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Colon cancer and colorectal cancer are two common cancer-related deaths

worldwide. Identification of potential biomarkers for the two cancers can help

us to evaluate their initiation, progression and therapeutic response. In this

study, we propose a new microRNA-disease association identification method,

BNNRMDA, to discover potential microRNA biomarkers for the two cancers.

BNNRMDA better combines disease semantic similarity and Gaussian

Association Profile Kernel (GAPK) similarity, microRNA function similarity and

GAPK similarity, and the bound nuclear norm regularization model. Compared

to other five classical microRNA-disease association identification methods

(MIDPE, MIDP, RLSMDA, GRNMF, AND LPLNS), BNNRMDA obtains the highest

AUC of 0.9071, demonstrating its strong microRNA-disease association

identification performance. BNNRMDA is applied to discover possible

microRNA biomarkers for colon cancer and colorectal cancer. The results

show that all 73 known microRNAs associated with colon cancer in the

HMDD database have the highest association scores with colon cancer and

are ranked as top 73. Among 137 known microRNAs associated with colorectal

cancer in the HMDD database, 129 microRNAs have the highest association

scores with colorectal cancer and are ranked as top 129. In addition, we predict

that hsa-miR-103a could be a potential biomarker of colon cancer and hsa-

mir-193b and hsa-mir-7days could be potential biomarkers of colorectal

cancer.
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1 Introduction

Cancers are seriously threatening and endangering humanhealth

(Yang et al., 2013; Liu et al., 2021; Yang et al., 2022). Colon cancer and

colorectal cancer are two of leading causes of cancer-related deaths

worldwide (Lee et al., 2018; Piawah and Venook, 2019). Patients with

colon cancer only have a survival rate of 10% when diagnosed at late

stage. More importantly, colon cancer shows a higher incidence rate

in elder populations. The survival rate of patients with colon cancer is

densely associated with the size, location, and stage of the tumor.

Metastasis may be the leading cause of deaths for patients suffered

from late-stage colon cancer. Thus, understanding the mechanisms

of colon cancer could contribute to designing more strong

therapeutic options (Ma et al., 2021).

Nowadays, patients with colorectal cancer show a younger

trend. In the last decade, incidence rates and death rates of

colorectal cancers separately increased by 22 and 13% among

adults under 50 years in the United State. However, their precise

aetiologic factors still remain unknown. Many evidence

demonstrate that early screening of colorectal cancer can

reduce their incidence and mortality. Thus, the identification

of diagnosis or prognosis biomarkers can contribute to

assessment of tumour initiation, progression and therapeutic

response for colorectal cancer (Sampath et al., 2021).

Many researches show that numerous RNA data play

important roles in the development and metastasis of various

diseases including cancers and COVID-19 (Huang et al., 2017;

Peng L. et al., 2020; Xu et al., 2020; Yang et al., 2020; Zhang et al.,

2021; Peng L. et al., 2022; Shen et al., 2022; Tian et al., 2022). In

particular, noncoding RNAs could be biomarkers to boost drug

design (Liu et al., 2020; Meng et al., 2022). For example, lncRNAs

and circRNAs have been used as biomarkers of cancers (Peng

et al., 2021a; Peng et al., 2021b; Chen et al., 2021; Li et al., 2021;

Verduci et al., 2021; Wang et al., 2021; Peng L. H. et al., 2022).

MicroRNAs (miRNAs) are a class of small non-coding RNAs

with 22–24 nucleotides in length (Li et al., 2018; Chen et al.,

2020). MicroRNAs can bind to mRNAs of target genes to inhibit

expression of these genes. In addition, a few microRNAs may

suppress tumors while other microRNAs may affect the

progression and metastasis of tumors.

The dysfunction of microRNAs is densely linked to the

inflammation of colon cancer. For example, Ma et al. (Ma

et al., 2021) found that M2 macrophage-derived exosomal

miR-155-5p may have an association with the immune escape

of cells in colon cancer. Pagotto et al. (Pagotto et al., 2022)

observed that the miR-483 gene could have a responsive to

glucose availability for colon cancer. Miao et al. (Miao et al.,

2021) identified that miR-4284 could be a therapeutic target in

colon cancer. Dougherty et al. (Dougherty et al., 2021) inferred

that the upregulations of microRNA-143 and microRNA-145

have close linkages with colonocytes suppresses colitis and

inflammation-related colon cancer. Zhang et al. (Zhang et al.,

2021) suggested that microRNA-24-3p could heighten the

resistance of colon cancer cell to MTX. Yue et al. (Yue et al.,

2021) reported that NEDD4 could trigger colon cancer

progression through microRNA-340-5p suppression. In

summary, the identification of microRNAs in the blood,

tissues, and faecal matter will help us use these microRNA as

biomarkers in early detection of colon cancer and thus design

strong targeted therapeutic strategies for inflammation-mediated

colon cancer (Peng et al., 2018; Sampath et al., 2021).

More importantly, microRNAs densely link to the carcinogenic

process of colorectal cancer. For example, microRNA-143-3p can

limit colorectal cancer metastases (Guo et al., 2019), microRNA-

375-3p can boost chemosensitivity to 5-fluorouracil through

targeting thymidylate synthase in colorectal cancer (Xu et al.,

2020), microRNA-451a influences colorectal cancer proliferation

(Ruhl et al., 2018), and microRNA-146a can inhibit tumorigenic

inflammation of colorectal cancer (Garo et al., 2021). Biomarkers are

an important strategy in early screening, prognostication, survival,

and treatment response prediction for cancers. Therefore,

microRNAs have been explored as biomarkers in colorectal

cancer (Peng LH. et al., 2020; Ogunwobi et al., 2020).

Recently, many researchers have been devoted to microRNA

biomarker identification for cancer including colon cancer and

colorectal cancer by computational microRNA-disease

association prediction (Peng et al., 2017; Li et al., 2021).

Huang et al. (Huang et al., 2021) innovatively represented

microRNA-disease-type triples as a tensor and further

designed a tensor decomposition model to detect new

microRNA-disease associations. Li et al. (Li et al., 2021)

considered that the abnormal expression of microRNAs is

densely associated with the evolution and progression of

human diseases and inferred disease-related microRNAs as

new biomarkers through a graph auto-encoder model. Chen

et al. (Chen et al., 2021) designed a deep learning model for

microRNA-disease association identification based on deep belief

network. Wang et al. (2022)) pretrained a stacked autoencoder to

predict potential microRNA-disease associations in an

unsupervised manner. These methods effectively improved

microRNA biomarker identification of human complex diseases.

In this study, we design a MicroRNA-Disease Association

prediction algorithm (BNNRMDA) to find potential microRNA

biomarkers for colon cancer and colorectal cancer based on

disease semantic similarity, microRNA functional similarity,

Gaussian association profile kernel (GAPK) similarity, and the

Bound Nuclear Norm Regularization model.

2 Materials and methods

2.1 Data

2.1.1 Dataset
Experimentally confirmed microRNA-disease association data

can be downloaded from the HMDD database provided by Li et al.
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(Li et al., 2014). The hierarchical structures between diseases can be

downloaded from the MeSH database (https://www.nlm.nih.gov/

mesh/). Experimentally supported microRNA-gene interactions can

be downloaded from TarBase (Vergoulis et al., 2012), miRTarBase

(Hsu et al., 2014), and miRecords (Xiao et al., 2009). We acquired

microRNA-disease associations between 495 microRNAs and

378 diseases, hierarchical structures for 4,663 diseases, and

38,089 microRNA-gene interactions between 477 microRNAs

and 12,422 genes. Finally, we obtained 4,791 associations

between 353 microRNAs and 327 diseases after removing

microRNAs without target genes and diseases without

hierarchical structures.

2.1.2 Disease semantic similarity
For a known disease d, it can be described as a directed acyclic

graph (DAG) based on the MeSH descriptor: DAGd � (d,Td, Ed)
where Td denotes the set of nodes that contains d and all its

ancestors, and Ed represents corresponding direct edges. Given a

disease t ∈ Td, its semantic contribution to d can be defined as Eq. 1:

Dd(t) � { 1 if t ≠ d
max{ΔpDd(t′)|t′∈ children of t} if t ≠ d

(1)
whereΔ denotes the semantic contribution decay factor (Δ � 0.5)

(Wang et al., 2010). In general, two diseases di and dj are more

similar when they share more common ancestors. Thus, pairwise

semantic similarity between di and dj can be defined as Eq. 2:

Sd(di, dj) � ∑t∈Tdi
∩Tdj

(Ddi(t) +Ddj(t))∑t∈Tdi
Ddi(t) +∑t∈Tdj

Ddj(t)
(2)

2.1.3 MicroRNA functional similarity
MicroRNA similarity can be computed based on microRNA-

gene associations and gene functional network. First, the

associated log-likelihood scores LLS(gi, gj) between two genes

gi and gj can be calculated using HumanNet (Lee et al., 2011).

Second, LLS(gi, gj) is normalized by Eq. 3:

LLSN(gi, gj) � LLS(gi, gj) − LLSmin

LLSmax − LLSmin
(3)

where LLSmin and LLSmax represent the minimum and

maximum associated log-likelihood scores computed by

HumanNet, respectively.

Third, similarity between gi and gj can be calculated by Eq. 4:

Sg(gi, gj) � ⎧⎪⎪⎨⎪⎪⎩
1 gi � gj

0 e(gi, gj) ∉ HumanNet

LLSN(gi, gj) e(gi, gj) ∈ HumanNet

(4)
where e(gi, gj) indicates interaction between gi and gj.

Finally, the functional similarity between two microRNAsmi

andmj can be computed by Eq. 5 based on their associated genes:

Sm(mi,mj) � ∑g∈Gi
S(g, Gj) + ∑g∈Gj

S(g, Gi)
|Gi| +

∣∣∣∣Gj

∣∣∣∣ (5)

where Gi andGj denotes the gene sets associated withmi andmj,

respectively, |Gi| and |Gj| denote corresponding cardinalities,

respectively, and S(g, G) � maxgi∈G{Sg(g, gi)}.

2.1.4 GAPK similarity
For a known disease di in a microRNA-disease association

matrixXa×b, let the i th row ofX denotes its Gaussian association

profile GAP(di) to represent its association features with all

diseases. GAPK similarity between diseases di and dj can be

measured by Eq. 6.

GD(di, dj) � exp( − γd
�����GAP(di) − GAP(dj)����2)

γd � γ′d/⎛⎝1
a
∑a
k�1

‖GAP(dk)‖2⎞⎠ (6)

where γd indicates normalized kernel bandwidth according to

parameter γ′d, and a indicates the number of diseases.

Similarly, for a knownmicroRNAmi, let the i th column ofX

denotes its Gaussian association profile GAP(mi) to describe its

association features with all microRNAs. GAPK similarity

between microRNAs mi and mj can be measured by Eq. 7:

GM(mi,mj) � exp( − γm‖GAP(mi) − GAP(mj)����2)
γm � γ′m/⎛⎝1

b
∑b
k�1

‖GAP(mk)‖2⎞⎠ (7)

where γm indicates normalized kernel bandwidth according to

parameter γ′m, and b indicates the number of microRNAs.

2.1.5 Similarity fusion
Disease semantic similarity Sd and GAPK similarity Gd are

fused to calculate the final disease similarity matrix SD by Eq. 8:

SD � wGD + (1 − w)Sd (8)
where the parameter w is applied to measure the weight between

disease semantic similarity and GAPK similarity.

MicroRNA functional similarity Sm and GAPK similarity Gm

are fused to calculate the final microRNA similarity matrix by Eq. 9:

SM � wGM + (1 − w)Sm (9)
where the parameter w is applied to measure the weight between

microRNA functional similarity and GAPK similarity.

2.2 Heterogeneous microRNA-disease
network construction

A heterogeneous microRNA-disease network is created by

fusing microRNA similarity network, disease similarity network,
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and microRNA-disease association network. Each edge in

similarity network is weighted based on the computed

similarity. The heterogeneous microRNA-disease network can

be described using a bipartite graph G(M,D, E), whereM andD

separately represent microRNA set and disease set, E(G) �
{eij} ⊆ M × D represents the microRNA-disease edge set. The

adjacency matrix of G(M,D, E) is described as Eq. 10.

W � [Wmm Wmd

WT
md Wdd

] (10)

where Wmd denotes known microRNA-disease association matrix,

Wmm and Wdd denotes the adjacency matrices about microRNA

similarity network and disease similarity network, respectively.

Hence, the adjacency matrix can be rewritten as Eq. 11.

W � [ SM Xmd

XT
md SD

] (11)

2.3 BNNRMDA model

In known microRNA-disease association dataset, majority of

microRNA-disease pairs are unknown-associated. Inspired by

the bound nuclear norm regularization model provided by Yang

et al. (Yang et al., 2019), in this study, we design the bounded

nuclear norm regularization-based MDA prediction method to

score each unknown microRNA-disease pair. We describe

microRNA-disease association inference as a matrix

completion problem and construct model (12) to predict new

microRNA-disease associations in microRNA-disease

association matrix:

min
Y

rank(Y)
subject to ΡΩ(Y) � ΡΩ(W) (12)

where Y denotes a matrix need to complete, rank(Y) denotes the
rank of Y, W ∈ R(m+n)×(m+n) denotes a known microRNA-disease

association matrix, Ω denotes a set containing all index pairs (i, j)
that correspond to known microRNA-disease associations in W,

and ΡΩ represents a projection operator on Ω by Eq. 13:

(ΡΩ(Y))ij � { Yij, (i, j) ∈ Ω
0, (i, j) ∉ Ω (13)

Model (12) is a non-convex model and difficult to solve.

Thus, we transform it to a nuclear norm model through the

nuclear norm optimization method proposed by Candes et al.

(2013) by Eq. 14:

min
A

‖Y‖p
subject to ΡΩ(Y) � ΡΩ(W) (14)

where Yp represents the nuclear norm of Y.

Because the value of each element in microRNA and disease

similarity matrices Sm and Sd is in the range of [0,1] and the value of

each element inmicroRNA-disease associationmatrixXmd is 1 or 0,

the computed microRNA-disease association scores are restricted to

[0,1]. Higher score indicates bigger association probability for one

microRNA-disease pair. But the elements in Y are in the range of

(−∞,+∞). Therefore, we add a bounded constraint to Eq. 14 to

make the computed scores in [0, 1]. Considering the affect of data

noise on the prediction performance, in addition, we develop a rank

minimization-based matrix completion model by Eq. 15:

min
A

‖Y‖p
subject to ‖PΩ(Y) − ΡΩ(W)‖F ≤ ϵ

(15)

where ‖.‖F indicates Frobenius norm and ϵ represents the noise
level.

We introduce a soft regularization term to tolerate data noise

considering the difficulty in selecting an appropriate parameter in

Eq. 15. Consequently, a bound nuclear norm regularizationmodel is

built to infer potential microRNA-disease associations by Eq. 16:

min
Y

‖Y‖p + α

2
‖ΡΩ(Y) − ΡΩ(W)‖2F

subject to 0≤Y≤ 1
(16)

where the parameter α is applied to weigh the importance

between the nuclear norm and the error term.

Consequently, we introduce an auxiliary matrix Z and define

model 17) to optimize model (16):

min
Y

‖Y‖p + α

2
‖ΡΩ(Z) − ΡΩ(W)‖2F

subject to Y � Z

0≤W≤ 1

(17)

where Y1 � ΡΩ(W).
Thus, the corresponding augmented Lagrange function is

written as Eq. 18:

L(Z, Y, L, α, β) � ‖Y‖p + α

2
‖ΡΩ(Z) − ΡΩ(W)‖2F

+ Tr(LT(Y − Z)) + β

2
‖Y − Z‖2F (18)

where L and β represent the Lagrange multiplier and penalty

parameter, respectively.

At the t -th iteration, we alternatively compute one of Yk+1,
Zk+1 and Lk+1 by fixing other two values according to the solution
from Yang et al. (Yang et al., 2019). Finally, microRNA-disease

association matrix Zp
md is updated through completing the

unlabeled elements in Zmd.

3 Experiments

3.1 Experimental settings and evaluation

In this study, we perform five-fold cross validation for

10 times to investigate the microRNA-disease association
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inference ability of BNNRMDA. During five-fold cross

validation, 80% of elements in microRNA-disease association

matrix X are randomly chosen as the training set and the

remaining are taken as the test set. Parameters α, β, w , and

γ′ are set by grid search. We find that BNNRMDA obtain the best

AUC when the four parameters are set as α � 1, β � 10, w � 0.3 ,

and γ′ � 0.5, respectively. Therefore, we set the four parameters

as corresponding values. In addition, AUC is widely used to

measure the performance of association prediction methods, and

thus we use it to measure the performance of BNNRMDA.

3.2 Performance measurement

To measure the microRNA-disease association prediction

performance of BNNRMDA, we compare it with MIDPE

(Xuan et al., 2015), MIDP (Xuan et al., 2015), RLSMDA

(Chen and Yan, 2014), GRNMF (Xiao et al., 2018), and

LPLNS (Li et al., 2018). MIDP (Xuan et al., 2015) and

MIDPE (Xuan et al., 2015) are two random walk-based

microRNA-disease association prediction methods. MIDP is

used to detect association information for microRNAs related

to diseases. MIDPE is used to detect association information

through the bilayer network. RLSMDA (Chen and Yan, 2014)

is a semi-supervised learning-based microRNA-disease

association inference framework. GRNMF (Xiao et al.,

2018) is a graph regularized non-negative matrix

factorization-based microRNA-disease association

prediction model. In addition, GRNMF built an association

probability profile for each disease or miRNA based on a

weighted nearest K neighbor profiles. LPLNS (Li et al., 2018)

combined label propagation and linear neighborhood

similarity for microRNA-disease association prediction.

MIDP, MIDPE, RLSMDA, GRNMF, and LPLNS obtained

better AUCs for microRNA-disease association prediction.

Table 1 shows the AUC values of six microRNA-disease

association prediction methods under cross validation.

From Table 1, we can find that BNNRMDA obtains

better AUC of 0.9071 than MIDPE, MIDP, RLSMDA,

GRNMF, and LPLNS. Compared to MIDPE,

MIDP, RLSMDA, GRNMF, and LPLNS, BNNRMDA

increases the performance of 13.79, 8.98, 5.69, 1.19,

and 0.41% based on the AUC value, respectively. The

results show that our proposed BNNRMDA

TABLE 1 AUCs of microRNA-disease association prediction methods under cross validation.

Method MIDPE MIDP RLSMDA GRNMF LPLNS BNNRMDA

AUC 0.7820 0.8256 0.8555 0.8963 0.9034 0.9071

TABLE 2 The inferred top 30 microRNAs associated with colon cancer except for 73 known microRNAs.

Rank MicroRNA Evidence Rank MicroRNA Evidence

1 hsa-mir-200a 25371200 16 hsa-mir-99a Unconfirmed

2 hsa-mir-375 29930763 17 hsa-mir-195 26064276

3 hsa-mir-222 27855613 18 hsa-mir-96 Unconfirmed

4 hsa-mir-30d 28651493 19 hsa-mir-148a Unconfirmed

5 hsa-mir-103a Unconfirmed 20 hsa-mir-98 28025745

6 hsa-mir-100 28032929 21 hsa-mir-34c https://doi.org/10.1166/jbt. 2018.1859

7 hsa-mir-181a 25977338 22 hsa-mir-182 Unconfirmed

8 hsa-mir-133a 29930763 23 hsa-mir-20b 33044899

9 hsa-mir-429 Unconfirmed 24 hsa-mir-124 30980700

10 hsa-mir-224 Unconfirmed 25 hsa-mir-7 26648422

11 hsa-mir-93 22180714 26 hsa-mir-193b 31007734

12 hsa-mir-25 23435373 27 hsa-mir-210 27611932

13 hsa-mir-181b 18172508 28 hsa-mir-10a Unconfirmed

14 hsa-mir-183 Unconfirmed 29 hsa-mir-138 Unconfirmed

15 hsa-mir-153 Unconfirmed 30 hsa-mir-196a Unconfirmed
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method can effectively predict new microRNA-disease

associations.

3.3 Case study

In the above section, we have computed the performance of

BNNRMDA. The results show that BNNRMDA obtains better

AUC and outperforms other five microRNA-disease association

prediction methods. We continue to implement case analyses to

identify possible microRNA biomarkers for colon cancer and

colorectal cancer.

3.3.1 Inferring possible microRNA biomarkers for
colon cancer

Colon cancer is a common malignant tumor and has a

very high incidence rate in adult with age of 40–50 (Zhu et al.,

2020; Liu et al., 2021). More importantly, it has no any

symptoms in the early stage. Therefore, it is important to

infer possible biomarkers to boost the diagnosis and

treatment for colon cancer (Liu et al., 2021). Among the

HMDD dataset, there are 73 known microRNAs associated

with colon cancer among 353 microRNAs. Based on the

proposed BNNRMDA method, we compute the association

score for each microRNA-disease pair. The results show that

all 73 known microRNAs associated with colon cancer in the

HMDD database have the highest association scores with

colon cancer and are ranked as top 73. We continue to

investigate the following 30 miRNAs that have higher

association scores with colon cancer and are ranked as

74–103. The results are shown in Table 2 and Figure 1.

From Table 2 and Figure 1, we can find that

18 microRNAs are confirmed to associate with colon

cancer by literature retrieval. In addition, 12 microRNAs

are inferred to associate with colon cancer and are

potential biomarkers of colon cancer.

In addition, we infer that microRNA hsa-mir-103a may

associate with colon cancer. Wnt signaling pathway is hyper-

activated in many human cancers. Therefore, Wnt pathway

demonstrates promising diagnostic and therapeutic effect in

cancer medicine. Fasihi et al. (2018) found that hsa-miR-103a

may be a possible regulator of Wnt signaling pathway by

detecting its effect on Wnt pathway components in colorectal

cancer-originated cell lines and its expression in colorectal

cancer tissues. They also found that hsa-miR-103a has an

upregulation function in colorectal cancer tissues through RT-

qPCR and its overexpression could cause elevated Wnt

activity. Therefore, we infer that hsa-miR-103a

could be a potential biomarker of colon cancer (Fasihi

et al., 2017).

FIGURE 1
Associations between the predicted top 30 microRNAs and
colon cancer except for known 73 microRNA-colon cancer
associations in the HMDD database that are predicted to have the
highest association scores with colon cancer. Black dot lines
denote associations between microRNAs and colon cancer and
these associations have been reported by publications. Blue dot
lines denote associations between microRNAs and colon cancer
and these associations are unknown and need to experimental
validation.

FIGURE 2
Associations between the predicted top 30 microRNAs and
colorectal cancer except for known 129 microRNA-colorectal
cancer associations in the HMDD database. Black dot lines denote
associations between microRNAs and colorectal cancer and
these associations have been reported by publications. Orange
solid lines denote associations betweenmicroRNAs and colorectal
cancer and these associations are unknown and need to
experimental validation.
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3.3.2 Inferring possiblemicroRNA biomarkers for
colorectal cancer

Colorectal cancer is the third leading cause of cancer-

related deaths in the United States. In the United State, there

are about 1.85 million cases and 850 thousand deaths

annually. In 2020, there are 53,200 colorectal cancer deaths

in the United State. Among new colorectal cancer diagnoses,

approximately 20% of patients suffered from metastatic

disease and approximately 25% of patients suffered from

localized disease that may later develop metastases. Of

patients who are diagnosed as metastatic colorectal cancer,

about 70–75% of patients survive more than 1 year, about

30–35% patients survive more than 3 years, and less than 20%

patients survive more than 5 years (Xie et al., 2020; Biller and

Schrag, 2021).

Among the HMDD dataset, there are 137 known microRNAs

associated with colorectal cancer among 353 microRNAs. Based on

the proposed BNNRMDA method, we compute the association

score for each microRNA-colorectal cancer pair. The results show

that 129 knownmicroRNAs associated with colorectal cancer in the

HMDD database have the highest association scores with colorectal

cancer and are ranked as top 129. We continue to investigate the

following 30 miRNAs that have higher association scores with

colorectal cancer and are ranked as 130–159. The results are shown

in Table 3 and Figure 2. From Table 3 and Figure 2, we can find that

8 microRNAs are known to associate with colorectal cancer in the

HMDD database. In addition, the remaining 22 microRNAs are

inferred to associate with colorectal cancer and are reported by

publications. The results confirm the strong microRNA

identification performance of BNNRMDA for colorectal cancer.

In addition, we predict that hsa-mir-193b and hsa-mir-7 days may

associate with colorectal cancer and need validation.

4 Conclusion

Colon cancer and colorectal cancer are two of leading causes

of cancer-related deaths worldwide and are seriously threatening

human health. Inference of diagnosis or prognosis biomarkers

for colon cancer and colorectal cancer can help to evaluate their

initiation, progression and therapeutic response. In this study, we

developed a new microRNA-disease association prediction

method, BNNRMDA, to find possible microRNA biomarkers

for colon cancer and colorectal cancer. BNNRMDA effectively

integrated disease semantic similarity and GAPK similarity,

microRNA function similarity and GAPK similarity, and

bound nuclear norm regularization.

Compared to other five classical microRNA-disease

association prediction methods, BNNRMDA obtains the best

AUC of 0.9071, demonstrating its powerful microRNA-disease

association prediction performance. We continue to use the

proposed BNNRMDA method for finding possible microRNA

biomarkers for colon cancer and colorectal cancer. The results

show that hsa-miR-103a could be a potential biomarker of colon

cancer and hsa-mir-193b and hsa-mir-7 days could be potential

biomarkers of colorectal cancer.

Our proposed BNNRMDA method fully considers the affect of

Gaussian association profile similarity on the prediction

performance. In addition, the bound nuclear norm regularization

approach can effectively learn the intrinsic distribution of data.

Therefore, BNNRMDA significantly outperform other MDA

prediction methods. Although BNNRMDA obtains better AUC,

its performance including AUC, precision, recall, and accuracy need

to further improve. In the future, we will improve the bound nuclear

norm regularizationmodel to discover possible biomarkers for colon

cancer and colorectal cancer.

TABLE 3 The inferred top 30 microRNAs associated with colorectal cancer except for 129 known microRNAs.

Rank MicroRNA Evidence Rank MicroRNA Evidence

1 hsa-mir-191 18079988 16 hsa-mir-223 27759076

2 hsa-mir-760 the HMDD database 17 hsa-mir-100 25973296

3 hsa-mir-337 the HMDD database 18 hsa-mir-204 25209181

4 hsa-mir-1915 the HMDD database 19 hsa-let-7g 18172508

5 hsa-mir-24 30375302 20 hsa-mir-106b 34070923

6 hsa-mir-520a the HMDD database 21 hsa-mir-296 28209128

7 hsa-mir-101 30797148 22 hsa-let-7f 29805607

8 hsa-mir-138 27248318 23 hsa-mir-29c 29262657

9 hsa-mir-608 the HMDD database 24 hsa-mir-30c 25799050

10 hsa-mir-1303 the HMDD database 25 hsa-mir-30b 32112903

11 hsa-mir-629 30042169 26 hsa-mir-302a 31754405

12 hsa-mir-2110 the HMDD database 27 hsa-mir-326 25760058

13 hsa-mir-147b the HMDD database 28 hsa-mir-98 34370878

14 hsa-mir-205 29488611 29 hsa-mir-128 30257253

15 hsa-mir-197 30106114 30 hsa-mir-30d 28651493
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