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One objective of human genetics is to unveil the variants that contribute to

human diseases. With the rapid development and wide use of next-generation

sequencing (NGS), massive genomic sequence data have been created, making

personal genetic information available. Conventional experimental evidence is

critical in establishing the relationship between sequence variants and

phenotype but with low efficiency. Due to the lack of comprehensive

databases and resources which present clinical and experimental evidence

on genotype-phenotype relationship, as well as accumulating variants found

from NGS, different computational tools that can predict the impact of the

variants on phenotype have been greatly developed to bridge the gap. In this

review, we present a brief introduction and discussion about the computational

approaches for variant impact prediction. Following an innovative manner, we

mainly focus on approaches for non-synonymous variants (nsSNVs) impact

prediction and categorize them into six classes. Their underlying rationale and

constraints, together with the concerns and remedies raised from comparative

studies are discussed. We also present how the predictive approaches

employed in different research. Although diverse constraints exist, the

computational predictive approaches are indispensable in exploring

genotype-phenotype relationship.
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1 Introduction

One of the primary goals of human genetics is to discover the genetic variants

associated with the onset and progression of human disease. The challenge is a “a needle in

haystack” problem: how to pinpoint the potential causative ones from millions of

individual variants (Genomes Project et al., 2015) spreading over the newly

assembled, non-gap 3.055 billion–base pair human genome sequence (Nurk et al.,

2022). Efforts to achieve this goal, such as linkage analysis and genome-wide
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association studies, were inadequately effective in identifying

causative candidates and had poor clinical predictive value

(Tam et al., 2019).

Over the last decade, the next generation sequencing (NGS)

has been extensively utilized in biomedical research as

consequences of its substantially reduced cost and generation

of large volume of data. According to the fact sheets on genomic

cost provided by the National Human Genome Research

Institute (NHGRI) (KA., 2021), NGS technology achieved one

hundred-fold cost reduction compared to Sanger sequencing,

and the price is currently less than $1,000 per human genome.

Nowadays, NGS platforms can finish one run within 2 days

producing billions of reads for up to 48 samples (Hu et al.,

2021). With the raw NGS data, standard and well-recognized

variant format files can be generated using upstream analysis

pipeline (Kanzi et al., 2020). Whereas the downstream disease-

causing variant fishing step among ~50,000 variants from WES,

or even millions of variants fromWGS is the most challenge part

(Eberle et al., 2017; Koboldt, 2020).

There are plenty of data resources storing evidenced

genotype-phenotype relationship information. To a certain

extent, clinicians and researchers are able to utilize these

records to interpret the formation, progress, diagnosis and

treatment of diseases from a genetic perspective. However,

even the most well-recognized databases, such as ClinVar

(Landrum et al., 2020), only contain around 14,000 of highly

confident variants with evidence evaluated by genetic experts,

which is a small fraction compared to the huge number of

variants identified from NGS. This situation dramatically

reduces clinical utility from genetics. In addition, it also poses

great challenges for understanding differential actions of genes

between/among individuals, populations and species, as well as

deciphering the genotype-phenotype relationship (Orgogozo

et al., 2015). To address these issues, computational tools for

predicting variant impact have emerged which can help bridge

the gap between vast amount of genomic data generated and

limited known genetic evidence, and finally build up the potential

genotype-phenotype relationship for the newly identified

variants.

Variant call format (VCF) files store identified variants

providing variant genomic position, nucleotide substitution,

assessed quality score, genotype and other relevant

information according to alignment and variant calling

information (Danecek et al., 2011). Based on the specified

information, variant annotation can locate them to specific

genes or transcripts, classify them into different types and

conclude on their impactable consequences (Wang et al.,

2010; Cingolani et al., 2012; McLaren et al., 2016). Variants

causing sequence alteration are mainly categorized into four

types: insertion, deletion, single nucleotide variant (SNV) and

other substitution, including multiple nucleotide variant (MNV)

(Eilbeck et al., 2005). Among them, SNVs are the most frequently

identified (Genomes Project et al., 2015; Lek et al., 2016) and

annotated (Cunningham et al., 2015). SNVs are composed of

non-synonymous SNVs (nsSNVs) and synonymous SNVs

(sSNVs). Comparing to sSNVs, nsSNVs, which will cause

amino acid change based on the protein translation codons,

are estimated at higher frequency in individuals with excess

deleteriousness (Genomes Project et al., 2012). Therefore, in

this review, we focus on the computational approaches which

are developed to infer the impact of nsSNVs in coding regions.

The database resources that are utilized by majority of the

predictive methods (we name them as predictors throughout

this review) are firstly introduced. Following that, we discuss the

underlying motivation and constraints of those predictors with

which we group them into six categories in an innovative

manner. We also present their corresponding predictive

performance and concerns from assessment studies. Finally,

we demonstrate the application performance of the predictors

in large-scale studies, as well as their ability to reveal the

genotype-phenotype associations.

2 Database resources for variant
predictors

Models are not created out of thin air; rather, they are

designed to identify hidden correlations in massive volumes of

real data, allowing data to be interpreted and used to generate

predictions. Since the deployment of the Human Genome Project

in the 1990s, various relevant databases and knowledgebases have

been established and maintained by academic institutions,

organizations, consortia, and communities to collect, store,

and retrieve records pertaining to genetic, clinical, and

phenotypic information. They provide sufficient accessible

evidences and facts to reliably demonstrate the genotype-

phenotype association, which explains the functional and

pathogenic importance of genetic variations (Johnston and

Biesecker, 2013).

Databases can be categorized according to their scope,

purpose, and scale. Several reviews (Thorisson et al., 2009;

Brookes and Robinson, 2015; Zhang et al., 2019; Banck et al.,

2021; Katsonis et al., 2022) provided comprehensive details of the

content, usage, comparisons, and limitations for those databases.

In this section, we briefly review the most frequently used

databases (Table 1) containing sequence information,

population-scale data, phenotype ontology, clinical and

experimental evidence.

2.1 Sequence resources

GenBank (Sayers et al., 2022), hosted by National Institutes

of Health (NIH), European Nucleotide Archive (ENA) (Baker

et al., 2000), hosted by European Molecular Biology Laboratory’s

European Bioinformatics Institute (EMBL-EBI), as well as the
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TABLE 1 Summary of resources for human genotypes and phenotypes relationships.

Type
of data

Name Full
name

Techniques Type
of variants

Targeted
diseases

Website Containing
entries
(until
writtern
in June
2022)

Composition First
publication
year

Last
update
(until
writtern
in June
2022)

Accessible Publications

Protein data Uniprot Universal protein

resource

Curated — General https://www.uniprot.org/ 567,483 entries in Swiss-Prot and

231,354,261 entries in TrEMBL

UniProt Knowledgebase, UniProt Reference Clusters,

and UniProt Archive

1997 2 February

2021

Free UniProt, (2021)

Protein information UniProtKB Uniprot Knowledgebase Curated — General https://www.uniprot.org/uniprot/ — Swiss-Prot and TrEMBL — 22 November

2021

Free UniProt, (2021)

Protein sequences UniRef Uniprot Reference

Clusters

Curated — General https://www.uniprot.org/uniref/ — UniRef100, 90, 50 — 29 November

2021

Free UniProt, (2021)

Protein sequences UniParc Uniprot Archive Curated — General https://www.uniprot.org/uniparc/ — — — 24 March 2022 Free UniProt, (2021)

Protein, DNA and

RNA structural data

PDB Protein data bank Structural data from

X-ray, NMR, electron

microscopy

— General https://www.rcsb.org/ 191,565 Biological Macromolecular

Structures

— 1971 14 June 2022 Free Berman et al. (2000)

Protein data with

themodynamic

parameters

ProThermDB Thermodynamic

Database for Proteins and

Mutants

Curated — General https://web.iitm.ac.in/bioinfo2/

prothermdb/index.html

~0.12 million thermodynamic data

obtained for different organisms and cell

lines, >32,000 entries, ~20,000 mutations

— 1999 22 September

2021

Free Nikam et al. (2021)

Protein data ONGene — Curated — Cancer https://ongene.bioinfo-minzhao.org/

index.html

803 oncogenes — 2016 — Free Liu et al. (2017)

Protein data TSGene2.0 Tumor suppressor gene

database

Curated — Cancer https://bioinfo.uth.edu/TSGene/ 1217 human tumor suppressor genes — 2012 4 January 2016 Free Zhao et al. (2016)

Population data 1000 Genome

Project

— WGS SNVs, indels General https://www.internationalgenome.org/ Genotypes for 2,504 healthy donor

samples from 26 populations

— 2008 1 October 2015 Free Sudmant et al. (2015)

Population data GnomAD

(previously

ExAC)

Genome aggregation

database

WGS, WES SNVs, indels General https://gnomad.broadinstitute.org/ 76,156 genomes data of diverse ancestries

in v3.1 and 141,456 individuals exomes or

genomes data in v2

— 2014 21 January

2022

Free Karczewski et al. (2020)

Population data ESP The NHLBI exome

sequencing project

WES SNVs, indels Disease-,

phenotype-related

https://evs.gs.washington.edu/EVS/ 6,503 unrelated individual exom data — 2011 23 April 2019 Free Fu et al. (2013)

Population data UK Biobank — — — Disease-,

phenotype-related

https://www.ukbiobank.ac.uk/ 49,960 exome data — 2006 19 March 2019 Registration fee

needed

—

Population data UK10K — WGS, WES — Healthy and

disease-related

cohorts

https://www.uk10k.org/ Nearly 10,000 individuals in UK

population

Whole genome, Neurodevelopment, Obesity, Rare

Diseases Sample Sets

2010 1 October 2015 Access control Consortium et al.

(2015)

Phenotype and

genotype data

OMIM Online Mendelian

Inheritance in Man

Classification — Disease-,

phenotype-, gene-

related

https://www.omim.org/ 26,446 entries, including all known

mendelian disorders and over 16,000 genes

— 1960 27 May 2022 Free Amberger et al. (2019)

Phenotype and

genotype data

Orphanet The portal for rare

diseases and orphan

drugs

Classification — Disease-,

phenotype-related

https://www.orpha.net/ 6,172 disease, 5835 genes — 1997 31 May 2022 Free —

Ontology HPO Human phenotype

ontology

Classification — Disease-,

phenotype-, gene-

related

https://hpo.jax.org/ >13,000 terms, > 156,000 annotations — 2008 14 April 2022 Free Kohler et al. (2021)

Ontology GO Gene ontology Classification — Gene-specific http://geneontology.org/ 7,510,543 annotations Molecular Function, Cellular Component, and

Biological Process

2000 16 May 2022 Free (Ashburner et al., 2000;

Gene Ontology, 2021)

Ontology Mammalian

Phenotype

Ontology

— Classification — Phenotype-related https://bioportal.bioontology.org/

ontologies/MP/?p=summary

14,716 classes — 2005 14 June 2022 Free Smith et al. (2005)

Genomic data HGMD Human gene mutation

database

Curated SNVs, indels Disease-,

phenotype-related

http://www.hgmd.cf.ac.uk/ac/

index.php

352,731 mutation entries 352,731 mutation entries 1996 31 May 2022 Registration

needed

Maffucci et al. (2019)

Genomic data VariBench A benchmark database

for variations

Curated SNVs, indels — http://structure.bmc.lu.se/VariBench/

index.php

— VariBench datasets include disease-causing missense

variations, neutral high frequency SNPs, protein

stability affecting missense variations, variations

affecting transcription factor binding sites, variations

affecting splice sites

2012 — Free Sasidharan Nair and

Vihinen, (2013)

Genomic data VariSNP — Curated SNVs, indels — http://structure.bmc.lu.se/VariSNP/

index.php

145,435,955 variants Datasets selected from dbSNP which were filtered for

disease-related variants found in ClinVar, Swiss-Prot

and PhenCode

2014 16 February

2017

Free Schaafsma and Vihinen,

(2015)

(Continued on following page)
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TABLE 1 (Continued) Summary of resources for human genotypes and phenotypes relationships.

Type
of data

Name Full
name

Techniques Type
of variants

Targeted
diseases

Website Containing
entries
(until
writtern
in June
2022)

Composition First
publication
year

Last
update
(until
writtern
in June
2022)

Accessible Publications

Genomic data dbSNP Single nucleotide

polymorphism database

Curated SNVs, indels,

retroposable element

insertions and

microsatellite repeat

variations

General https://www.ncbi.nlm.nih.gov/snp/ 1,085,850,277 refSNP — 1999 26 May 2020 Free Sherry et al. (2001)

Genomic data ClinVar — Curated SNVs, indels Disease-,

phenotype-, gene-

related

https://www.ncbi.nlm.nih.gov/clinvar/ 1,540,318 unique variation records — 2013 5 May 2022 Free Landrum et al. (2020)

Genomic data ClinGen — Curated SNVs, indels Disease-,

phenotype-related

https://clinicalgenome.org/ Unique 3692 variants in unique 2278 genes — 2013 1 April 2022 Free Rehm et al. (2015)

Genomic data DoCM Database of Curated

Mutations

Curated SNVs, indels Cancer http://www.docm.info/ 1,364 variants among 122 disease type — 2014 — Free Ainscough et al. (2016)

Genomic data VKGL Vereniging klinisch

genetische

Curated SNVs, indels Disease-,

phenotype-related

https://vkgl.molgeniscloud.org/ 188,502 variants — 2018 December

2021

Free Fokkema et al. (2019)

Genomic data CIViC Clinical interpretation of

variants in cancer

Curated SNVs, indels, SVs Cancer https://civicdb.org/welcome 3165 variants, 470 genes with clinical

interpretation

— 2015 1 May 2022 Free Griffith et al. (2017)

Genomic data COSMIC Catalogue of somatic

mutations in cancer

Curated SNVs, indels Cancer https://cancer.sanger.ac.uk/cosmic 29,399,170 variants, 1,207,190 CNVs,

19,422 fusions

— 2004 31 May 2022 Free Tate et al. (2019)

Genomic data LOVD3.0 Leiden open variation

database 3.0

Curated SNVs, indels Disease-,

phenotype-related

https://www.lovd.nl/3.0/home 800,780 variants — 2002 17 August 2021 Free Fokkema et al. (2021)

Genomic data InSight The International Society

for Gastrointestinal

Hereditary Tumours

Curated SNVs, indels Gene-specific http://insight-database.org/ 35,644 variant entries from 9 genes related

to gastrointestinal tumours

Variants are automatically sourced from LOVD3 2005 — Free Fokkema et al. (2021)

Genomic data HuVarBase Human variants database Curated Missense, nonsense,

insertion, deletion

Disease-,

phenotype-related

https://www.iitm.ac.in/bioinfo/

huvarbase/index.php

774,863 variants from 18,318 proteins,

including 702,048 disease-causing and

72,815 neutral variants

Sources from 1000 Genomes, ClinVar, COSMIC,

Humsavar, SwissVar, MutHTP, PROXiMATE

2018 15 October

2018

Free Ganesan et al. (2019)

Genomic data DVD Deafness variation

database

Curated SNVs, indels Deafness-related https://deafnessvariationdatabase.org/ 223 genes Sources from ClinVar, dbNSFP, gnomAD, VEP,

CADD, dbSNP, Population Analysis and others

2018 4 January 2021 Free Azaiez et al. (2018)

Genomic data METABRIC Molecular Taxonomy of

Breast Cancer

International Consortium

Targeted NGS SNVs, indels Breast cancer Mutation details can be retrived from

https://www.cbioportal.org/study/

summary?id=brca_metabric

Mutation data in 173 genes from

2433 primary breast tumor samples and

650 normal controls

Genomic mutation data, copy number aberration

(CNA), gene expression and long-term clinical follow-

up data

2012 — Free (Curtis et al., 2012;

Pereira et al., 2016)

Genomic data TCGA-BRCA — WES SNVs, indels Breast cancer https://portal.gdc.cancer.gov/projects/

TCGA-BRCA

Mutation data from WES of 817 Breast

Invasive Carcinoma tumor/normal pairs

Genomic mutation data, copy number aberration

(CNA), gene expression and long-term clinical follow-

up data

2012 8 October 2015 Free Ciriello et al. (2015)

Genomic data BRCA1 dataset — Saturation genome

editing assays

SNVs BRCA1 gene https://sge.gs.washington.edu/BRCA1/ 3,893 SNVs located within or near

13 exons that encode for the RING and

BRCT domains of BRCA1 (exons 2–5 and

15–23, respectively)

— 2018 — Free Findlay et al. (2018)

Genomic data VarCards — Curated SNVs, indels General http://varcards.biols.ac.cn/ 110,154,363 SNVs, and 1,223,370 indels in

coding regions or splicing sites

Variant-level and gene-level resources 2016 28 June 2020 Free Li et al. (2018)
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DNA Data Bank of Japan (DDBJ) (Okido et al., 2022) are the

most widely used sequence databases, storing over 2.5 billion

nucleotide sequences for over 504,000 formally described species.

They serve as a basis for genetic analysis since aligning clean

reads to the reference genome is an indispensable step in NGS

analysis. As sequences of plethora species become accessible,

protein sequences with 100%, 95%, and 50% identity are

assembled to create clusters that are stored in informative

databases such as UniProt Reference Clusters (UniRef) (Suzek

et al., 2007), a branch of Universal Protein Resource (UniProt)

(UniProt, 2021). These clusters are utilized to build multiple

sequence alignment (MSA) sets, which form the basis of

homology sequence-based approach.

2.2 Population resources

Several worldwide population projects exist, including the

NCBI dbSNP (Smigielski et al., 2000), 1000 genome project

(1KGP) (Sudmant et al., 2015), HapMap (International

HapMap, 2003), UK10K (Consortium et al., 2015), Genome

Aggregation Database (gnomAD) (Karczewski et al., 2020),

and NHLBI GO Exome Sequencing Project (ESP) (Fu et al.,

2013). With their progress and completion, their reports are now

public and offer an exquisite view of the landscape of human

genetic variants ranging from common to extremely rare ones.

They also provide valuable information allowing the examination

of variants between and within subpopulations with different

ethnicities or disease status like heart, lung and blood disorders.

Furthermore, minor allele frequency (MAF) from these databases

is usually a useful indicator for prioritization or pertain as

important feature for building prediction models.

2.3 Phenotype resources

Phenotype databases describe phenotypes and illnesses in

conjunction with genetic information. The most widely known

are OMIM (Online Mendelian Inheritance in Man) (Amberger

et al., 2019) and Orphanet (Ayme et al., 1998). Their goal is to

offer high-quality information on common and rare diseases or

phenotypes in order to comprehensively review the genotype-

phenotype association. To assist the investigation on

connections between phenotypes and genes and to describe

diseases in an algorithm-friendly data structure, ontology

databases such as Human Phenotype Ontology (HPO)

(Robinson et al., 2008), Mammalian Phenotype Ontology

(Smith et al., 2005), and Gene Ontology (GO) (Ashburner

et al., 2000) were developed. They are designed to annotate

clinical phenotypes and genes with well-structured,

computational-friendly, precise, and accurate terminology.

Overall, these databases provide valuable insights for

prioritization and interpretation of genetic data.

2.4 Clinical genetic resources

Several databases curated genetic data with clinical

significance information. These databases are also known as

Locus-Specific Databases (LSDB). Data and entries are often

curated from literature and clinical trials. LSDBs range in scale

from a single gene with roughly 4000 variants (Findlay et al.,

2018) to hundreds of millions of variants (Schaafsma and

Vihinen, 2015). The goal of LSDBs is to unambiguously and

accurately define and categorize genotype-phenotype correlation,

to understand gene functions and effects, to provide a map of

genetic distribution across populations and diseases, and to assist

clinicians/diagnostic laboratories in conducting further

validation assays by providing detail molecule, pathogenicity,

and effects of variants (Greenblatt et al., 2008). A well-curated

and annotated LSDB is a valuable resource for constructing and

evaluating prediction models. But note in mind that there would

be overlapped variants in different LSDBs, even with

contradictory classification of clinical impact due to

inconsistent rules and subjective opinion of different curators.

Phenotype-/disease- specific LSDBs are established, such as DVD

(Deafness Variation Database) (Azaiez et al., 2018) for deafness,

RAPID (Resource of Asian Primary Immunodeficiency Diseases)

(Keerthikumar et al., 2009) for primary immunodeficiency

disease, InSiGHT (The International Society for

Gastrointestinal Hereditary Tumors) (Fokkema et al., 2021)

for gastrointestinal tumors, fabry-database.org (Saito et al.,

2011) for Fabry disease. Thanks to the effort of the Leiden

Open source Variation Database (LOVD) (Fokkema et al.,

2021) platform, a comprehensive list of public LSDBs are

presented with details for researchers and clinicians to retrieve

gene and mutation information from different resources.

3 Various variant predictors

Each predictor has a unique biochemical or biological basis.

It is important to remember that the outcome of the predictor on

different bases has different implications. The terms “dangerous,”

“pathogenic,” “conservative,” and “damaging” do not necessarily

denote causal of a specific phenotype or condition. Knowing the

principles and drawbacks of each type of predictor aids in

correctly interpreting the variants.

Variant impact predictors can be categorized in different

ways: machine-learning (ML) and non-ML models based on the

used algorithms; homology sequence-based and structural-based

models regarding the features they used in prediction; supervised

and unsupervised ML-models. Unlike the category of sequence-,

structure- and meta-methodologies in other reviews (Hassan

et al., 2019b; Yazar and Ozbek, 2021), we introduced an

innovative category here based on the characteristics and

included features of each type (Figure 1). We discuss these

categories by outlining the rational reasoning behind the
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predictors and provide an overview of the constraints. Later, we

discuss predictor performance evaluation and underline current

concerns and remedies. Details for each tool are present in

Supplementary Table S1 and Table 2.

3.1 Types of tools and their principles

3.1.1 Homologous sequence-based predictors
This class of predictors are derived from comparative

genomics. The assumption is straightforward: under natural

selection, amino acid changes in conservative sequences are

more “deleterious” determined by homologous sequence

searching across species, than that happened in other non-

homologous positions which would be deemed as “tolerant”

(Cooper and Shendure, 2011). Methodologically, these

predictors firstly construct the multiple sequence alignment

(MSA) either by grouping multiple protein sequences with a

given similarity from BLAST alignment (Altschul et al., 1990), or

just retrieval customed selective sequences from afroed-

mentioned genomic databases (Section 2.1) for multiple

alignment using MULTIZ (Blanchette et al., 2004), or

MUSCLE (Edgar, 2004). Based on MSA, a position-specific

scoring matrix (PSSM) (Gribskov et al., 1987) is computed to

generate the prediction outcome with probability score (Ng and

Henikoff, 2001), likelihood ratio (Chun and Fay, 2009), the

average distance between targeted species and others in

subfamilies (Choi et al., 2012), or the entropy difference (Reva

et al., 2007; Hopf et al., 2017). The predictive outcomes are

normally continuous values with the designer’s recommended

threshold validated in mutation datasets.

Apart from computing scores using empirically rational

equations, ML algorithms were commonly utilized as

classifiers. Classical models include random forest (RF)

(Capriotti et al., 2006), and hidden Markov Model (HMM)

(Thomas et al., 2003; Siepel et al., 2005; Garber et al., 2009;

Pollard et al., 2010; Shihab et al., 2013). Although they are both

ML techniques, the attributes they employ are distinct. For

example, PhD-SNP (Capriotti et al., 2006) converted MSA

and mutation to a 40-feature variables in support vector

machine (SVM). The 40 features are composed of two parts:

the first 20 vectors explicitly define the mutation residues, with

-1 for the wild-type residue, 1 for the mutation, and 0 for the

others. The second set of 20 vectors represents the mutation

sequence environment, which is the frequency of each 20 amino

acid residue in a 20 amino acid length window centered on the

targeted site. Unlike unweighted and balanced MSA, HMM is a

probabilistic profile of MSA that captures position-specific

information (Krogh et al., 1994). Two different configurations

of HMM were observed. One assumed three hidden states:

“match,” “insertion,” and “deletion” to build a profile-HMM

MSA (Thomas et al., 2003; Shihab et al., 2013), while the other

considered a two-hidden state as “conserved” and “non-

conserved” according to the phylogenetic information from

tree topologies (Siepel et al., 2005; Garber et al., 2009; Pollard

et al., 2010).

More recently, a novel unsupervised ML model is utilized to

discover patterns and correlations between absolute locations in

the MSA, allowing direct observation of both conservation and

coevolution (Riesselman et al., 2018; Frazer et al., 2021). This

deep generative model captured the latent structure from MSA

using Variational Autoencoders (VAEs), which was proved to be

an outstanding model for separation of β-lactamase protein

family, at the phyla level (Detlefsen et al., 2022). By assuming

the observed data s are generated from latent variable z, the

decode part of VAE consists of modeling the conditional

probability. Hence, the encode part is the neural network

modeling of approximate posterior distribution (Riesselman

et al., 2018; Frazer et al., 2021).

MLmodels’ predictions were normally given as log odds ratio

scores between the probabilities of “substitution” and “wild-type”

or “conserved” and “non-conserved”. In other words, under

wild-type or neutral model, higher scores represent higher

probability of unexpected substitution, thus are more

evolutionary constraint.

There are two considerations regarding homologous

sequence-based predictions (Eilbeck et al., 2017). Firstly, many

known disease-causing alleles reside in poorly or non-conserved

regions will be false-negatively classified as neutral by predictors.

Secondly, the tools are inadequate for predicting stop-gain and

frameshift variations since they are not included in other

organisms in the MSA (Eilbeck et al., 2017). The stop-gain

and frameshift variants are rated as “HIGH” impact on

biological sequence in annotation tools, e.g., VEP (McLaren

et al., 2010) and SnpEff (Cingolani et al., 2012). But the

impact on protein is not always concordant. The amino acid

changes seem to be tolerant especially the ones located near

C-terminal of protein (MacArthur et al., 2012). Some frameshift

variants, even in homozygous state, were frequently observed

among population suggesting limited impact on human health

(Eilbeck et al., 2017). Thus, additional information such as

protein structure might help improve the predictive power

and efficiency of the predictors, which will be discussed in the

following subsections in more detail.

3.1.2 Structure-based predictors
Apart from the primary structure of protein, the folding and

stability are also essential for protein function normally. Early

findings of variants that affect protein structure leading to

aberrant phenotypes can be dated back to the 1950s, when the

amino acid substitution in the half molecule of hemoglobin was

discovered to cause sickle cell anemia (Ingram, 1957). Since then,

thousands of mutations (Giardine et al., 2014) were described to

impact on the function (increase (Jones et al., 1979) or decrease

(Bonaventura and Riggs, 1968) oxygen affinity), stability

(Martinez et al., 1977) and conformation (Moo-Penn et al.,
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1988) of hemoglobin. Indeed, missense variants also affect

protein expression (Haraksingh and Snyder, 2013), post-

translational modification (Kim et al., 2015) or binding

affinity (Pires et al., 2015; Morningstar-Kywi et al., 2021).

An estimation of ~75% disease-causing variants directly lead

to protein destabilization, making protein stability the major

contributor to disease pathology (Yue et al., 2005), whereas ~7%

variants in disease dataset also have functional role (Yue et al.,

2014). The location of the mutation has a preference. In

comparison to polymorphisms, disease-causing mutations

predominantly impact the core of the protein, whereas ~70%

are found in structural and functionally essential regions

(Sunyaev et al., 2000; de Beer et al., 2013). Protein-protein

interfaces are hot spots for disease-causing nsSNVs (David

et al., 2012; Petukh et al., 2015). Again, disease-causing

variations were 49% more likely (interface core vs interface

rim odds ratio (OR) 1.49, 95% CI 1.24–1.80, p < 0.00001) to

be found in the interface core than in the rim, possibly due to

their differences in energy contribution to protein stability,

physicochemical and evolutionary properties (David and

Sternberg, 2015).

Typically, nsSNVs impact on protein stability is estimated by

computing the variation of Gibbs free energy change (ΔΔGf)

resulting from an amino acid substitution. Physical effective

energy function, statistical potential function, and empirical

defined potential function are the three types of energy

computing methodologies (Guerois et al., 2002). Because the

first function is computationally intensive, the latter two are

more frequently utilized. Structure-based predictors of protein

stability mainly attribute to empirical potentials that integrate

physical and statistical structure-related energy components

(Guerois et al., 2002), and ML techniques (Dehouck et al.,

2009; Laimer et al., 2015).

In theory, these approaches should potentially give greater

insights into the mutation effect than the homologous sequence-

based predictors since they are built on the direct impact of

mutation on protein structure and function. However, the truth

is that protein-based predictors are still limited because of the

unbalance and intrinsic variability of the thermodynamic data

and their prediction performance (Sanavia et al., 2020). On one

hand, despite that the Protein Data Bank (PDB) (Berman et al.,

2000) contains over 50,000 human protein records, many of

them are redundant, covering only 70% of reference human

proteome at a sequence identity level higher than 30% (Somody

et al., 2017). The development of AlphaFold2 (Tunyasuvunakool

et al., 2021), to an extent increases the protein structure coverage;

but its capability to predict the impact of single mutation is

questionable (Pak et al., 2021; Buel and Walters, 2022). On the

other hand, sequence-based techniques, under certain

circumstances, outperform structure-based stability prediction

tools (Hoie et al., 2022). Thus, combining sequence with

structural information may aid in improving prediction

capacity of variant impact.

3.1.3 Sequence and structure combination-
based predictors

The approaches of this category consider both the previously

described homologous sequence and protein structure

information. Predictions take benefit from the combination of

homology sequence information (e.g., conservative scores), and

the structure features, such as hydropathy, polarity, backbone

angles and electrostatic interactions, supplemented with energy

features and biochemical features such as solvent accessible

surface area of the interface (Kulshreshtha et al., 2016). Those

features are sometimes transformed or selected for model

training to achieve high prediction efficiency. Sometimes

hundreds of features might be incorporated into the final

model (Niroula et al., 2015). Algorithmically, supervised ML

approaches including SVM (Calabrese et al., 2009; Li et al., 2009),

naïve bayes classifier (Adzhubei et al., 2010), neural network

(NN) (Hecht et al., 2015), RF (Carter et al., 2013; Niroula et al.,

2015) and boosted tree regression (Zhou et al., 2016) are

commonly applied in the multiple features predictors.

3.1.4 Meta-predictors
Meta-predictors are tools that make predictions by

integrating results of pre-existing predictors. The term “meta-”

sometimes corresponds to the term “consensus” in other studies

(Bendl et al., 2014). The basic idea behind meta-predictors is to

leverage on potential complimentary performance of selected

predictors in classifying variants.

There are mainly two improvements regarding meta-

predictors comparing to aforementioned counterparts. First

of all, meta-predictors give a comprehensive evaluation on

the selected pre-existing tools. Each predictor has its own

metric and scale making it difficult to compare across

multiple predictors hindering the simultaneous usage. Meta-

predictors have their own way to interpret scores from selected

tools, by transforming to a comparable range as normalized

scores (Bendl et al., 2014) or binary values (Gonzalez-Perez and

Lopez-Bigas, 2011). In addition, meta-predictors are able to

improve prediction performance by integrating prediction

scores from different predictors, which allows the avoidance

of bias and anti-generalization by single predictors (Kircher

et al., 2014).

In terms of missing value, where partly pre-existing tools fail

to predict, some meta-predictors impute them using deleterious/

neutral threshold (Capriotti et al., 2013), average score (Kircher

et al., 2014; Quang et al., 2015), fixed score (Quinodoz et al.,

2022), the maximal pathogenic score (Jagadeesh et al., 2016), or a

flexible imputation using average value of k-nearest neighbors

(Ioannidis et al., 2016) and Bayesian principle component

analysis (BPCA) (Dong et al., 2015). There is currently no

gold standard for imputation. Although machine-learning

imputation appears to be more accurate (Brock et al., 2008;

Wei et al., 2018), meta-predictor builders revealed that missing

values account for less than 10% of their training and testing
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datasets (Dong et al., 2015), making the imputation methods less

significant difference.

While prediction performance studies suggested that meta-

predictors surpassed other counterparts (Tian et al., 2019),

concerns regarding circularity occurred, which will be

discussed in Section 3.3.

3.1.5 Combining population data
A polymorphism is defined as an alteration in DNA sequence

found in the general population at a MAF greater than 1%.

According to The American College of Medical Genetics

(ACMG) and the Association for Molecular Pathology (AMP)

guidelines for clinical variant interpretation, a variant with >5%
MAF is considered as a stand-alone support for benign

interpretation for a rare Mendelian disorder (Richards et al.,

2015). This is supported by the “neutral theory”, which defines

neutral variants as the ones settled in the population through

random genetic drift causing neither harmful nor beneficial effect

to the survival of individual organisms (Kimura, 1979). When

training and validating predictors, variants with higher than

specified allele frequency (e.g., 5% or 1%) from population-

scale databases were usually denoted as benign or neutral.

However, predictors in predicting neutral variants differ

greatly in capacity and specificity. For example, PON-P2

(Niroula et al., 2015) had a 95% specificity, while the poorest

predictor incorrectly categorized more than one-third of

polymorphisms as disease-causing (Niroula and Vihinen,

2019). Classifying the impact of variants according to their

MAF were further argued by different hypothesis including

“rare variant for Mendelian disease” (Pritchard and Cox,

2002), “Common disease, common variant” (CDCV) and

“Common disease/rare variant” (CDRV).

Researchers now have access to an exquisitely detailed view

of the landscape of common and rare human genetic variants.

Another issue that predictors should be careful with when

utilizing MAF is that MAF is largely dependent on the

population size and varies among subpopulations leading to

population stratification (Eilbeck et al., 2017). For example,

rs79444516, which is common in African population (13%),

exhibited its extreme rareness in European and Asian

population, with MAF <0.05%. When estimated in the

mixture population, the MAF is 1.2% which will cause

confounding classification. Varied MAF for the same variant

because of different scales of sample size could be largely

mitigated with the completion of the huge population-scale

projects.

To better utilize MAF in prediction, ClinPred (Alirezaie et al.,

2018), a meta-predictor using ML approach, employs MAFs

from diverse populations as part of their features, instead of

classifying variants based on single arbitrary MAF cutoffs.

Together with feature scores from 16 pre-existing tools,

ClinPred trains on clinically curated pathogenic and benign

datasets and outperforms other meta-predictors when applied

to datasets of rare diseases and cancer (Alirezaie et al., 2018).

Therefore, MAFs from population data is capable to enhance the

prediction. Similarly, more and more tools (Chennen et al., 2020;

do Nascimento et al., 2020; Lai et al., 2020; Li et al., 2020)

integrated MAFs as predicting features and achieved competitive

performance on pathogenicity prediction.

3.1.6 Disease-, phenotype-, gene-specific
predictors

The ultimate goal of the variant prediction tools is to

accelerate the development of precision medicine. Majority of

the strategies discussed above aim to estimate disease occurrence

based on the assumption that changes in protein function leads to

a decrease in organismal fitness (Boucher et al., 2016). They are

trained in a large-scale datasets in a genome-wide and pan-

disease manner neglecting the complexity among different

diseases and making the prediction results suboptimal

(Dorfman et al., 2010). Therefore, with the necessity to

precisely estimate the impact of variants on specific disease/

phenotype, a class of disease-, gene-, phenotype-specific

prediction has emerged.

The phenotype-targeting predictors range widely from

common cardiac (Zhang et al., 2021), cancer (Kaminker et al.,

2007), and neurodegenerative disease (Ahmed et al., 2015), to

rare diseases, such as methylmalonic acidemia (Peng et al., 2019),

X-linked incomplete Congenital Stationary Night Blindness

(Sallah et al., 2020) and Pompe disease (Adhikari, 2019).

More details are presented in Table 2. There are over

13,000 terms defined in HPO. While LSDBs provide

benchmarked variant datasets, such as COSMIC, CIViC and

OncoKB for cancer, which can be utilized for disease-specific

predictors construction, limited datasets are available for

majority of phenotypes. For a particular disease/phenotype,

the training and validation datasets can be prepared by

curation of variants and genes from literatures, or re-analysis

of unpublished sequencing data of case-control cohorts, followed

by manually classification using recognized guidelines such as

ACMG/AMP. The scale of the curated databases for different

diseases/phenotypes varies in gene (from one to hundreds) and

variant number (from thousands to millions) which is largely

dependent on the number of relevant publications.

With the curated databases, most of this category of

predictors utilize ML methodology. They can be grouped into

three classes. The first class overlaps with previous mentioned

categories but has distinct characteristic. It includes sequence and

structure combination-based (Sallah et al., 2020; Draelos et al.,

2022), sharing the same strategy with previously mention

predictors in Section 3.1.3, and meta-predictors (Jordan et al.,

2011; Bu et al., 2022) similar to the ones discussed in Section

3.1.4. The distinct characteristic is the difference in training and

validation datasets selection. Also, disease-related genes are

known, making predictors capable of constructing sub-model

for each gene, resulting in better prediction performance (Fang
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et al., 2022). The second class aims to optimize pre-existing

predictor, usually sequence-based model, by re-constructing

MSAs and phylogenetic tree of targeted gene(s) (Niroula and

Vihinen, 2015; Fortuno et al., 2018). These predictors share the

same strategy as their precursors, with distinct features selection.

The third class predicts variants in a comprehensive and robust

way, utilizing additional rule-based classification system. For

example, CancerVar (Li et al., 2022), integrates rule-based

categorization with ML-based meta-predictor scores to

interpret the predicting clinical significance.

These well-calibrated and sculpted predictors demonstrate

their capability in targeted sequencing disease-specific panels to

the utmost (Peng et al., 2019). In contrast, their ability to

generalize is then questioned. When utilizing these techniques,

note in mind the key target phenotypes and genes.

3.2 Performance assessment of predictors

As dozens of predictors exist, choosing the appropriate

one(s) becomes challenging for end users. Several assessment

criteria, such as sensitivity, specificity, positive predictive value

(PPV), negative predictive value (NPV), accuracy, and Matthews

correlation coefficient (MCC), are commonly used to

demonstrate model performance (Vihinen, 2012). The values

for sensitivity, specificity, PPV, NPV, and accuracy range from

0 to 1, with higher values indicating better performance. MCC

benefits from true and false positives and negatives with values on

a scale of -1 to 1, with values closer to 1 indicating perfect

prediction. Furthermore, a visualization measurement, receiver

operating characteristics (ROC) analysis is frequently used to

intuitively compare the area under the ROC curve (AUC) of

multiple predictors (Vihinen, 2012). For non-intersecting curves,

the AUC value closer to 1 suggests better overall performance,

while a value of 0.5 indicates random and useless classification.

Most predictors, when developed, would be assessed using

respective training and validation datasets presenting supreme or

acceptable performance. However, evaluation using consensus

datasets would be more informative for tool selection.

There are dozens of comparison studies on the performance

assessment of different selected tools using different benchmark

datasets. When Performance evaluation of pathogenicity-

computation methods for missense variants, meta-predictors

such as REVEL, Meta-SNP, generally have better performance

and stronger evidence in clinical interpretation (Accetturo et al.,

2020; Cubuk et al., 2021; Anderson and Lassmann, 2022). In the

assessment of 23 predictors, Li et al. (Li et al., 2018) revealed that

meta-predictors achieved higher AUC than others of sequence-

based and structure-based predictors using the ClinVar

benchmark dataset, indicating better performance of meta-

predictors. However, when regarding somatic variants and

PPARG gene benchmark datasets, meta-predictors and

structure-based predictors exhibited comparable performance

(AUC>0.8) (Li et al., 2018), and were superior to homology

sequence-based predictors (AUC>0.7). Hassan et al. (Hassan

et al., 2019a) revealed that meta-predictor which integrated 4 pre-

existing prediction scores, outperformed other 8 predictors

achieving ~10%, 20%, 15% improvement in specificity,

sensitivity and AUC, respectively.

The performance of different categories are not always

consistent, and sometimes are contradictory. Poon’s study

(Poon, 2021) on BRCA1/2 datasets revealed that SIFT and

PolyPhen2’s performance differed among genes. Meléndez-

Aranda et al. (Melendez-Aranda et al., 2019) compared the

performance of 6 in silico tools on 215 missense mutations in

hemophilia B causative gene F9, and the results showed that the

most popular tool, SIFT, was the most accurate. When applying

to a somatic dataset containing 4319 somatic missense variants,

the performance of SIFT was sub-optimal (Suybeng et al., 2020).

As a result, it is critical to have pre-knowledge of your testing data

and predictive goal when selecting appropriate tools.

In order to address the confounding situation and objectively

determine the appropriate usage and accuracy of predictors, the

Critical Assessment of Genome Interpretation (CAGI)

(Andreoletti et al., 2019) community started their experiments

in 2010. Until now, there are six editions with 63 challenges and

over 50 articles released. Participants predict the phenotypic

impact of unpublished genetic variants collected from

experimental and clinical labs provided by CAGI. Later,

independent assessors test the predictions against

experimental characterized phenotypes, and the results will be

presented at the CAGI conference and published in special

journal issues. The challenges released include a wide range of

topics, from nsSNVs to splicing variants, and from disease panels

to databases including curated variants. However, the reality of

the outcome is frequently far more complex than the challenges’

initial objective. Predictors with superior performance in one

challenge, would fail to call the pathogenicity of variants in other

datasets (Katsonis and Lichtarge, 2019; Savojardo et al., 2019).

Complex gene datasets caused divergence predictions and

confounding outcomes, raising concerns about the possibility

of experimental mistakes as the basis of disagreement (Miller

et al., 2019). All the above suggested the caution when

interpreting the evaluation results.

3.3 Concerns of current predictors and
remedies

Majority of predictors are trained, validated and tested using

benchmarked sets of variants with explicit classification labels.

When evaluated 10 predictors across major public databases,

Grimm et al. (2015) raised concerns about “circularity” involving

in the usage of predictors and conduction of comparative studies.

The term “circularity” refers to the situation that same variants

are recursively used in both training and evaluating models.
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“Type 1 circularity” refers to the overlap between training

and evaluation particularly for supervised ML-based predictors,

resulting in poor generalization on new data (Grimm et al., 2015).

Selecting predictions from unsupervised tools as features or

filtering overlapping sets during training might assist to

minimize the “type 1 circularity” during model construction

(Alirezaie et al., 2018; Won et al., 2021). Furthermore, avoiding

overuse of individual dataset (Vihinen, 2013; Weber et al., 2019)

and choosing benchmark database which addressed overlapped

issue (Sasidharan Nair and Vihinen, 2013; Sarkar et al., 2020) also

helps when conducting comparative studies.

Grimm et al. (2015) observed that weighted FatHMM (Shihab

et al., 2013) achieved outstanding performance in 2 datasets but

severe drop in performance in subset from SwissVar. They found

that the ratio of pathogenic and neutral variants in the same protein

family was the key element for weighting scheme, leading to higher

pathogenic score assigned to both neutral and pathogenic variants

in the same gene with higher ratio (Grimm et al., 2015). This

strategy made weighted FatHMM statistically successful in some

datasets, but ultimately inappropriate. Therefore, they defined the

“Type 2 circularity” as the circumstance in which all variants from

the same gene are jointly labeled as pathogenic or neutral. To

address this problem, it was suggested to use datasets with an

appropriate pathogenic-to-neutral ratio and avoid genes with

exclusive pathogenic or neutral variations when reporting

performance (Bu et al., 2022; Quinodoz et al., 2022).

Another concern is about “collinearity,” which generally

occurs with the regression models. ‘Collinearity’ refers to the

circumstance in which significant correlation between two or

more feature variables resulting in independent regression

coefficients estimation problems and leading to redundancy

in the set of variables (Bayman and Dexter, 2021). This

situation might be mitigated via feature selection and

estimator modification (Zheng et al., 2020; Chan et al.,

2022). From another perspective, “collinearity” should not

be a problem because more complicated machine learning

algorithms including SVM, Random Forest, and Neural

Network, can handle large-scale and multi-collinear

datasets in a better way (Dong et al., 2015; Perez-Enciso

and Zingaretti, 2019).

FIGURE 1
Summarized workflow of variants impact predictors. Protein structure and protein features of BRCA1 BRCT mutant M1775K are retrived from
studies. (Birrane, 2006: Tischkowitz et al., 2008). The minor allele frequency (MAF) information of variant rs41293463 (chr17-43051071-A-
C(GRCh38)) was retrived from gnomAD (Genome Aggregation Database).
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TABLE 2 Representative diseases-, phenotypes-, genes-specific variants impact predictors.

Characteristic
category

Name Type
of
variants

Targeted
disease/
phenotype/
gene

#
of
genes

Website Distribution
(web-server/
stand-alone)

First
publication

Programming
language

Algorithm/
model

Features Dataset
for modeling

Classification
index

Classification Additional
data

Publication

Meta-predictor VIPPID (Variant

Impact Predictor

for PIDs)

Missense Primary

immunodeficiency

(PID) diseases

146 https://mylab.

shinyapps.io/

VIPPID/

Web and stand-alone April 2022 Perl, R Conditional

Inference Forest

85 features including

AA, exonic, protein

structural,

conservation, and

20 pre-existing

prediction tools

4,865 disease-associated

variants from Asian Primary

Immunodeficiency Diseases

(RAPID) database, HGMD

and ClinVar; 4,237 neutral

variants from gnomAD

Classifier Pathogenic/non-

pathogenic

26 reviewed P/LP

variants of known PID

pathogenic genes from

1318 patients cohort

and 39 validated in-

house variants

Fang et al. (2022)

Meta-predictor CanPredict Missense Cancer — http://www.

canpredict.org/or

http://www.cgl.

ucsf.edu/

Research/

genentech/

canpredict/, both

are not accessible

— May 2007 R RF SIFT, Pfam-based

LogR.E-value and GO

Similarity Score

(GOSS) metrics

— Classifier Likely cancer/likely

non-cancer/not

determined

— Kaminker et al.

(2007)

Meta-predictor PolyPhen-HCM Missense Hypertrophic

cardiomyopathy

6 http://genetics.

bwh.harvard.

edu/hcm/

Pre-computed results February 2011 — Naïve bayes

classifier

Prediction scores,

protein structure

comparison score

74 curated variants from

literitures and manually

classified by Laboratory for

Molecular Medicine

standard variant-assessment

pipeline (41 pathogenic,

26 benign)

Classifier Pathogenic/benign/no

call

— Jordan et al.

(2011)

Meta-predictor Cadioboost Missense Cardiomyopathies and

arrhythmias

22 https://www.

cardiodb.org/

cardioboost/

Pre-computed results October. 2020 R 2 Adaptive Boosting

(Adaboost)

classifiers

76 functional features CM datasets: 356 rare P/LP

variants from 9,007 clinical

CM patients, 302 rare

missense variants in CM

genes from 2,090 healthy

controls. Inherited

arrhythmia dataset: 252 P/

LP in arrhythmia-associated

genes from ClinVar, 237 rare

missense variants in

arrhythmia genes from

2,090 healthy controls

Pathogenicity score Disease-causing/

VUS/Benign

4 datasets from

ClinVar, HGMD,

Oxford Medical

Genetics Laboratory

(OMGL), a large

registry of HCM

patients, SHaRe

Zhang et al. (2021)

Multiple features GENESIS

(GENe-specific

EnSemble grId

Search)

Variants of

uncertain

clinical

significance

Catecholaminergic

polymorphic

ventricular

tachycardia and long

QT syndrome (LQTS)

4 https://github.

com/rachellea/

medgenetics

Stand-alone and pre-

computed results

March 2022 Python Logistic regression

and multilayer

perceptron model

8 kinds of features

including AA features,

domain, conservation,

rate of evolution,

signal-to-noise ratio,

and a position-specific

scoring matrix (PSSM)

score

717 pathogenic variants and

3,164 benign variants

curated from literiture

Probabilities of

pathogenicity

Pathogenic/VUS/

benign

925 VUS classified

according to ACMG

Draelos et al.

(2022)

Multiple features CACNA1F-vp Missense X-linked incomplete

Congenital Stationary

Night Blindness

(iCSNB)

1 https://github.

com/

shalawsallah/

CACNA1F-

variants-analysis

Stand-alone April 2020 Python Logistic regression

model

Variant-level features

and structural features

72 disease-implicated from

HGMD or MGDL database,

322 benign variants from

gnomAD

Probabilities of

pathogenicity

Pathogenic/benign - Sallah et al. (2020)

Optimized PON-P2 PON-MMR2 AA

substitution

Mismatch

repair (MMR)

4 http://structure.

bmc.lu.se/PON-

MMR2/

Web and stand-alone September 2015 R RF 5 features: sequence

conservation, physical

and biochemical

properties of AA

109 pathogenic, 99 neutral,

354 VUS from InSiGHT

database and VariBench

Probabilities of

pathogenicity

Pathogenic/VUS/

benign

354 VUS dataset Niroula and

Vihinen, (2015)

Optimized MAPP CoDP

(Combination of

Different

Properties of

MSH6 protein)

Missense Lynch syndrome (LS) 1 http://cib.cf.ocha.

ac.jp/CoDP/

Web April 2013 — Logistic regression

model

MSA, phylogenetic tree,

structral properties,

MAPP, SIFT,

PolyPhen2

294 missense variants from

InSiGHT, MMRUV,

UniProt, dbSNP, ESP,

HapMap Project, 1KGP and

literature

Probabilities of

pathogenicity

Likely LS/Unlikely LS 260 unclassified

variants dataset

Terui et al. (2013)

Meta-predictor with

MAF as features

DvPred nsSNVs Genetic hearing

loss (HL)

157 https://github.

com/WCH-IRD/

DVPred/tree/

main/DVPred_

score

Stand-alone and pre-

computed results

February 2022 Python Gradient boosting

decision tree

(GBDT)

65 features include

conservation scores,

prediction scores,

MAF, gene intolerance

scores and other

features

1,318 P/LP and 4,628 B/LB

from China Deafness

Genetics Consortium

(CDGC), Deafness Variation

Database (DVD), ClinVar,

HGMD

DvPred score Deleterious/neutral 463 pathogenic and

454 benign variants

from new version of

CDGC and ClinVar

Bu et al. (2022)

(Continued on following page)
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4 Application

In-silico approaches combined mathematical strategies with

expert opinion allows researchers to analyze the biological

meaning of genetic data efficiently and economically

(Trisilowati and Mallet, 2012). In-silico predictors on variant

effect aids in genome interpretation. The prediction-based

categorization provides insight into variant characterization

and prioritization.

Regards to large-scale population study, in silico predictors

aid in variant classification for pattern overview and comparison

at subpopulation level. For example, Palmer et al. (2022)

subdivided missense variants by SIFT and

PolyPhen2 prediction in research on bipolar disorder (BD)

and revealed an obvious enrichment in ultra-rare harmful

missense variation outside of confined missense areas,

particularly in bipolar II disorder (BD2). This observation

contrasted with the findings in schizophrenia cases (Singh

et al., 2022) of enrichment within constrained missense

regions. The authors speculated this signal may capture

something distinct to mood disorders relative to psychotic

disorders (Palmer et al., 2022).

For large-scale population, in silico predictors also

facilitate the detection of variant-level signals under

natural-selection for those living in extreme environments

or with a diverse geographic distribution. Deng et al. (2019)

ranked variants by calculating the functional importance

score (FIS) from four in silico predictors. Based on the

ranking of adaptive genetic variants, they revealed a seldom

studied gene, TMEM247 with a missense variant rs116983452,

to be the most-differentiated functional variant identified

between Tibetan and non-Tibetan populations (Deng et al.,

2019). When studying non-homogeneous Taiwanese Han

population, integrated selection of allele favored by

evolution (iSAFE) was incorporated with the CADD

functional impact score to identify 16 natural-selection

signals by geographic distribution that were unambiguously

localized to 5 single genes (Lo et al., 2021). Meanwhile, in the

western Roma population, Font-Porterias et al. (2021)

categorized missense variants based on GERP,

PolyPhen2 and CADD, revealing significant difference in

common deleterious variant portion between Roma and

non-Roma population. Furthermore, runs of homozygozity

(ROH), which are continuous homozygous regions of the

DNA sequence, exhibit ancestry-specific patterns of

accumulation of deleterious homozygotes.

In addition to characterization for population-level study,

predictors have also been widely used for prioritization of

disease-causing candidates in case-control or pedigree studies,

finally leading to the identification of genotype-phenotype

association. There are commonly two strategies for variant

prioritization in which predictors help. Several frameworks

and platforms are listed in Table 3.T
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TABLE 3 Representative prioritization frameworks and tools.

Characteristic
category

Name Type
of Targeted
variants*

Website Distribution
(web-server/
stand-alone)

First
publication

Last
update

Programming
language

Algorithm/modules Input
type

Dataset
for modeling

Publications

User-defined rule-

based

VCF.Filter SNVs, indels https://biomedical-

sequencing.at/VCFFilter/

Web and stand-alone July 2017 — Java Filter cohort, prioritize on

pedigree and search variant in

cohort modules

VCF files, targeted

regions, cohort allele

frequencies, pedigree

information

— Muller et al. (2017)

User-defined rule-

based

BiERapp SNVs, indels,

CNVs,

MNVs, SVs

http://bioinfo.cipf.es/apps-

beta/bierapp/2.0.0/#home

Web and stand-alone April 2014 — HTML5 and JS CellBase annotation, consecutive

filtering strategy

Multi-sample VCF

files

— Aleman et al.

(2014)

User-defined rule-

based

KGGSeq SNVs, indel,

CNVs

http://pmglab.top/kggseq/ Stand-alone January. 2012 1 January

2022

Java 5 major modules: quality control,

filtration, annotation, pathogenic

prediction and statistic tests

VCF files, pedigree

information

7,296 disease-causing variants from

OMIM and 48,089 neutral variants

Li et al. (2012); Li

et al. (2017)

User-defined rule-

based

VPOT (variant

prioritization ordering

tool)

SNVs, indel https://github.com/VCCRI/

VPOT/

Stand-alone November. 2019 27 October

2021

Python 2 steps: prioritization of variants

based on user-defined parameters,

post-processing of variant priority

ordered list

ANNOVAR

annotated VCF or

TXT files,

inheritance model

— Ip et al. (2019)

ACMG guideline

based

TAPES SNVs, indel https://github.com/a-xavier/

tapes

Stand-alone October. 2019 — Python Bayesian classification framework VCF files — Xavier et al. (2019)

ACMG guideline

based

InterVar SNVs, indel https://github.com/WGLab/

InterVar, http://wintervar.

wglab.org/

Web, stand-alone and

pre-computed results

February 2017 13 June 2022 Python Automated or manually scoring

system. Manual review and

adjustment on specific criteria

Annotated or

unannotated VCF

files

— Li and Wang,

(2017)

ACMG guideline

realted

VarFish SNVs, indels https://varfish-kiosk.bihealth.

org/, https://github.com/

bihealth/varfish-server

Web and stand-alone July 2020 June 2022 Python Quality control, database- and

user-based annotation, filtering

interface, joint filtering of multiple

cases

VCF files, optional

pedigree information

- Holtgrewe et al.

(2020)

Phenotype-driven Exomiser SNVs, indels https://www.sanger.ac.uk/

tool/exomiser/

Stand-alone November 2015 November

2021

Java Filtering and Prioritization based

on logistical regression model.

Four prioritization method

include PHIVE, PhenIX,

ExomeWalker, hiPHIVE.

VCF files, HPO

terms, optional

pedigree information

— Smedley et al.

(2015)

Phenotype-driven eXtasy nsSNVs https://extasy.esat.

kuleuven.be/

Web and stand-alone September 2013 — Ruby RF VCF files, HPO

terms

24,454 disease-causing nsSNV from

HGMD associated with 1,142 HPO

terms. Control datasets: common

polymophisms and rare variants

from 1KGP, rare variants in in-

house control samples

Sifrim et al. (2013)

Phenotype-driven AMELIE (Automatic

Mendelian Literature

Evaluation)

Missense,

stopgain, splicing,

indels, duplication

https://amelie.stanford.edu/ Web and stand-alone May 2020 May 2021 — Natural language processing

(NLP) and logistic regression

classifier

VCF files, HPO

terms

A set of 681 simulated patients using

data from OMIM, ClinVar and

1KGP

Birgmeier et al.

(2020)

Phenotype-driven Phen-Gen Missense,

nonsense, splice

site and indels

https://github.com/pkuerten/

phen-gen

Stand-alone September 2014 — Perl Random walk–with–restart

algorithm, Bayesian framework

based on genotype and phenotype

data

VCF files, HPO

terms

HGMD 2011.4 datasets Javed et al. (2014)

Phenotype-driven LIRICAL (LIkelihood

Ratio Interpretation of

Clinical

AbnormaLities)

SNVs, indels https://github.com/

TheJacksonLaboratory/

LIRICAL

Stand-alone September 2020 September

2021

Java Likelihood-ratio VCF files, HPO

terms

— Robinson et al.

(2020)

Phenotype only Phrank (phenotype

ranking)

— https://bitbucket.org/

bejerano/phrank/src/master/

Stand-alone February 2019 — Python Boolean Bayesian network HPO terms Knowledgebase of gene-disease-

phenotype relationships, HPO-A

Jagadeesh et al.

(2019)

Phenotype only PhenoRank — https://github.com/

alexjcornish/PhenoRank

Stand-alone June 2018 — Python Phenotypic similarity measured by

simGIC, gene scores calculation by

random walk with restart (RWR)

method

HPO terms 5,685 unique associations between

4,729 diseases and 3,713 genes from

ClinVar, OMIM and UniProtKB

Cornish et al.

(2018)

(Continued on following page)
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First, empirical criteria are used to filter variations. With

high quality variants, many studies (Ma et al., 2013; Blue et al.,

2014) performed prioritization based on in silico predictions,

MAF in population database and control groups, inheritance

pattern, and functional effect. By this method, less than

10 variants are distilled out of hundreds of thousands

obtained from WES analysis. Following the validation of

orthogonal assays (e.g., Sanger sequencing), true positive

causal candidates will be examined for the functional effect

on protein in vitro and/or in vivo. The relationship between

variants-phenotype is therefore thoroughly investigated.

Several user-friendly rule-based frameworks (Coutant et al.,

2012; Li et al., 2012; Aleman et al., 2014; Muller et al., 2017)

have been built to make the filtering procedure easier to

implement. Researchers can set their own criteria and get

the findings in readable files with detailed annotation

information. The prioritization can also be supplemented

with adoption of consensus recommendations, such as

ACMG/AMP standards and guidelines (Richards et al.,

2015). The guideline includes a comprehensive set of

definitions and criteria for variation interpretation, ranging

from standardized nomenclature to evidence-based rating

yielding a five-tier terminology system outcome. Results

from in silico predictors are accounted as “supporting”

evidence for benign or pathogenic classification. Some

automatic tools (Li and Wang, 2017; Xavier et al., 2019)

have also been developed for variant classification based on

the guidelines, although the manual classification by

professional geneticists would be deemed as the golden

standard.

The second strategy refers to phenotype-driven

frameworks, which combine phenotype and variants data

for prioritization and interpretation. Clinical diagnosis

would be straightforward when the disease is known.

However, before the identification of candidate disease, the

procedure to explain a set of clinical features is challenging

due to the absence or presence of unrelated features and

various degrees of specificity (Kohler et al., 2009). To

extract standardized and normalized phenotypic

terminologies from sparse clinical abnormalities in case

studies, some tools like Phenomizer (Kohler et al., 2009)

and Doc2HPO (Liu et al., 2019) are recommended to map

the clinical symptoms to the list of known disorders and

estimate the significance of each disease match. Prediction

scores from in silico predictors are integrated in this kind of

framework as “pathogenicity” or “deleteriousness” features.

Most of phenotype-driven tools (Sifrim et al., 2013; Javed

et al., 2014; Smedley et al., 2015; Birgmeier et al., 2020;

Robinson et al., 2020) require variant files and HPO terms

as input, while some tools (Cornish et al., 2018; Jagadeesh

et al., 2019; Zhao et al., 2020) require only HPO terms. Yuan

et al. (2022) investigated causal-gene prioritizing performance

of both types on two benchmark datasets in a recentT
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comparative study and revealed that former ones performed

better overall than latter ones. Their results also indicated the

complementarity of multiple phenotype-driven tools towards

a viable integrated strategy may improve diagnostic efficiency

(Yuan et al., 2022).

5 Discussion

In this review, we firstly summarized the database resources

frequently used during predictor development. We then

discussed the rational, necessity and limitations for the newly

categorized predictors: homologous sequence-based, structural-

based, combination of sequence and structural, meta-predictors,

population-based, and gene-, phenotype-, disease-specific

predictors. Predictor performance as well as their limitations

and possible remedies were then outlined. The application of the

predictors in real studies was finally presented demonstrating

their efficient assistance in variant characterization and

prioritization, as well as the discovery of genotype-phenotype

association.

When building predictors, unambiguous labeled datasets are

critical. Avoiding overlapping and contradicting data, as well as

balancing the positive-negative ratio in training and validation

datasets, will definitely minimize the negative influence of

circularity. Further examination on the collinearity between/

among feature variables will facilitate the optimization of

prediction models, even though some algorithms are literally

not affected.

Among the predictors, meta-predictors outperform others in

general; however, their prediction performance is considerably

discounted in some disease-specific datasets, raising concern

about their applications especially in clinical settings

(Schiemann and Stowell, 2016; Mahmood et al., 2017).

Employment of disease-, gene-, phenotype-specific predictors

can to an extent solve the above issue. When selecting predictors

for a particular study, efforts should be given on screening

whether the genes and phenotype predictor calibrated

perfectly matching your research, and understanding the

scope and predictive performance of each predictor. On the

other hand, we look forward to more specialized predictors

sculpted for a variety of phenotypes covering both common

and rare diseases.

According to Variation Ontology (VariO) (Vihinen,

2014), variant impacts on protein level can be annotated

with effects on function, structure and property. Variants

impact on protein functional or property effects can be

classified as follows: abundance, which includes gene

dosage, expression, degradation and mis-localization;

activity, which includes enzymatic, kinetic and regulation;

enzymatic specificity, and molecular affinity (Vihinen, 2021).

Most of above-mentioned predictors computed the possibility

of pathogenic effect on protein function and structure in a

broad range, rather the effects on protein abundance, activity

or affinity properties separately. This may indicate a

challenging future orientation of variant predictors

development.

The correlation between variants pathogenic prediction on

protein function or structure and abnormal clinical outcomes

are validated by experimental facts at the current stage. For

certain phenotypes, an evident enrichment of deleterious

variants in a set of disease-related genes, such as the

increased mutational burden in essential genes in autism

spectrum disorder (Ji et al., 2016), WNT signaling genes in

myelomeningocele (Hebert et al., 2020), a set of 5 genes in

epilepsy (Leu et al., 2015). The gap between observed higher

burden genes and clinical phenotype is then bridged by

functional or mechanical experimental studies. For example,

meiocytes with pathogenic mutation p.S167L in HSF2BP found

in premature ovarian insufficiency (POI) patients from a

family, showed a reduced number of foci formed by the

recombinases RAD51/DMC1, leading to crossover defect,

which provided an insight into the molecular mechanism of

mutation in POI and subfertility (Felipe-Medina et al., 2020).

Currently, variant impact predictors are insufficient for

indicating molecular mechanism of pathogenicity. However,

the advancement of protein structure prediction may assist the

interpretation of pathogenic variants since structural

information gives useful insights in evaluating variant impact

on protein or biological systems (Diwan et al., 2021).

Impacts of mutations on protein synthesis includes

transcriptional and translational influences. For SNVs, the

impact on transcription involves in changes in transcript

sequence and influence in gene regulation (Haraksingh and

Snyder, 2013). Tools for predicting impact on gene regulation

have been timely and systematically reviewed by other studies (Li

et al., 2015; Ohno et al., 2018; Rojano et al., 2019; Canson et al.,

2020). In terms of translation, SNVs-induced amino acid

substitution causes protein structure and function

abnormalities, and the prediction methods have been explored

in this study. The deeper association between SNVs for protein

folding and post-translation modification is still being

investigated.

With the development of a cutting-edge structure prediction

tool, AlphaFold2, the unstructured human protein narrowed

down to less than 30% (Porta-Pardo et al., 2022). However,

examples showed that AlphaFold2 was not capable for predicting

protein structure modification caused by pathogenic mutations,

particularly those having experimentally proven destabilizing

effect (Buel and Walters, 2022). The reasons for this

limitation may relate to the bioinformatics and physical

methodologies utilized in modeling, as well as the resources

from protein sequence and PDB structure data employed,

instead of the fundamental driving forces of protein folding

(Jumper et al., 2021; Buel and Walters, 2022). The AlphaFold

team is presently considering solutions for new mutations, which
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may give better prediction on unfolding to folding state, based on

protein physics instead of sequence evolutionary (Callaway,

2022). We anticipate that its success will usher in a new age

of human genetic research, including the acceleration of in silico

functional and mechanical genotype-phenotype association

investigations.

Finally, although the variant effect predictors greatly help

the genomic interpretation, end-users should keep in mind

that the predictor’s role is only an assistance to clinical

diagnosis, and merely a starting point (Eilbeck et al.,

2017). The unequal relationship between predicted

damaging effect and pathogenicity warns their usage. In

addition, under some circumstances, the predicted scores

overstating the effect of uncommon mutations, will cause

inflated estimation affecting the specificity and sensitivity

(Lanktree et al., 2018). Therefore, experimental validations,

the golden standard in variant impact evaluation, are still

indispensable.
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