter- and intra-tumoral heterogeneity

(Cancer Genome Atlas Network, 2015). Alternations in

oncogenic drivers and tumor suppressors are involved in

cancer development and treatment response. Carcinogens

related to HNSCC such as tobacco exposure, alcohol intake,

and ionizing irradiation can accelerate the mutations that lead to

DNA repair deficiency and dysfunctional genomic stability

pathways. The most frequently amplified regions in HNSCC

are on chromosomes 3q, 5p, and 8q (Walter et al., 2013; Cancer

Genome Atlas Network, 2015; Hayes et al., 2015). Loss regions

are gathered on 3p, 5q, 13q, and 21q. Many driver genes in

HNSCC, such as anti-apoptotic kinase protein kinase C

(PIK3CA), transcription factors TP63 and SOX2, and

telomerase TERT, MYC, FHIT, and CSMD1, are located in

these areas (Ma et al., 2009). Loss of FHIT gene expression is

linked to decreased survival in HNSCC (Tai et al., 2004). Mutant

PIK3CA promotes cell survival and growth by enhancing cyclin

D activity and attenuating the apoptotic process (Samuels et al.,

2005). Small molecular inhibitors have been developed by

targeting patients with wild or mutant PIK3CA. Patients with

PIK3CA mutations showed sensitivity to the mTOR/PI3K

inhibitor BEZ-235 (Lui et al., 2013), and patients with wild-

type PIK3CA were sensitive to PI3K/mTOR inhibitors in

combination with MEK inhibitors in preclinical models

(Mohan et al., 2015). Thus, GI has been regarded as an

evolving hallmark of cancer, and emerging studies have

identified its critical role in diagnostic and prognosis

Frontiers in Genetics frontiersin.org02

Jing et al. 10.3389/fgene.2022.979575

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.979575


implications (Suzuki et al., 2003; Negrini et al., 2010). Aberrant

regulation and modification at transcriptomic and epigenetic

levels also correlated with GI. The construction of prognostic

biomarkers based on the GI signature in HNSCC has been

reported (Chen et al., 2021). The tumor microenvironment

(TME), especially the tumor immune microenvironment

(TIME), attracted rising attention recently because it acts as

an important player to shape a unique niche nourishing the

malignant properties of tumor cells and affecting response to

therapies (Huang et al., 2019). Mutations induced by GI were

increased within the TME compared to cells under standard

culture conditions, and hypoxic conditions also contributed to

mutagenesis (Bindra and Glazer, 2005), suggesting the TME can

be an indispensable inducer of GI in cancer cells (Chan et al.,

2009; Bizzarri and Cucina, 2014; Sonugur and Akbulut, 2019). It

was convinced that hypoxia is a major factor leading to GI, and

increased reactive oxygen species can induce single- and double-

strand DNA breaks which promote the translocations, deletions,

and amplifications in tumor cells (Degtyareva et al., 2013;

Helleday and Rudd, 2022). This might indicate the possibility

of GI-based signature having implications in reflecting the TME

and determining treatment, while current evidence is relatively

limited.

Long non-coding RNAs (lncRNAs) represent the transcripts

that are longer than 200 nucleotides which do not encode

proteins and regulate gene expression at transcriptional, RNA

processing, translational, and post-translational levels (Statello

et al., 2021), and they were demonstrated to be involved in tumor

cell survival, proliferation (Huarte, 2015) and genomic instability

(Liu, 2016). Mounting lncRNAs have been identified to promote

GI through regulating DNA repair-related gene expression or

DNA damage-linked proteins, such as CUPID1, CUPID2, and

DDSR1 (Polo et al., 2012; Betts et al., 2017). Ritu Chaudhary et al

found that LINC00460 was abundant in HNSCC tissue and

associated with poor patient survival (Chaudhary et al., 2020).

Several lncRNA-based signatures showed prognostic effect (Liu

G. et al., 2018; Wang et al., 2021) and correlated with TIME

landscape (Cao et al., 2022; Li et al., 2022). However, rare studies

have reported GI-related lncRNAs potentials in predicting TIME

and therapies in HNSCC.

In the present study, we attempted to interrogate

transcriptomic profiles and somatic mutation data of patients

with HNSCC to develop a GI-associated lncRNAs prognostic

signature for characterizing the TIME landscape and predicting

therapeutic selection.

Materials and methods

Data acquisition and pro-processing

The somatic mutation dataset of 502 patients with HNSCC

(VarScan version), the transcriptome profiling based on RNA-

seq data (counts), and clinical characteristics was downloaded

from the Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/). Gene transfer format (GTF) files

from the Ensembl database (http://asia.ensembl.org) were

employed to convert the Ensembl IDs to gene symbols.

mRNA and LncRNAs names were standardized from the

HUGO gene nomenclature committee database. A total of

499 patients with complete survival information and somatic

mutation were delivered for further analysis. These patients

were randomly divided into the training set (n = 250) and

validation set (n = 249) using the “caret” package. The

clinicopathological characteristics of the patients in this

study were displayed in Supplementary Table S1.

Identification of genome instability-
related lncRNAs

The lncRNA expression profiles of HNSCC patients were

extracted and combined with somatic mutation profiles. The

cumulative counts of somatic mutations for each patient were

calculated. The top 25% of patients within mutation cumulative

counts were defined as genomic instability-like (GI, n = 127)

group, and the bottom 25% of patients were classified as genomic

stable-like (GS, n = 123) group. The differentially expressed

lncRNAs were subsequently determined by comparing the

mean expression of lncRNAs between GI- and GS-like groups

through the Wilcoxon rank-sum test using limma package

(Ritchie et al., 2015). The lncRNAs with Log|Fold Change| >
1.0 and false discovery rate (FDR) < 0.05 were considered as

differentially expressed GI-related lncRNAs (GILncRNAs).

Hierarchical clustering analysis

The expression matrix of lncRNAs was normalized through

Z-score analysis. Patients were divided into two clusters by

hierarchical clustering analyses using “sparcl,” “pheatmap”

and “limma” packages based on the expression of the

differentially expressed GILncRNAs. The somatic mutations

counts were compared, and the cluster with higher mutations

was regarded as a GI cluster, whereas the other was considered as

a GS cluster (p < 0.05, Mann–Whitney U test).

Differentially expressed GILncRNA and
mRNA co-expression network

To explore the functional mRNA potential co-expressed

GILncRNAs, the Pearson correlation analysis was performed

based on the lncRNA and mRNA expression levels using the

“limma” package. The top 10 mRNAs co-expressed with each

GILncRNA were selected according to the Pearson correlation
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coefficient. The co-expression network of mRNAs and

GILncRNAs was illustrated by Cytoscape.

Functional and pathway enrichment
analysis

Functional enrichment analysis of the GILncRNAs co-

expressed genes was performed using the clusterProfiler

package (Wu et al., 2021) to identify Gene Ontology (GO)

term categories, including biological process (BP), cellular

competent (CC), molecular function (MF). The pathway

referenced from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) was also scrutinized. A p value <0.05 was

considered statistically significant.

Development and validation of the
GInLncRNA-related prognostic signature

The overall survival (OS)-related GILncRNAs were

determined using univariate Cox regression analysis in the

training set. To avoid overfitting, OS-related GILncRNAs with

p value < 0.05 were selected by the least absolute shrinkage and

selection operator (LASSO) regression with a 10−fold

cross−validation using the glmnet package. The GILncRNA-

related prognostic signature was constructed using stepwise

multivariate Cox stepwise regression analysis. The minimum

number of GILncRNAs that comprised of the optimal signature

was determined by the Akaike information criterion (AIC)

(Vrieze, 2012). The patient’s GILncRNA signature risk score

was calculated based on the corresponding GILncRNA signature

lncRNA expression levels multiplied by their Cox regression

coefficient. The formula for computing GILncRNAs is as follows:

GILncRNAs � ∑
n

i
Coefi × Ai,

where “i” represents the signature lncRNA, Coefi is the lncRNA

regression coefficient, “A” represents the lncRNA expression

value, and “n” represents the number of lncRNAs. Patients

with HNSCC were classified into high- and low-risk groups

according to the median GILncRNAs score. The prognostic

utility of the signature was evaluated by a log-rank test and

visualized using the Kaplan–Meier curve. The model

discrimination performance was assessed by the receiver

operating characteristic (ROC) curve analysis using the

timeROC package.

Two external HNSCC datasets GSE41613 (n = 97) (Zhao

et al., 2022) and GSE42743 (n = 103) (Lohavanichbutr et al.,

2013) were employed to validate the independently predictive

accuracy of GILncRNAs signature. In the GSE41613 set,

21 patients were excluded from this study because they did

not succumb to HNSCC. The raw CEL files were downloaded

from the GEO database. These two sets (n = 179) were

normalized and combined following the removal of batch

effects by limma and affy packages. Patients were divided into

high- and low-risk groups using the same setting.

Prognostic utility of the GILnRNA
signature for patients with different
clinicopathological features

To verify whether the GILncRNA signature is a prognostic

indicator that is independent of the known clinicopathological

features, univariate and multivariate Cox regression analyses

were implemented in the training, validation, and whole

HNSCC sets. Furthermore, a subgroup analysis was

conducted to determine the prognostic efficacy of the

signature in the entire HNSCC set with different

clinicopathological features including age (≤65 and >65),
gender (female and male), tumor grade (G1, G2, and G3–4),

tumor stage (I–II and III–IV), pathological N stages (N0 and

N1–N3), pathological M stage (M0), and pathological T stages

(T1–2, T3, and T4). Patients with each type of

clinicopathological parameter were stratified into high- and

low-risk groups based on the median risk score. The survival

differences between high- and low-risk groups were calculated

using the log-rank test and Kaplan–Meier curve.

Cell composition analysis by multiple
immune deconvolution algorithms

To quantify the differences in cell decomposition between

patients within high- and low-risk groups, infiltrating cell types

in each sample were quantified using multiple immune

deconvolution approaches including quantification of the

Tumor Immune contexture from human RNA-seq data

(quanTIseq) (Finotello et al., 2019); microenvironment cell

populations-counter MCPCounter (Becht et al., 2016), TIMER

(Li et al., 2016), Cell-type Identification By Estimating Relative

Subsets Of RNA Transcripts (CIBERSORT) (Newman et al.,

2015), XCell (Aran et al., 2017), and EPI (Racle et al., 2017) based

on bulk RNA-seq data. The faction of infiltrating cell types

including immune cells between high- and low-risk groups

was compared using the Wilcoxon test.

Characterization of the GILncRNA
signature defining the tumor immune
microenvironment

The proportions of immune signatures between high- and

low-risk patients were quantified by a single sample gene set

enrichment analysis (ssGSEA) score. Immune signatures totaling
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29 cell types, functions, and pathways, were obtained as described

previously (He et al., 2018).

Furthermore, the tumor immune microenvironment was

characterized by immune scores and stromal scores which

were calculated using the Estimation of STromal and Immune

cells in MAlignant Tumor tissues using the Expression data

(ESTIMATE) algorithm (Yoshihara et al., 2013). Tumor

purity was also assessed based on the ESTIMATE score using

a fitted formula as previously described (Yoshihara et al., 2013).

Immunophenoscore analysis

In recent years witnessed immunotherapy represented by

immune checkpoint inhibitors (ICIs) has made remarkable leaps

forward in solid tumors. Immunophenoscore (IPS, https://tcia.

at/) is an aggregated scoring system based on the expression of

the major determinants of tumor immunogenicity including

MHC molecules, immunomodulators, effector cells, and

suppressor cells (Charoentong et al., 2017) using a random

forest approach. The IPS was calculated on a 0–10 scale. IPS

was a powerful predictor of response to anti-PD-1 and anti-

CTLA-4 antibodies treatment. To compare the responsiveness to

ICIs treatment, the IPS levels between high- and low-risk groups

were compared using the Wilcoxon test.

In addition, the expressions of programmed cell death

protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4

(CTLA-4), TIGIT, TIME3, LAG3, CD274, and B7-H4 between

high- and low-risk groups were also compared using the

Wilcoxon test.

Prediction of chemotherapeutic response
using the GILncRNA signature

Chemotherapy remains the standard treatment for human

cancers including HNSCC. To identify the chemicals that are

potential responsiveness to patients, the half maximal inhibitory

concentration (IC50) of each chemical from the GDSC database

(Yang et al., 2013) in both groups was predicted and compared

using pRRophetic R package (Geeleher et al., 2014).

Results

Genomic instability-related lncRNA
identification in HNSCC

To identify the GI-related lncRNAs in patients with HNSCC,

the somatic mutation profile generated by VarScan2 was

downloaded and patients were ranked by the cumulative

counts of somatic mutations. Patients within the top 25%

somatic mutations were divided into genomic instability (GI)-

like group, and the bottom 25% somatic mutated patients were

classified into genomic stable (GS)-like a group. The differentially

expressed lncRNAs were determined between GI- and GS-like

groups using the limma package. A total of 67 lncRNAs were

found to be down-regulated, while 132 lncRNAs expressions

were up-regulated in the GI-like group using |LogFC| > 1 and p <
0.05 as the cutoff points (Supplementary Table S2). The top

20 differentially expressed lncRNAs in GI- and GS-like groups

were shown in Figure 1A. Unsupervised clustering was

performed to assess the underlying molecular physiology of

patients in GI- and GS-like groups based on these

differentially expressed lncRNAs expression. It revealed high

diversity within or between these two groups (Figure 1B),

suggesting clustering may not clearly delineate the GI-GS

distinction. Accordingly, the frequency of total mutations in

the GI-like group was notably higher than that of the GS-like

group (Figure 1C). Ubiquilin 4 (UBQLN4), a key regulator of

DNA damage repair and over-expression in aggressive tumors

(Jachimowicz et al., 2019), was significantly increased expression

in GI-like vs. GS-like groups (Figure 1D). LncRNAs have been

implicated in regulating gene expression at multiple levels such as

chromatin structure (Statello et al., 2021). Differentially

expressed lncRNA-related coding mRNAs were identified by

co-expression network analysis (Supplementary Figure S1).

Gene function enrichment analysis indicated that these genes

are involved in cell differentiation, transmembrane transport, ion

channel activity, and transport activity (Figure 1E). Focal

adhesion, ECM-receptor interaction, morphine addiction, and

nicotine addiction were the most enriched signaling pathways

(Figure 1F), which have been related to cell differentiation,

survival, migration, proliferation, and carcinogens during

tumorigenesis (Bao et al., 2019).

Generation of GI-related lncRNA
prognostic signature

To test the prognostic role of GI-related lncRNAs in

HNSCC, 499 patients with clinical survival time were

randomly divided into a training set (n = 250) and an

internal validation set (n = 249). Among 199 differentially

expressed lncRNAs, 18 lncRNAs were found to be correlated

with patients’ OS through univariate Cox regression analysis in

the training set (Figure 2A). Elevated expression of four

lncRNAs (LINC00402, RFPL1S, LINC00861, and TTTY14)

and reduced LINC02587 in the GS-like group were predicted

to be protective factors, while decreased GPR1-AS and AGA-

DT expression were risk factors for HNSCC patients. The

remaining lncRNAs were up-regulated in GI-like groups that

were associated with unfavorable survival (Figure 2A). Lasso-

Cox regression analyses were conducted to screen independent

prognostic lncRNAs that were used to develop the GI-related

lncRNAs signature. As shown in Figure 2B, 10 survival-related
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FIGURE 1
Identification of genomic instability-related lncRNAs in HNSCC. (A)Heatmap pf expression of the top 20 differentially expressed lncRNAs in GI-
like and GS-like groups. (B) Unsupervised clustering of 499 HNSCC patients based on the expression patterns of 199 genomic instability-related
lncRNAs. (C) Somaticmutation counts in the GI-like and GS-like groups. (D)UBQLN4 expression level in the GI-like andGS-like groups. (E)GO terms
analysis of the differentially expressed lncRNA-related gene coding mRNAs. (F) KEGG pathway analysis of the differentially expressed lncRNA-
related gene coding mRNAs.
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FIGURE 2
Development of genomic instability-related prognostic signature. (A) Identification of overall survival-associated GI-related lncRNAs in the
training set in HNSCC. (B) The lncRNAs and their coefficients of the prognostic signature were developed by Lasso-Cox regression analysis. (C) The
Kaplan–Meier curve of patients in high- and low-risk groups in the training set. (D) The correlation of the number of patients’ deaths with risk scores.
(E) The correlation of the number of patients’ overall survival with risk scores. (F) The expression of lncRNAs comprised the signature in the high-
and low-risk groups in the training set. (G) Time-independent receiver operating characteristic curve of the signature in the training set calculated by
the area under the curve.
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FIGURE 3
Internal and external validation of the prognostic signature. (A) The Kaplan–Meier curve of patients in high- and low-risk groups in the internal
validation set. (B) The Kaplan–Meier curve of patients in high- and low-risk groups in the entire HNSCC validation set. (C) Time-independent receiver
operating characteristic curve of the signature in the internal validation set calculated by the area under the curve. (D) The time-independent receiver
operating characteristic curve of the signature in the entire HNSCC validation set is calculated by the area under a curve. (E) The Kaplan–Meier
curve of patients in high- and low-risk groups in the external HNSCC validation set (GSE41613 and GSE42743). (F) The time-independent receiver
operating characteristic curve of the signature in the external HNSCC validation set (GSE41613 and GSE42743) is calculated by the area under the
curve.
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lncRNAs constituted the final GI-related lncRNA signature

(GILncRNAs) as follows:

GILncRNAs = RFPL1S * (−0.0038) + AGA-DT * (−0.0052) +

GPR1-AS * (−0.0331) + PCDH10-DT * (0.0151) + LINC01711 *

(0.0027) + LINC0183 * (0.0042) + LINC01807 * (0.0032) +

CASC20 * (0.0030) + LINC00861 * (-0.0038) + LINC02587 *

(0.0359).

The risk score for the individual patient in the training set

was calculated, and patients were divided into low- and high-risk

groups using the median risk score as the cutoff value.

Kaplan–Meier curve analysis showed that patients with high

risk scores were reduced overall survival as compared to those

patients with low risk scores (p < 0.001, Figure 2C). The number

of deaths increased along with risk score rises (Figures 2D,E).

These lncRNAs that comprised the signature showed differential

expression in high- and low-risk groups (Figure 2F). The

robustness of the GILncRNAs signature was evaluated using a

time-dependent ROC curve. The area under the curve (AUC) of

the signature was 0.73 in the training set (Figure 2G), indicating

the predictive performance was satisfactory.

Validation of the GILncRNA signature in
validation sets

Since the signature was established based on the limited number

of patients, internal validation set and external independent HNSCC

sets (GSE41613 and GSE42743) from the GEO database were used

to verify the predictive capability of the GILncRNAs signature.

Patients were classified into high- and low-risk groups using the

same scheme as that in the training set. In the validation set,

decreased OS was observed in patients with high risk scores in

contrast to those who have low risk scores (p = 0.03, Figure 3A). A

markedly shorter OS was seen in the entire HNSCC combined with

the training and validation sets (p < 0.001, Figure 3B). The AUCs of

the signature in the validation set and entire HNSCC set was 0.64

(Figure 3C) and 0.67 (Figure 3D), respectively, suggesting it has a

moderate capacity for monitoring prognosis.

To test the predictive accuracy of GILncRNAs signature in

independent external datasets, patients in high-risk group have

better OS as compared to those in the low-risk group (p = 0.008,

Figure 3E). The AUC of the signature in this validation set was

0.65 (Figure 3F), implying that the signature also has medium

performance in predicting patients’ OS in an array-based

platform.

Prognostic utility of the GILncRNA
signature for patients with different
clinicopathological features

It has been widely known that tumor progression has tightly

correlated with patients’ clinical features. Clinical stratification

analysis was implemented including age (>65 and ≤65), gender,
pathological tumor node metastases system (TMN), tumor stage

(I–II and III–IV), and grade (I, II, and III–IV). We found that

patients with high risk scores had an unfavorable OS rate than

patients with low risk scores in these clinicopathological features,

suggesting the GILncRNAs signature was a reliable prognostic

indicator (Supplementary Figure S2A–O).

Regulation of N6-methyladenosine (m6A)
messenger RNA methylation regulators
and oncogenic drivers by the GILncRNA
signature

Dysfunction of m6A mRNA methylation regulators was

involved in mediating lncRNAs metabolism and cancer

progression (Wang T. et al., 2020). Increasing reports have

demonstrated the crucial functions of m6A regulators in

impairing the CD8+ T cell anti-tumor effect and increasing

the resistance to anti-PD-1 therapy (Zhang et al., 2020; Guo

et al., 2021). The m6A writer RBM15, and readers (YTHDC2,

YTHDF2, YTHDC1, YTHDF1) were up-regulated in patients

with low-risk scores, while reduced eraser FTO expression was

observed in the high-risk group (Supplementary Figure S3A). For

instance, FTO plays an oncogenic role in lung squamous cell

carcinoma by decreasing m6A levels and mRNA stability of

MZF1 (Liu J. et al., 2018). What’s more, the somatic mutation

profiles were assessed and plotted (Supplementary Figure S3B).

The frequencies of the oncogenic drivers including tumor

suppressor 53 (TP53) and CDKN2A mutations were increased

in high-risk patients (Supplementary Figure S3C, D).

Cell composition analysis by multiple
immune deconvolution algorithms

Cell composition that infiltrated patients matters in anti-

tumor immunity. Multiple deconvolution algorithms were used

to quantify the infiltrating various cells in the TME of HNSCC

patients. The fractions of different infiltrating cells between high-

and low-risk groups were compared in the training

(Supplementary Figure S4A), internal validation set

(Supplementary Figure S4B), and entire TCGA set

(Supplementary Figure S4C). Among these infiltrating

immune cells, we found that the fraction of total T cells were

elevated in patients within the low-risk group in the training and

validation sets that calculated using MCPCounter (Figure 4A),

suggesting enhanced anti-tumor activities in this group. This was

evidenced by a raising immune score (Figure 4B). The frequency

of CD8+ T, natural killer (NK), and B cells was also notably

increased in the patients with low-risk scores across the training

and validation sets (Figures 4C–E). CD8+ T and NK cells were the

main players in killing tumors, and the higher cytotoxicity score
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convinced this hypothesis (Figure 4F). Moreover, central/effector

memory CD8+ T cells were supposed to be functional tumor-

reactive T cells for anti-tumor immunotherapies (Klebanoff et al.,

2005) and were observed to be higher in the low-risk group

(Figures 4G,H). Cancer-associated fibroblasts (CAFs) are

considered one of the most abundant and key factors that

have diverse functions in the TME (Sahai et al., 2020). Six

fibroblast markers (Costa et al., 2018) [fibroblast activation

protein (FAP), integrin b1 (ITGB1), a-smooth muscle actin

(aSMA), fibroblast-specific protein-1 (FSP-1), platelet-derived

growth factor receptor b (PDGFRB), and caveolin-1 (CAV1)]

have been used to delineate CAFs subtypes which were linked to

immunosuppression and resistance to immunotherapy in breast

cancer (Kieffer et al., 2020). Elevated infiltrating CAFs were seen

in patients with high risk scores (Figure 4I), indicating that CAFs

might play a cancer-promoting role in tumorigenesis. To further

investigate the heterogeneity of CAFs defined by the signature,

we found that FDGFRB, FAP, CAV1, aSMA, and ITGB1 were

increased expression in patients with high risk scores, while FSP-

1 was down-regulated (Supplementary Figure S4D). Patients

FIGURE 4
Infiltrating cell type analysis using multiple deconvolution algorithms. (A) Total T cells infiltrated in patients of the high- and low-risk groups in
training and validation sets (left to right: training, internal, entire HNSCC sets). (B) Immune score of patients in the high- and low-risk groups in
training and validation sets (left to right: training, internal, entire HNSCC sets). (C)CD8+ T cells infiltrated in patients of the high- and low-risk groups in
training and validation sets (left to right: training, internal, entire HNSCC sets). (D) Natural killer cells infiltrated in patients of the high- and low-
risk groups in training and validation sets (left to right: training, internal, entire HNSCC sets). (E) B cells infiltrated in patients of the high- and low-risk
groups in training and validation sets. (left to right: training, internal, entire HNSCC sets). (F) Cytotoxicity scores of patients in the high- and low-risk
groups in training and validation sets (left to right: training, internal, entire HNSCC sets). (G)Central memory CD8+ T cells infiltrated in patients of the
high- and low-risk groups in training and validation sets (left to right: training, internal, entire HNSCC sets). (H) Effector memory CD8+ T cells
infiltrated in patients of the high- and low-risk groups in training and validation sets (left to right: training, internal, entire HNSCC sets). (I)
Cancerassociated fibroblasts infiltrated in patients of the high- and low-risk groups in training and validation sets (left to right: training, internal, entire
HNSCC sets). (J) Microenvironment scores of patients in the high- and low-risk groups in training and validation sets (left to right: training, internal,
entire HNSCC sets).
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FIGURE 5
Tumor immune microenvironment analysis using 29 immune signatures through ssGSEA. (A) The immune signatures between high- and low-
risk groups. (B) Tumor purity in high-and low-risk groups. (C) T cell response signatures expression in high- and low-risk groups. (D) T helper/IFNγ
signatures expression in high- and low-risk groups. (E) Cytotoxic signatures expression in high- and low-risk groups. (F) Co-stimulatory signatures
expression in high- and low-risk groups. (G)Co-inhibitory signatures expression in high- and low-risk groups. (H) Immunophenoscore levels in
high- and low-risk groups. (I) Risk scores in patients with complete remission or progressive disease.
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were classified into three subtypes (Cluster A, B, and C) based on

the expression of these markers using the ConsensusCluster

package (Seiler et al., 2010) (Supplementary Figure S4E).

Patients in Cluster C had better survival as compared to

patients in clusters A and B (Supplementary Figure S4F).

Furthermore, Cluster C has lower risk scores vs. Cluster A

and B (Supplementary Figure S4G). These data suggested

high-risk patients have the suppressive TIME as compared to

patients in low-risk group (Supplementary Figure S4J). In

summary, the GILncRNAs signature was an indicator of the

TIME landscape.

Characterization of the GILncRNA
signature-related tumor immune
microenvironment

To further characterize the TIME defined by the GILncRNA

signature, the proportions of 29 immune signatures in patients

between the high- and low-risk groups were quantified by

ssGSEA score. We found that increased infiltrated immune

cells and enhanced functional immune-associated signatures

in the low-risk group as compared to the high-risk group

(Figure 5A), such as CD8+ T cells, APC-related co-stimulatory

and co-inhibitory signals, tumor-infiltrating lymphocytes (TILs),

checkpoint inhibitors, and cytolytic activity, suggesting patients

in the low-risk group have hot immune reactive activities in anti-

tumor immunity. Patients in the low-risk group showed

increased immune scores and microenvironment scores

estimated using the ESTIMATE algorithm (Supplementary

Figure S4H), while higher tumor purity was found in the

high-risk group in contrast to that in the low-risk group

(Figure 5B). Previous studies showed that CXCR3-expressing

activated T cells were involved in the growing recruitment of

infiltrating effector T cells in the TME through interaction with

its receptors CXCL9, CXCL10, and CXCL11 (Groom and Luster,

2011). We found that CXCR3 and its receptors significantly

increased expression in patients within the low-risk group

(Figure 5C). It has been demonstrated that increased IFNγ-
expressing CD8+ T cells that infiltrated the TME are an

important marker of the responsiveness to immune

checkpoint inhibitors (ICIs) based immunotherapies and can

also promote to up-regulation of PD-1/PD-L1 expression

(Karachaliou et al., 2018). This was confirmed that the

expression of T helper/IFNγ signatures including IFNG,

IFNGR1, IFNGR2, STAT1, JAK1, and JAK2 were markedly

increased in the patients within the low-risk group as

compared to the patients within the high-risk group

(Figure 5D). This was consistent with the evidence that more

IFNγ release can induce apoptosis of lung cancer cells through

activating the JAK-STAT1 pathway (Song et al., 2019). In

addition, T helper cell response signatures such as CD8A,

GZMA, TBX21, GATA3, and PRF1 were elevated expression

in the low-risk group (Figure 5E). Down-regulation of co-

stimulatory (Figure 5F) and co-inhibitory (Figure 5G)

immune modulator expression was seen in patients with high

risk scores which contributes to confirming the truth of the

reduced cytotoxic phenotype of T cells, particularly CD8+ T cells,

in the TME.

Immunophenoscore analysis

Increased expression of immune checkpoint molecules such

as PD-1, and CTLA-4 in the low-risk group (Figure 5G)

prompted us to investigate the patients’ response to ICIs

therapy. Patients in the low-risk group had higher IPS levels

than that in the high-risk group according to anti-PD-1 and/or

anti-CTLA-4 therapies (Figure 5H). Furthermore, interrogation

of the predictive potential of GILncRNAs signature for patients

receiving clinical treatments indicated that the risk scores were

significantly higher in the disease progressive patients than in

complete remission patients (Figure 5I), showing its capacity in

predicting treatment response for HNSCC.

Prediction of chemotherapeutic response
by the GILncRNA signature

To explore the potential responsiveness of patients to

chemicals/drugs that might be used to treat HNSCC based on

the IC50 data. We noted that 40 chemicals were predicted to have

low IC50 patients in the high-risk group compared to those in the

low-risk group, suggesting patients were more sensitive to these

chemicals/drugs (Figure 6A). Meanwhile, 18 chemicals showed

higher IC50 in patients within the high-risk group, meaning they

might be potentially effective for treating HNSCC (Figure 6B).

Further verification of these identified chemicals in anti-HNSCC

in vitro and in vivo is warranted.

Discussion

Head and neck cancer (HNC) is one of the most death-

causing malignancies that arise from the lip, oral cavity,

nasopharynx, oropharynx, tongue, and larynx tissues (Sung

et al., 2021). HNC is mainly comprised of HNSCC,

accounting for over 90% of patients. Most patients were

diagnosed at advanced or metastatic stages leading to poor

outcomes (Siegel et al., 2022). Emerging therapies including

molecular targeted therapy, immunotherapy, and combination

therapy with standard treatments improved patients’ life quality

and extended survival. The small fraction of patients that show

responsiveness to immunotherapy limited its benefit in most

cases owing to the suppressive tumor microenvironment

(Economopoulou et al., 2016). HNSCC is understood to be
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synergistic and driven by the mutations in many oncogenes and

tumor suppressor genes (Carson et al., 2011). GI is the hallmark

of HNSCC and the inducer of these mutations, indicating that GI

plays a crucial role in mediating TME. However, there are rare

consistent prognostic biomarkers for HNSCC due to high

heterogeneous genomics and complex etiology (Beck and

Golemis, 2016; Yang et al., 2020). Studies have revealed that

lncRNAs hold potential in the pathogenesis, diagnosis,

prognosis, and targeted treatment of patients with HNSCC by

promoting DNA damage and regulating the cell cycle (Guglas

et al., 2017; Wang Y. et al., 2020; Jiang et al., 2022; Li et al., 2022),

while the role of GI-associated with lncRNAs in the prediction of

TIME and therapeutics for HNSCC has not been systematically

assessed.

In this study, we profiled genome-wide somatic mutations of

HNSCC from the TCGA database and identified the top 25% and

bottom 25% number of mutations as GI- and GS-like groups. GI-

related lncRNAs were determined by differentially expressed

lncRNAs. Correlation analysis identified lncRNA-related

protein-coding genes, and these genes were tightly enriched in

several KEGG pathways that are involved in tumorogenesis and

disease progression (Bao et al., 2019). Since previous studies have

demonstrated that these lncRNAs were involved in the

tumorigenesis of various cancers, this might indicate that they

are key mediators in the pathogenesis of HNSCC. Among the

lncRNAs included in the signature, LncRNA LINC01711 was

demonstrated to promote the occurrence and development of

esophageal squamous cell carcinoma through increasing cell

proliferation, migration, and invasion by the miR-326/

FSCN1 axis (Xu et al., 2021). Elevated LINC01711 expression

in bladder cancer was found to be associated with decreased

survival (Du et al., 2021). In addition, LINC01711 expression was

positively correlated with TGF-β1, a key factor in the TGF-β
signaling pathway (Lee et al., 2005). These data suggested that

LINC01711 might play a tumor-promoting role in HNSCC

development. lncRNA cancer susceptibility 20 (CASC20) was

reported to serve as a tumor promoter by promoting the

metastasis of human gastric cancer cells by the miR-143-5p/

FIGURE 6
Identification of potential therapeutic drug response to HNSCC patients. (A) Drugs that are potentially sensitive to the patients in the high-risk
group. (B) Drugs that are potentially sensitive to the patients in the low-risk group.
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MEMO1molecular axis (Shan et al., 2022). LINC01843 increased

expression in patients and correlated with poor survival in lung

adenocarcinoma (Li et al., 2020; Zheng et al., 2021) and colon

cancer (Zhou et al., 2018). LINC00861 had an inhibitory function

in cervical cancer cells by regulating PTEN/AKT/mTOR

signaling pathway (Liu et al., 2021). The remaining lncRNAs

functions in HNSCC need further clarification. Thus, we

developed 10 survival-associated GI-related lncRNAs

constituted prognostic signature that has robust survival

stratification capacity in the training set using LASSO-Cox

regression analysis, which was validated in the external and

entire TCGA HNSCC sets. In addition, the signature has

emphasized the evident applicability of predictive utility in the

external set combined from two HNSCC cohorts. This suggested

that the GILncRNAs signature showed as a superior indicator for

monitoring patients’ survival. The calculation of predictive

performance showed its reliable and stability in RNA-seq and

array-based platforms. Yun Chen et al reported a genomic

instability associated with lncRNA prognostic signature that

shows potential for survival prediction of patients with

HNSCC, while it was not validated in an external HNSCC set,

and the applicability of the signature was not investigated (Chen

et al., 2021). Our signature retained the comparable performance

and holds superior capability to reflect the TIME. Clinical

stratification analysis further validated the prognostic value of

GILncRNAs signature in patients with different characteristics.

These data suggested that the signature was potentially

implicated in clinical practice, whereas validation in multi-

center derived HNSCC cohorts is required.

Studies have shown that TME is of the major players in tumor

progression and inducers of genomic instability in tumor cells

(Sonugur and Akbulut, 2019). Growing evidence indicated that

oncogenesis is characterized by defects in the immune system as

tumor cells could evade immunosurveillance resulting from the

accumulation of genetic mutations and cancer heterogeneity

(Economopoulou et al., 2016). Immunotherapy including ICIs

targeting PD-1/PD-L1 and CTLA-4 in HNSCC has shown as

potential therapeutics in HNSCC, while TIME affects the

responsiveness and resistance of treatment. Infiltrated cell types

in the TME between high- and low-risk groups were detected by

multiple deconvolution algorithms. We found that cytotoxic

elements such as CD8+ T cells and NK cells were notably

increased in patients with low-risk scores. Increasing infiltration

of total T cells, especially CD8+T cells acted as themain killer of anti-

tumor immunity of solid tumors (Lanitis et al., 2017). CXCR3-

expressing activated T cells played an important role in the

recruitment of effector T cells, and we found that its receptors

and ligands were up-regulated in low-risk patients. This was

convinced that high infiltrated central/effector CD8+ T cells in

patients with low-risk scores. Emerging concepts show that co-

stimulatory and co-inhibitory molecules have a pivotal role in T-cell

activation, differentiation, and effector function (Chen and Flies,

2013). The expression of these inhibitory and inhibitory molecules

such asCD40, ICOS, PD-1,CTLA-4, PD-L1, and TIGITwas elevated

in the patients within the low-risk group. Thismightmean increased

T-cell tumor-reactive activation in the low-risk patients.

Immunotherapy targeting PD-1/PD-L1 and CTLA-4 may be

effective for this subset of patients stratified by the GILncRNA

signature. Patients with low-risk scores showing high IPS levels

confirmed the notion. We did observe high risk scores in patients

with the stable disease compared to CR patients. Recent studies have

shown that CAFs are associated with anti-PD-1 immune checkpoint

inhibitors treatment (Costa et al., 2018; Kieffer et al., 2020). CAFs

subpopulations have diverse functions in TIME and modulating

response to treatments in HNSCC patients (Obradovic et al., 2022).

We found that CAFswere highly infiltrated in patients with high risk

scores. To investigate the heterogeneity of CAFs in patients defined

by the signature, patients were classified into three subtypes (Cluster

A, B, and C), and Cluster C with decreased survival had higher risk

scores as compared to the other two subtypes. Among the signatures

that marked CAFs, the expression of five markers (FAP, ITGB1,

aSMA, PDGFRB, and CAV1) was elevated in patients with risk

scores. These data supported that the signature could characterize

the TIME status and predict cancer therapies.

m6A is one of the most prevalent drivers in modifying the

mRNAs and lncRNAs by affecting RNA metabolism (Yue et al.,

2015). Several m6A regulators were differentially expressed

between the high- and low-risk group including writers,

erasers, and readers. Decreased methyltransferases METTL14

can promote the malignant attribute of glioblastoma stem

cells while suppressing the demethylase FTO plays the

opposite role (Cui et al., 2017). Reduced FTO expression and

increased METTL14 expression were observed in the low-risk

group, suggesting m6A might be involved in regulating lncRNAs

in both groups. In addition, the frequency of oncogenic drivers

such as TP53 and CDKN2A was higher in the high-risk group,

which might be a contributor to progressive tumors.

Identification of novel therapies is still an urgent need for

patients with HNSCC. We found that some chemicals that

might be sensitive to patients in a high- or low-risk group

based on expression-based prediction. Some of these drugs

have been used in treating cancers including HNSCC.

Docetaxel/paclitaxel-containing schemas showed as a

promising beneficial therapy for recurrent and/or metastatic

HNSCC (Catimel et al., 1994; Shin and Lippman, 1999), and

low IC50 of docetaxel was seen in high-risk patients. Parthenolide

was reported to treat oral cancer cells by inducing apoptosis (Yu

et al., 2015), and we found that it is sensitive to high-risk patients.

Bexarotene might be effective in patients with high risk scores,

and its anti-HNSCC efficacy was evidenced by targeting the

PPARγ/RXRα heterodimer oral cancer preclinical test (Rosas

et al., 2022). Further validation of these identified drugs could

consolidate the findings.

There are some limitations in our study that need to be

cautious when interpreting the results. Although the robust

GILncRNAs signature was generated and validated based on
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the retrospective datasets, it still needs to be validated in multiple

sets, particularly in a clinical setting. The underlying mechanisms

of the difference in TME and drug effectiveness predicted by the

signature require further in vitro and in vivo studies.

Conclusion

In conclusion, a reliable genomic instability-related lncRNA

prognostic signature was developed and validated for patient

survival stratification using RNA-seq and array-based datasets.

The TIME landscape of HNSCC patients in low- and high-risk

groups was characterized by relatively comprehensive

approaches, and the signature also provided the feasibility of

the potential responsiveness to targeted immunotherapy. Several

drugs that were sensitive to patients with HNSCCwere identified.

Our findings provided a robust prognostic signature and helped

gain a deeper understanding of the TIME landscape for HNSCC,

which could facilitate the development of novel cancer

therapeutics.
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