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Background: The function and features of long non-coding RNAs (lncRNAs) are

already attracting attention and extensive research on their role as biomarkers

of prediction in lung cancer. However, the signatures that are both related to

genomic instability (GI) and tumor immune microenvironment (TIME) have not

yet been fully explored in previous studies of non-small cell lung cancer

(NSCLC).

Method: The clinical characteristics, RNA expression profiles, and somatic

mutation information of patients in this study came from The Cancer

Genome Atlas (TCGA) database. Cox proportional hazards regression

analysis was performed to construct genomic instability-related lncRNA

signature (GIrLncSig). Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses were performed to

predict the potential functions of lncRNAs. CIBERSORT was used to

calculate the proportion of immune cells in NSCLC.

Result: Eleven genomic instability-related lncRNAs in NSCLC were identified,

then we established a prognostic model with the GIrLncSig ground on the

11 lncRNAs. Through the computed GIrLncSig risk score, patients were divided

into high-risk and low-risk groups. By plotting ROC curves, we found that

patients in the low-risk group in the test set and TCGA set had longer overall

survival than those in the high-risk group, thus validating the survival predictive

power of GIrLncSig. By stratified analysis, there was still a significant difference

in overall survival between high and low risk groups of patients after adjusting
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for other clinical characteristics, suggesting the prognostic significance of

GIrLncSig is independent. In addition, combining GIrLncSig with TP53 could

better predict clinical outcomes. Besides, the immune microenvironment

differed significantly between the high-risk and the low-risk groups, patients

with low risk scores tend to have upregulation of immune checkpoints and

chemokines. Finally, we found that high-risk scores were associated with

increased sensitivity to chemotherapy.

Conclusion:we provided a new perspective on lncRNAs related to GI and TIME

and revealed the worth of them in immune infiltration and immunotherapeutic

response. Besides, we found that the expression of AC027288.1 is associated

with PD-1 expression, which may be a potential prognostic marker in immune

checkpoint inhibitor response to improve the prediction of clinical survival in

NSCLC patients.

KEYWORDS

non-small cell lung cancer, long non-coding RNA, genomic instability, immune
infiltration, prognosis

Introduction

As reported by the Global Cancer Statistics 2020, lung

cancer (LC) has maintained a high incidence and mortality

rate worldwide over the past decade (Sung et al., 2021).

Among LC, non-small cell lung cancer (NSCLC) has the

highest incidence rate of nearly 85%, and occurs

particularly in non-smoking people, women and Asians.

Rapid development and widespread availability of targeted

therapy and immunotherapy in the field of NSCLC have

improved the prognosis and prolonged life of patients with

advanced diseases (Alexander et al., 2020). For this reason,

Programmed death 1 (PD-1) or programmed death-ligand 1

(PD-L1) immune checkpoint inhibitors (ICIs) were

recommended as the standard first-line therapy for most

advanced NSCLC patients based on data from clinical

studies (Borghaei et al., 2015; Antonia et al., 2017;

Rittmeyer et al., 2017; Gandhi et al., 2018). Objective

response rates to ICIs in patients with NSCLC range from

17% to 21%, and major responses were durable (Topalian

et al., 2012; Garon et al., 2014). However, understanding the

key molecules for the efficacy of PD-(L) 1 inhibitors is one of

the most important challenges. In addition, an objective

response rate of 29% was observed in the group having a

higher tumor mutational burden (TMB) in advanced solid

tumor patients when receiving the PD-1 blockade

pembrolizumab as monotherapy (Marabelle et al., 2020).

Nevertheless, some non-responders to ICIs have also been

reported in these patients, and during ICI-based

immunotherapies potential adverse events as well as

increased costs were inevitable. This emphasizes the great

need for innovative biomarkers to explore the effectiveness of

immunotherapy.

The hallmarks of cancer comprise ten biological capabilities,

including maintaining proliferation signals, inducing

angiogenesis, activating invasion and metastasis, promoting

tumor-inflammation, achieving replicative immortality, and

evading immune destruction, among others. Notably, the basis

of them is GI (Hanahan and Weinberg, 2011). A large-scale

prospective clinical observational study showed that GI leads to

mutations, somatic copy number alterations, and epigenomic

alterations that generate phenotypic variation and intratumoral

heterogeneity (Bailey et al., 2021). GI is an important driver of

cancer evolution as well as a predictor of poor prognosis in

NSCLC (Jamal-Hanjani et al., 2017). Establishing the

relationship between GI, degree of intratumor heterogeneity,

and clinical outcome could improve prognostic prediction

including treatment response, decipher antitumor response

and drug resistance, and guide future patient stratification and

combination therapy (Bailey et al., 2021). Although molecular

driver events such as EGFR, TP53, KRAS, and BRCA1mutations,

as well as GI, are already reported to be associated with survival

and drug resistance (Feng et al., 2015), clear perception of their

relationship with the clinical outcomes remains to be an unmet

need in NSCLC. GI and increased somatic TMB have been

reported to be correlated with alterations in DNA damage

response and repair (DDR) genes, possibly due to

enhancement of immunogenicity of DDR genes by increasing

tumor-specific neoantigen load (Rizvi et al., 2015; Mouw et al.,

2017; Chae et al. 2019b). It has been suggested in the literature

that alterations in DDR gene may not only boost tumor immune

recognition also tumor targeting through the way of neoantigen-

independent, for example, promoting innate immune via the

mediation of stimulator of interferon genes pathway (Ablasser

et al., 2013; Barber, 2015; Parkes et al., 2017). Furthermore,

cumulative GI can generate tumor neoantigens which might
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trigger immune infiltrating cells and result in spontaneous anti-

tumor immune effect (Desrichard et al., 2016).

Tumor immune microenvironment (TIME) consists mainly

of myeloid cells, lymphocytes and some other innate immune

cells. The study for comprehensive genomic and immunological

characterization of Chinese NSCLC patients demonstrated that

tumor-infiltrating lymphocytes (TILs) were obvious in NSCLC

and played important roles in suppression and promotion of

tumor development (Zheng et al., 2017; Zhang et al., 2019).

Immune infiltrates, as the major constituent in the tumor

microenvironment (TME), has been shown to affect tumor

development and immunotherapeutic responses (Zhang and

Zhang, 2020). A meta-analysis of 29 trials including

86 ,000 patients indicated that a high level of CD8+ cells

infiltration was linked to better outcomes among LC patients

(Geng et al., 2015). There is a certain link between GI and TIME

in NSCLC, which may contribute to predict the prognosis and

need more acquaintance.

Long non-coding RNAs (lncRNAs), a set of non-coding

RNAs consisting of >200 nucleotides, is the modulator of GI

from chromosomes to DNA bases in tumor development by

affecting aneuploidy formation and telomere length, regulating

chromatin loop structures and DNA damage and repair (Guo

et al., 2021). LncRNA NORAD preserves genomic stability by

segregating PUMILIO proteins and regulates both ploidy and

chromosomal stability directly (Lee et al., 2016; Munschauer

et al., 2018). The role of lncRNAs in different tumor has also

received in-depth investigations. Some lncRNAs have been found

to involve in promoting and inhibiting the LC cell growth (Zhang

et al., 2016; Jiang et al., 2021b), for example, LNC

CRYBG3 interacting with Bub3 resulted in aberrant mitosis

which led to aneuploidy and then promoted the development

of NSCLC (Guo et al., 2021b). For another, accumulating

evidence suggests that lncRNAs exert important effects in

several stages of tumor immunity from antigen release to

killing cancer cells. (Yu et al., 2018). And multicellular

functions of lncRNAs are very pervasive in the TIME via

cell–cell interactions (Park et al., 2022). For illustration,

NEAT1 and LUCAT1, which are implicated in poor prognosis

in NSCLC, perform functional actions in diverse types of

immune cells (Sun et al., 2016; Agarwal et al., 2020; Xing

et al., 2021). The involvement of lncRNAs in the occurrence

and development of LC have attracted extensive attention. More

and more studies have explored lncRNA signatures associated

with GI in lung cancer, suggesting that GI-associated lncRNAs

might be molecular biomarkers of prognosis. However, the

biological signatures that are both related to GI and TIME in

NSCLC patients have rarely been reported in these studies.

In this study, we identify the somatic mutator-derived and

immune infiltrates related lncRNA signatures of GI, exploring

the association between lncRNA signatures, GI and TIME, with

the purpose of predicting the clinical outcomes and evaluating

the treatment in NSCLC patients more effectively.

Materials and methods

Data collection

We downloaded clinical characteristics, RNA expression

profiles and somatic mutation of patients with lung

adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC)

from The Cancer Genome Atlas (TCGA) database (https://portal.

gdc.cancer.gov/). Transcriptome data were distinguished based on

mRNA and lncRNA profiles. We downloaded 999 samples in total.

In addition, we also collected somatic mutation profiles of

1,053 patients and clinical characteristics of 990 patients from

TCGA database for further independent validation analysis.

According to the sample names, we matched data from these

three components and removed patients with no crucial clinical

factors or with a survival time of less than 1 month. As a result,

further analysis was conducted on 418 samples. Finally, a total of

950 samples with complete clinical features, RNA expression profiles

and somatic mutation information were retained for our analysis.

Using annotations from GENCODE (http://www.gencodegenes.

org), lncRNA and mRNA transcript profiles were generated.

Since all data were obtained from the TCGA database and are

open to the public, there was no need to publish an informed

consent form.

Identification of genomic instability-
associated long non-coding RNAs

To identify genomic instability-associated lncRNAs, we

arranged patients in order of most to least somatic mutations.

Patients in the top 25%were referred to as the genomic instability

(GU) group (n = 253) and the last 25% as the genomic stability

(GS) group (n = 231). We used significance analysis of limma R

package (3.52.2) to compare the expression of lncRNAs between

the two groups, differentially expressed lncRNAs (fold change

greater than 1.5 or less than -1.5, adjusted p < 0.05) were defined

as genomic instability-associated lncRNAs. According to the

expression levels of the GI-related lncRNAs, patients were

classified into two clusters: the genomically stable-like (GS-

like) cluster and the genomically unstable-like (GU-like)

cluster by the hclust function in R software (4.2.0). We made

comparisons of the somatic mutation counts and the expression

of cancer biomarkers in both clusters by the Mann-Whitney U

test. Statistical criteria were considered as p value < 0.05.

Functional enrichment analysis

To predict the potential functions of GI-related lncRNAs, we

linked the mRNA and lncRNAs by calculating the Pearson

correlation coefficient using “limma” package (3.52.2) of R

software. The top 10 mRNAs most correlated with each GI-
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related lncRNA were selected as target genes to construct a

lncRNA-mRNA co-expression network. Using the

“clusterProfiler” package (4.4.4) in R/Bioconductor, we

performed Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses on

mRNAs. Statistical criteria were considered as adjusted p

value < 0.05.

Establishment of genomic instability-
related long non-coding RNAs signature

After combining the RNA expression data of GI-related

lncRNAs with survival time, all patients were assigned to train

set and test set randomly, and compared the clinical features of

the two sets. Cox proportional hazards regression analysis

performed by the “survival” package (3.4–0) was used to

analyze the relevance between GI-related lncRNAs expression

and overall survival. According to the prognosis-related lncRNAs

found in the train set, genomic instability-related lncRNA

signature (GIrLncSig)was identified as prognostic model. The

formula for calculating the GIrLncSig risk score was as follows:

GIrLncSig risk score � ∑
n

i�1
Coefficient (lncRNA)i × exp(lncRNA)i

Where “Coefficient (lncRNA)i,” 1br of interferon genes pathway.

“exp (lncRNA)i,” and “n” represent the estimated multivariable

Cox regression coefficient, expression level, and the number of

prognostic lncRNAs, respectively. According to this formula, the

risk scores of all samples in the train, test, and the TCGA sets

were hence calculated. The median score of the samples in the

train set was used as a risk cutoff to classify all patients into the

high-risk group with high GIrLncSig or low-risk group with low

GIrLncSig.

Correlation analysis of genomic
instability-related long non-coding RNA
signature with tumor immune infiltration

Patients with scores above the median value of the risk score

in the train set were assigned to high-risk groups and vice versa to

low-risk groups. Next, the level of 22 immune cell infiltrates in

NSCLC cancer samples was quantified using the “CIBERSORT”

FIGURE 1
Diagram of the study’s flow. The TCGA database contains information on a large number of cancer patients, from which we obtain clinical
characteristics, RNA expression profiles and somatic mutation information of NSCLC patients After identifying lncRNAs differentially expressed
between patients in two groups with the top 25% and last 25% mutation counting frequencies, genomic instability-associated lncRNAs were
obtained. Based on genomic instability-associated lncRNAs, we constructed anmRNA-lncRNA co-expression network and performed GO and
KEGG functional enrichment analysis on the mRNAs in the network. Then genomic instability-related lncRNA signature (GIrLncSig) was established
ground on relevant lncRNAs. Patients of train and test set were divided into two risk groups via the computed risk score. Relationship of risk score,
immune infiltration and prediction of drug resistance were analyzed. Verification of the efficiency of the prognostic prediction was completed by
survival analysis, ROC curves and independent validation. GU, genomically unstable; GS, genomically stable; TCGA, The Cancer Genome Atlas
database; GO, Gene Ontology; GSEA, Gene Set Enrichment Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; ROC, receiver operating
characteristic.
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software package based on RNA profiles with a cut-off p

value <0.05. Further analyses explored the relationships

between prognostic risk, somatic mutation and immune cell

infiltration level.

Performance validation of the long non-
coding RNA signature

As a prognostic model, genomic instability-associated

lncRNA signature was analyzed and validated for

performance by a range of methods. First, Kaplan-Meier

curves and log-rank test were used to evaluate overall

survival (OS). Statistical criteria were considered as p

value < 0.05. We further validated the applicability of the

model by stratifying TCGA patients. The accuracy of the

prognostic model was examined based on the area under

the curve (AUC) using time-dependent receiver operating

characteristic (ROC) curve analysis. With the

GSE135222 dataset from the GEO database, external

validation was also conducted to explore whether the

lncRNAs in GIrLncSig could be applied in another

independent dataset for OS prediction and response

prediction to PD-1/PD-L1 inhibitors. Comparing our

signature performance with other published signatures is

done using ROC curves.

Estimating the sensitivity of chemotherapy
and molecular targeted drugs

The IC50 values and sensitivity of chemotherapy and molecular

targeted therapy were compared between the high-risk group and

the low-risk group through the “pRRophetic” package in R.

Statistical analysis

We compared changes in categorical and quantitative data

between groups using the Mann-Whitney U test. It is statistically

significant when the two-tailed p < 0.05. R (4.2.0) executed all the

statistical analysis.

FIGURE 2
Summary of mutation profiles in NSCLC. (A)Waterfall plots showed themutations for each gene in each sample. (B)Co-occurrence andmutual
exclusion of genes with genomic alterations in NSCLC. (C) Missense mutations accounted for the largest proportion of the nine variant mutation
forms in the sample. (D) SNPs were the most frequent of the three variant types in all samples. (E) C > A transition was the most frequent of the six
subclasses of SNPs. SNP: single nucleotide polymorphism.
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FIGURE 3
Identification of lncRNAs associatedwith genomic instability in NSCLC. (A)Differential AS events betweenGUL andGSL groups. (B) Volcano plot
of 496 lncRNAs. (C) Heatmap of unsupervised hierarchical clustering analyses of 997 NSCLC patients. Red dots represent GUL clusters, blue dots
represent GSL clusters. (D) The frequency of somatic cumulative mutations in GUL and GSL group. (E–H) ATM, BRCA1, PDCD1, and EGFR expression
between the GSL group and GUL group. AS, alternative splicing; GUL, genomically unstable-like; GSL, genomically stable-like; GIrLncRNAs,
genome instability-related lncRNAs.

Frontiers in Genetics frontiersin.org06

Yang et al. 10.3389/fgene.2022.982030

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.982030


Result

Landscape of somatic mutation in non-
small cell lung cancer

Figure 1 depicts the study design. We obtained genome-

wide mutation files of 999 NSCLC patients from TCGA

database. Somatic mutations existed in 977 (97.80%)

NSCLC samples. Figure 2 summarized the somatic

mutation information of all samples. Waterfall plot

(Figure 2A) showed that TP53 mutated more frequently

than any other genes accounting for 61%, followed by TTN

(54%), MUC16 (38%), CSMD3 (36%), RYR2 (35%), LRP1B

(30%), USH2A (28%), ZFHX4 (27%), XIRP2 (21%), and

SYNE1 (20%). In Figure 2B, co-occurrence or mutually-

exclusive expression of top 20 mutated genes was

visualized. TTN was significantly concurrent with

alterations in TP53 and CSMD3. As for gene variant

classification, missense mutation was the most frequent

alterations in 9 type variants (Figure 2C). Single

nucleotide polymorphism (SNP) was the more frequent

variant type than insertion or deletion (Figure 2D) and

C>A alterations accounted mostly than other types of SNP

(Figure 2E).

FIGURE 4
. lncRNA-mRNA co-expression network and functional enrichment analysis. (A) Co-expression network of mRNAs and lncRNAs, with red dots
representing lncRNAs and blue dots representing mRNAs. (B) Bubble plot of GO analysis of differential AS events. (C–D) KEGG analysis plot of
lncRNA-correlated PCGs. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PCGs, protein-coding genes.
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Identification of long non-coding RNAs
associated with genomic instability in
non-small cell lung cancer

After counting and ranking the somatic mutations in

NSCLC samples, we defined the 25% of samples with the

most somatic mutations (n = 253) as the genomic instability

(GU) group and the 25% with the least (n = 231) as the

genomic stability (GS) group. Using the limma R package,

totally 496 lncRNAs with differential expression were selected

as genomic instability-related lncRNAs (p < 0.05, Figures

3A,B). Among them, in GU group, the expression of

273 lncRNAs were upregulated, while the number of

downregulated lncRNAs was 223 (Supplementary Table

S1). Through unsupervised hierarchical clustering analysis,

all NSCLC patients were clustered into the GS-like group and

the GU-like group (Figure 3C). The frequency of somatic

cumulative mutations in the GU-like group was evidently

greater than the GS-like group (p < 0.001, Figure 3D).

After that, we compared the expression of cancer

biomarkers ATM, BRCA1, PDCD1, and EGFR gene in the

two groups. In Figures 3E−H, the expressions of ATM and

PDCD1 in the GU-like group were observably lower (p <
0.001), the expression was higher for BRCA1 and EGFR (p <
0.001). To sum up, the 496 lncRNAs could be recognized as

candidate GU-lncRNAs.

Construction of long non-coding RNA-
mRNA Co-expression network and
functional enrichment analysis

The top 10 protein-coding genes (PCGs) most associated

with individual lncRNAs were identified as lncRNA-

correlated PCGs by Pearson correlation coefficients. We

constructed an lncRNA-mRNA co-expression network by

linking PCG and lncRNA associated with lncRNA

(Figure 4A). GO analysis revealed that correlated mRNAs

are mainly enriched in the process of immune response,

including lymphocyte proliferation, regulation of

mononuclear cell proliferation, and cellular response to

interferon gamma (Figure 4B). The result of KEGG-GSEA

indicated that the PCGs of GS-like group were enriched in

pathways associated with tumor microenvironment including

PPAR signaling pathway, cytokine-cytokine receptor

interaction, and cell adhesion molecules (CAMs),

meanwhile PCGs of GU-like group were enriched in

pathways associated with genomic instability consisting of

cell cycle, homologous recombination, nucleotide excision

repair and mismatch repair (Figures 4C,D). According to

the GO and KEGG analysis results altered expression of

lncRNA-mRNA co-expression network may affect the

immune system leading to genomic instability in NSCLC.

Exploration of 11-long non-coding RNA-
based prognostic model related to
genome instability

For the reason of investigating the potential prognostic

significance of candidate GU-lncRNAs, 950 NSCLC patients

screened by the TCGA database were randomized into the

train set (N = 476) and test set (N = 474). Table 1 shows the

clinical information of 950 patients in the TCGA database.

The age at diagnosis was 90 years at the maximum and

33 years at the minimum, with a median age of 67 years.

There were approximately 758 (79.79%) stage I-II patients

and 192 (20.21%) stage III-IV patients. TP53 gene

mutation occurred in 642 (67.58%) NSCLC

patients. The baseline clinical data that includes age,

gender, TNM stage, and TP53 mutation status

of two NSCLC patients sets were comparable (p > 0.05,

Table 1).

After univariate Cox proportional hazard regression

analysis, 36 lncRNAs from 496 candidate GU-lncRNAs

were screened as prognostic-related lncRNAs which

showed the greatest correlation with overall survival in

NSCLC patients (p < 0.05, Supplementary Figure S1).

Multivariate Cox proportional hazard regression analyses

identified 11 of 36 candidate lncRNAs (SCAT1,

AC002401.4, AL079303.1, AL121761.1, TM4SF19-AS1,

AC027288.1, AC019117.3, AC079949.2, AC026369.3,

AL355472.2, and MMP2-AS1) as independent prognostic

lncRNAs (Table 2). Then a prognostic model of lncRNA

signatures associated with genomic instability (GIrLncSig)

was established from the coefficient of 11 genomic

instability-related lncRNAs in multivariate Cox analysis

and their expression level with the following calculation

formula:

GIrLncSig risk score

� (0.1743 × SCAT1 expression level)
+(0.0744 × AC002401.4 expression level)
+( − 0.3116 × AL079303.1 expression level)
+( − 0.0916 × AL121761.1 expression level)
+(0.1696 × TM4SF19 − AS1 expression level)
+( − 0.1710 × AC027288.1 expression level)
+( − 0.0533 × AC019117.3 expression level)
+(0.0983 × AC079949.2 expression level)
+( − 0.1876 × AC026369.3 expression level)
+(0.1164 × AL355472.2 expression level)
+( − 0.1812 × MMP2 − AS1 expression level).

In the equation of GIrLncSig, five lncRNAs

(SCAT1AC002401.4TM4SF19-AS1, AC079949.2,

AL355472.2) have positive coefficient, implicating that their

overexpression correlates with shorter survival, while six

lncRNAs (AL079303.1, AL121761.1, AC027288.1,
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AC019117.3, AC026369.3, MMP2-AS1) have negative

coefficient implicating that they are protective factors.

Patients with scores above the median GIrLncSig score of

1.065 in the train set were categorized in the high-risk group

and vice versa in the low-risk group. Low-risk NSCLC patients

survived longer (p < 0.001, log-rank test; Figure 5A). The 1-

year survival prediction ROC curve for GIrLncSig in the train

set had an AUC of 0.681. (Figure 5B). We categorized the

patients in the train set by scores and examined the GIrLncSig

expression levels, the number of somatic mutations and

BRCA1 expression levels in relation to the score

(Figure 5C). The expression level of risky lncRNAs SCAT1,

AC002401.4, TM4SF19-AS1, AC079949.2, AL355472.2 were

upregulated in high-scoring patients, while the protective

lncRNAs AL079303.1, AL121761.1, AC027288.1,

AC019117.3, AC026369.3, MMP2-AS1 were downregulated.

On the contrary, the GIrLncSig in high-scoring patients

showed opposite expression patterns. Comparison analysis

revealed significant differences between the two groups in

somatic mutation counts and BRCA1 expression. Figure 5D

shows that a significantly higher somatic mutation count were

found in patients in the high-risk group. (p = 0.0013,

Figure 5D). Furthermore, high-risk patients also had higher

BRCA1 and EGFR expression levels (p < 0.01, Figures 5E,G).

ATM expression levels were lower in high-risk patients (p =

0.0012, Figure 5F).

TABLE 1 Clinical information for three NSCLC patients sets in this study.

Covariates Type TCGA set Training set Testing set P

(n = 950) (n = 476) (n = 474)

Age ≤65 414 (43.58%) 209 (43.91%) 205 (43.25%) 0.8892

>65 536 (56.42%) 267 (56.09%) 269 (56.75%)

Gender FEMALE 378 (39.79%) 187 (39.29%) 191 (40.3%) 0.8013

MALE 572 (60.21%) 289 (60.71%) 283 (59.7%)

Stage Stage I-II 758 (79.79%) 371 (77.94%) 387 (81.65%) 0.18

Stage III-IV 192 (20.21%) 105 (22.06%) 87 (18.35%)

T T1-2 799 (84.11%) 408 (85.71%) 391 (82.49%) 0.2039

T3-4 151 (15.89%) 68 (14.29%) 83 (17.51%)

M M0 918 (96.63%) 457 (96.01%) 461 (97.26%) 0.3751

M1 32 (3.37%) 19 (3.99%) 13 (2.74%)

N N0 627 (66%) 309 (64.92%) 318 (67.09%) 0.5233

N1-3 323 (34%) 167 (35.08%) 156 (32.91%)

TP53 mutation status With 642 (67.58%) 336 (70.59%) 306 (64.56%) 0.1573

Without 308 (32.42%) 140 (29.41%) 168 (35.44%)

TABLE 2 Multi-variate Cox regression analyses of the 11 of 495 genome instability-related lncRNAs associated with overall survival in NSCLC.

Gene symbol Coefficient Hr HR.95L HR.95H p value

SCAT1 0.17433805 1.190458 1.063636 1.332402 0.002418

AC002401.4 0.07444835 1.07729 1.025628 1.131554 0.002986

AL079303.1 −0.3116204 0.732259 0.566078 0.947227 0.017654

AL121761.1 −0.0916075 0.912463 0.842924 0.987739 0.023514

TM4SF19-AS1 0.16964836 1.184888 1.011517 1.387974 0.035567

AC027288.1 −0.1709556 0.842859 0.700588 1.014021 0.069932

AC019117.3 −0.0533313 0.948066 0.893767 1.005664 0.076348

AC079949.2 0.09829448 1.103288 0.984168 1.236824 0.091756

AC026369.3 −0.1876336 0.828918 0.660027 1.041026 0.106508

AL355472.2 0.11636521 1.123406 0.961696 1.312308 0.142259

MMP2-AS1 −0.1811897 0.834277 0.654248 1.063845 0.14403
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FIGURE 5
Identification of the GIrLncSig that predicts outcome in the train set. (A) Kaplan-Meier estimates of OS for patients predicted by GIrLncSig in the
train set. (B) ROC curves analysis of GIrLncSig over time. (C) LncRNA expression patterns, somatic mutation count and BRCA1 expression in two
groups. (D) Somatic mutation count in two groups. (E) (F) (G) Expression of BRAC1, ATM, and EGFR in two groups. Red stands for the high-risk group
and blue for the low-risk group. GIrLncRNAs, genomic instability-related lncRNAs signature; ROC, receiver operating characteristic.
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Independent validation of genomic
instability-related long non-coding RNA
signature in the non-small cell lung cancer
data set

We computed the GIrLncSig scores for the test set and the

TCGA set, then plotted the ROC curve to validate the survival

prediction capability of GIrLncSig. In the test set, the median risk

score for GIrLncSig was 1.065. In the test set, patients in the low-

risk group had better survival outcomes than those in the high-

risk group (p = 0.023, Figure 6A). Analogous results were also

observed for the entire TCGA set (p < 0.001, Figure 6D).

Figure 6A showed the expression of GIrLncSig, the somatic

mutation count and the expression of BRCA1 in the test set.

There were significant differences in somatic mutation patterns

between high- and low-risk patients. As shown in Figure 6C,

somatic mutation count of patients in the high-risk group is

significantly higher compared to that of patients in the low-risk

group (p = 0.0034, Mann–Whitney U test; Figure 6C).

Significantly higher levels of BRCA1 expression were observed

in the high-risk group. (p < 0.001, Figure 6C).

The prognostic results of the GIrLncSig in the TCGA set were

comparable to those described above. Patients in the TCGA set

were divided into the high-risk group (n = 445) and low-risk

group (n = 505), where patients in the high-risk group had a

shorter median survival than those in the low-risk group

(1.5 versus 1.9 years, p < 0.001, Figure 6D). The 5-years

follow-up survival rate was 11.24% in the high-risk group,

which was lower than the 14.65% of the low-risk patients.

Figure 6E illustrates the expression pattern of GIrLncSig, the

difference in the number of somatic mutations between the two

groups and the expression of BRCA1 in the TCGA samples.

There was a consequential difference in the number of somatic

mutations between the high and low risk groups (p < 0.001,

Figure 6F). The BRCA1 expression levels in the high-risk group

were markedly higher. (p < 0.001, Figure 6F).

Validation of genomic instability-related
long non-coding RNA signature as
prognostic model

To assess whether the GIrLncSig was an independent clinical

variable, multivariate Cox regression analyses were performed on

age, gender, TNM stage and risk score. In the multivariate analyses,

after adjusting for age, gender and TNM stage, we found that

GIrLncSig was remarkably related to overall survival for each set

of data. (Table 3). Except for the GIrLncSig, we found age, gender

and TNM stage, were also significant. Stratified analysis was used to

identify the independence of the prognostic value of GIrLncSig.

First, we divided patients in the TCGA set into female (n = 378) and

male (n = 572) groups, then further classified them into high- or

low-risk group using the GIrLncSig. In both gender patient groups,

overall survival differed significantly between the two groups (p <
0.001, Figures 7A,B).We also stratified patients in the TCGA set into

a younger patients (n = 414) and an older patients group (n = 536)

according to age≤65 years and >65 years, then allocated them to

high- or low-risk group. In the younger patients group and the older

patients group, overall survival differed significantly between the

high- and low-risk groups (p < 0.001, Figures 7C,D). And then, we

stratified all patients by pathological stage, with patients with stage I

or II combined into the early stage group (n = 758) and those with

stage III or IV into the late stage group (n = 192). As for overall

survival, there was a significant difference between the high-risk (n =

341) and low-risk (n = 417) groups in the early phase group. (p <
0.001, Figures 7E). Overall survival also differed significantly in high-

risk group (n = 104) and low-risk group (n = 88) (p < 0.001; Figures

7F). These results indicated that the GIrLncSig is an independent

predictive sign in NSCLC patients and correlates with overall

survival.

As an independent prognostic factor in NSCLC, TP53 is known

to maintain genomic stability, whose mutations are associated with

worse survival. We further tested whether the predictive

performance of GIrLncSig is better than the TP53 mutation

status. As shown in Figures 7G, in the three sets, in the high-risk

group, TP53mutations were significantlymore common than in the

low-risk group. In the train set, a total of 188 patients (79%) in the

high-risk group had TP53mutations, which was significantly higher

than 148 patients (62%) in the low-risk group (p < 0.001). The

number of patients with TP53 mutations detected in the high-risk

group was 143 (69%) compared to 142 (53%) in the low-risk group

in the test set (p < 0.001). In the TCGA set, the number was 334

(75%, high-risk group) and 288 (57%, low-risk group), respectively

(p < 0.001). Figures 7H manifested the survival curves of the

TP53 mutation/GS-like group, TP53 mutation/GU-like group,

TP53 wild/GS-like group and TP53 wild/GU-like group (survival

rate at 5 years 6.67% versus 17.46% versus 11.48% versus 7.14%, p <
0.001).We can deduce that binding to the GIrLncSigmay be a better

predictor of clinical outcome than TP53 mutation status alone.

The difference in immune cell infiltration

Through the CIBERSORT algorithm, discrepancies in the

components of 22 types of tumor-infiltrating immune cells were

identified between high- and low-risk patients in NSCLC.

Figure 8A summarizes the percentage of immune cells

obtained from 950 patients in TCGA. Figure 8B depicts the

discrepancies in immune cell infiltration between the two groups.

As for correlation between immune cells, for high-risk patients,

the proportion of T-cells gamma delta (γδ T-cells), NK cells

resting, mast cells activated, and macrophage M0 was

significantly higher (Figure 8C). Proportions of plasma cells,

T-cells CD4memory resting, T-cells regulatory (Tregs), dendritic

cells resting, monocytes, and mast cells resting were found higher

in low-risk patients (Figure 8D).
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FIGURE 6
Capability validation of the GIrLncSig in the TCGA set. Kaplan-Meier estimation of overall survival for low- or high-risk patients in the test set (A)
and TCGA set (D) as forecasted by the GIrLncSig. The expression of GIrLncSig, the somatic mutation count and BRCA1 expression among the high-
and low-risk groups in the test set (B) and TCGA set (E). Number of somatic mutations and BRAC1 expression in high- and low-risk groups in the test
set (C) and TCGA set (F). Horizontal lines represents median values. The Mann–Whitney U test was used for statistical analysis. GIrLncRNAs,
genomic instability-related lncRNAs signature.
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Immune checkpoint and chemokines
expression in the two risk groups

We examined the exposure of genes associated with tumor-

promoting effects in both risk groups. Gene signatures were

downloaded from Tracking Tumor Immunophenotype website

(http://biocc.hrbmu.edu.cn/TIP/index.jsp). As shown in

Figure 9A, genes associated with tumor-promoting effects

were mostly downregulated in the high-risk group and

upregulated in the low-risk group.

We investigated the expression of immune checkpoints

and chemokines in the high- and low-risk groups. Our results

showed that PDCD1 were downregulated in the high risk

group (p < 0.001, Figure 9B). As well, CTLA-4 and LAG-3

expression was markedly lower (p < 0.01, Figure 9B).

Downregulation of immunosuppressive cytokines (IL15,

IL21, IL10, and IL2) was also found in the high-risk group

(p < 0.01, Figure 9C). Additionally, the expression of immune-

activated chemokines (CCR5, CXCL10, CXCR3,CXCL11,

CXCL9, and CXCL16) was substantially lessened in the

high-risk group than in the low-risk group (p < 0.05,

Figure 9D). These results suggest that low-risk-score

patients tend to develop upregulation of immune

checkpoints and chemokines, resulting in an

immunosuppressive microenvironment.

External validation of genomic instability-
related long non-coding RNA signature
with other long non-coding RNA
signatures

A number of lncRNA signatures for predicting prognosis

in NSCLC have been published recently. Sun published a

lncRNA signature including 7 lncRNAs (Sun et al., 2020a).

Miao developed a predictive signature including 8 lncRNAs

(Miao et al., 2019). Based on ROC curve analyses, the AUCs of

SunGIrLncSig, MiaoGIrLncSig and our GIrLncSig were 0.537,

0.601, and 0.659 (Figure 10A), respectively. The result

suggested that our GIrLncSig may performed better than

the two published lncRNA signatures in terms of OS

prediction.

In order to explore the role of key genes and tumor

immune cells played during prognosis of NSCLC, we

selected one of GIrLncSigs AC027288.1 and one of immune

checkpoints PD1 (PDCD1) for example to performed

correlation analysis between gene expression and GIrLncSig

risk score in TCGA NSCLC samples. The result shows that the

AC027288.1 gene (R = −0.44, p < 0.001, Figure 10B) and

PDCD1 (R = −0.18, p < 0.001) displayed a negative

correlation with risk score, which indicating that

AC027288.1 and PDCD1 might both act as protection in

the prognosis of NSCLC (Figure 10C).

We further investigated the prognostic value of

AC027288.1 from a separate dataset of NSCLC patients

treated with anti-PD-1/PD-L1, GSE135222 (N = 27) on the

GPL16791 Illumina HiSeq 2,500 (Homo sapiens) platform.

Patients with high AC027288 expression levels had better OS,

suggesting that AC027288.1 may have a protective effect,

which was a same result as TCGA dataset. (p = 0.023,

Figure 10E). This result suggests that patients with high

expression levels of AC027288.1 may respond more to PD-

1/PD-L1 inhibitors. We also found that patients with high

levels of PDCD1 expression lived longer, indicating that

PDCD1 may be protective in the prognosis of NSCLC

patients treated with anti-PD-1/PD-L1 (p = 0.043,

Figure 10F).

TABLE 3 Univariate and Multivariate Cox regression analysis of the
GIrLncSig and overall survival in different patient sets.

Variables Univariable model Multivariable model

Hr 95% CI p
Value

Hr 95% CI p
Value

Training set (n = 476)

Age 1.007 0.990–1.022 0.406

Gender 1.211 0.906–1.618 0.195

Stage 1.364 1.179–1.576 <0.001 0.927 0.658–1.304 0.663

T 1.471 1.239–1.746 <0.001 1.390 1.105–1.747 0.005

M 2.003 1.139–3.520 0.016 2.121 0.864–5.205 0.101

N 1.282 1.071–1.533 0.007 1.187 0.873–1.614 0.274

RiskScore 1.726 1.531–1.946 <0.001 1.682 1.485–1.905 <0.001

Testing set (n = 474)

Age 1.020 1.003–1.036 0.015 1.021 1.005–1.038 0.010

Gender 1.139 0.843–1.538 0.397

Stage 1.545 1.314–1.815 <0.001 1.302 0.886–1.913 0.178

T 1.357 1.128–1.633 0.001 1.158 0.914–1.465 0.225

M 2.720 1.331–5.555 0.006 1.464 0.542–3.945 0.452

N 1.461 1.210–1.763 <0.001 1.134 0.797–1.612 0.485

RiskScore 1.055 1.009–1.101 0.017 1.058 1.010–1.108 0.017

TCGA set (n = 950)

Age 1.014 1.002–1.024 0.019 1.017 1.005–1.028 0.004

Gender 1.181 0.959–1.454 0.117

Stage 1.439 1.292–1.602 <0.001 1.177 0.915–1.514 0.203

T 1.410 1.242–1.599 <0.001 1.236 1.053–1.451 0.009

M 2.261 1.453–3.517 <0.001 1.532 0.785–2.988 0.210

N 1.358 1.192–1.545 <0.001 1.155 0.921–1.448 0.212

RiskScore 1.079 1.049–1.108 <0.001 1.082 1.051–1.113 <0.001
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FIGURE 7
Stratification analyses by age, gender and TNM stage and relationship between the GIrLncSig and TP53. Differences in OS between two groups
in female (A) samples and male samples (B); in younger samples (C) and older samples (D); in early-stage samples (E) and late-stage samples (F). (G)
The percentage of TP53 mutation in the two risk groups in the three sets. (H) Kaplan-Meier curve analysis of OS for the four risk groups patients.
GIrLncRNAs, genomic instability-related lncRNAs signature; OS, overall survival.
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FIGURE 8
Landscape of tumor-infiltrating immune cells. (A) Immune status in the two risk groups. (B) Different levels of infiltration of 22 immune cells in
the high- and low-risk groups. (C) (D) Correlation between immune cells in high- and low-risk groups (red squares represent positively correlated,
blue squares represent negatively correlated).

Frontiers in Genetics frontiersin.org15

Yang et al. 10.3389/fgene.2022.982030

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.982030


FIGURE 9
Immune checkpoints and chemokines expression in both risk groups. (A)Heatmap of gene profiles associatedwith tumor-promoting effects of
both groups in the TCGA database. (B) Expression of CTLA-4, LAG3, PDCD1 in two groups. (C) Expression of IL15, IL21, IL10, IL2 in two groups. (D)
Expression of CCR5, CXCL10, CCL20, CXCR3, CXCL11, CXCL9, CX3CL1, and CXCL16 in two groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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Genomic instability-related long non-
coding RNA signature was predictive to
chemotherapy and molecular targeted
therapy response

The relationship between risk score and response to

chemotherapeutic agents and targeted drugs was investigated.

We compared the estimated half-maximal inhibitory

concentrations (IC50) of cisplatin and paclitaxel in low- and

high-risk patients via the pRRophetic algorithm. We have also

used this method to study gefitinib and erlotinib, the first-

generation targeted drugs used to treat NSCLC. We found

that patients in both risk groups had significantly different

sensitivities to gefitinib, erlotinib, paclitaxel, and cisplatin

(Figures 11A−D). This result suggests that high-risk score

associates with increased sensitivity to chemotherapy and

molecular targeted therapy. Thus, this prognostic model is

effective to forecast the sensitivity of NSCLC patients to these

four drugs.

Discussion

GI is a momentous initiating feature of tumors and promotes

tumor progression toward malignancy (Hanahan and Weinberg,

2011). Hereditary cancer susceptibility syndromes, such as Lynch

syndrome, are closely related to mutations in DDR genes, and

preliminary evidence indicating the significance of GI in

tumorigenesis (Li and Martin, 2016). Downregulation or

deficiency of the DDR pathway may entail somatic mutations

or chromosomal rearrangements, which in turn lead to GI and

tumor advancement (Jiang et al., 2021c). DDR genes such as

breast cancer susceptibility gene 1/2 (BRCA 1/2), ataxia-

telangiectasia mutated (ATM), and BRCA1-associated protein

1 (BAP1) were identified germline or somatic inactivation in

63.5% biliary tract cancer patients (Chae et al., 2019a). TIME is

characterized by abnormal blood vessel growth and hypoxia, and

its main components include tumor cells and many immune cells

such as T lymphocytes, dendritic cells, and tumor-associated

fibroblasts (Dai et al., 2017). Tumors can affect the DDR pathway

FIGURE 10
Evaluation of lncRNA signature performance. (A) ROC analyses for GIrLncSig, SunGIrLncSig and MiaoGIrLncSig. (B) Expression analysis of
AC027288.1 in high groups. (C) Expression analysis of PD1 in high groups. (E–F) Independent validation of the GlrLncRNA. Kaplan-Meier curves
showed that OS was worse for patients with low expression levels. GIrLncRNAs, genomic instability-related lncRNAs signature; ROC, receiver
operating characteristic; SunGIrLncSig, Sun lncRNA signature; MiaoGIrLncSig, Miao lncRNA signature; OS, overall survival.
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by TIME (Reynolds et al., 1996). Multiple complex interactions

between cancer cells and TIME in causing tumor development,

and TIME functions in malignant transformation by negatively

regulating genome stability by inhibiting the DDR pathway

(Yuan et al., 2000; Tlsty and Coussens, 2006). The DNA

damage signaling pathway serves an important regulator role

for PD-L1 expression upregulation, as DNA damage can increase

its expression on the cell surface (Vendetti et al., 2018; Permata

et al., 2019). DRR deficiency such as BRCA deletion can

significantly upregulate PD-L1 expression (Sato et al., 2017).

Studies have demonstrated that in NSCLC and advanced

urothelial carcinoma, pathogenic DDR mutations are

associated with improved clinical benefit in patients receiving

PD-(L) 1 inhibitor therapy (Teo et al., 2018; Ricciuti et al., 2020).

Therefore, identifying and characterizing GI and gene mutation

status in cancer is of great significance for novel tumor

immunotherapy strategies. LncRNAs have received

considerable attention for their novel functions in tumor

progression, and their aberrant expression may be an essential

cause of various diseases in humans, thus highlighting the

potential of lncRNAs as diagnostic and prognostic markers

(Yang et al., 2019). The human genome contains thousands of

lncRNAs, among which DNA damage-activated noncoding

RNAs (NORAD, also known as LINC00657) (Elguindy and

Mendell, 2021) and GUARDIN (Sun et al., 2020a) are obligate

in maintaining genomic stability in human cells. However, the

recognition of GI-related lncRNAs for use as diagnostic and

prognostic markers is still in its infancy (Bao et al., 2020).

Our study is the first to reveal the lncRNA signatures

associating with GI and TIME as prognostic markers in

NSCLC patients. Statistically meaningful differences showed in

the expression of ATM, BRCA1, PDCD1, and EGFR among the

GU-like group and GS-like group. Chromosomal aberrations

arising from DNA double-strand breaks (DSBs) are the most

pivotal DNA damage in malignant transformation (Zhou and

Elledge, 2000). BRCA1 and ATM are key proteins that repair

DNA DSBs and control genome integrity (Grabsch et al., 2006).

PDCD1 (encoding PD-1 protein) is a key mediator in regulating

T-cell activation and tumor antigen priming of TIME (Santarpia

et al., 2020), also closely interlinked with TMB (Miao et al., 2020).

FIGURE 11
Validation of the relationship between GIrLncSig and the sensitivity of general chemotherapy and targeted therapy. IC50 was calculated for
gefitinib (A), erlotinib (B), cisplatin (C) and paclitaxel (D) in two groups. IC50, the half-maximal inhibitory concentration.
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After treatments with a PD-(L) 1 inhibitor, hyper-progression

tends to occur in NSCLC patients with evident tumor cell-

intrinsic PD-1 expression. Hence PD-1 has anti-tumor effects

in NSCLC (Boussiotis, 2016).

We established the co-expression network of lncRNA-

mRNA and performed functional enrichment analysis. PPAR-

γ is involved in DDR by promoting ATM signaling (Li et al.,

2019). Cytokines regulate the immune function of B

lymphocytes, T lymphocytes and natural killer cells by

activating intracellular signaling cascades by combining with

their specific receptors expressed on the surface of

lymphocytes (Hunter and Reiner, 2000). What’s more,

Cytokine-cytokine receptor expression on lymphocytes is

closely associated with prognosis in relapsed childhood acute

lymphoblastic leukemia (Wu et al., 2005). Defects in the DNA

mismatch repair pathway lead to a “mutant” cellular phenotype

characterized by elevated genomic instability and increased

microsatellite instability (MSI), resulting in susceptibility to

hereditary nonpolyposis colorectal cancer (Huang and Zhou,

2021).

We further examined predictive power of the 496 GI-

related lncRNAs on prognosis of NSCLC patients and

constructed the GIrLncSig comprising 11 GI-related

lncRNAs (SCAT1, AC002401.4, AL079303.1, AL121761.1,

TM4SF19-AS1, AC027288.1, AC019117.3, AC079949.2,

AC026369.3, AL355472.2, and MMP2-AS1). We found that

3 lncRNAs have appeared in previous studies among

GIrLncSig. In line with the results of other research,

SCAT1 was a risk factor and the upregulation of expression

was seen to implicate a poor outcome. The downregulation of

SCAT1 in A549 cells inhibits the cell proliferation, cell cycle

halt at G1 phase, and promoted cellular apoptosis. In addition,

an investigation revealed SCAT1 as common independent

prognostic biomarkers for LC, the higher expression of

SCAT1 in NSCLC correlates with the poor clinical

outcomes (Ali et al., 2018). The lncRNA TM4SF19-AS1 is

highly consistent with the expression and localization of its

host gene TM4SF19, and is considered to be a marker lncRNA

of effector T-cells, involved in cell adhesion, regulation of

tumor necrosis factor biosynthesis and other related processes

of CD8 and CD4 effector T-cells (Luo et al., 2021). MMP2-

AS1 is a protective factor and relevant to autophagy-related

genes. As a potential treatment target, MMP2-AS1 affects the

proliferation, invasion and migration of renal cell carcinoma

(RCC) cells by controlling the miR-34c-5p/MMP2 axis to

promote the development of RCC. (Fan et al., 2022).

Besides, a study constructed and verified a prognostic risk

model of targeting autophagy-related gene (ATG) which

contains MMP2-AS1 in NSCLC patients and found that

this gene was closely involved in immune modulation in

TME. (Jiang et al., 2021a). However, after detailed

literature search, the biological functions of AC002401.4,

AL079303.1, AL121761.1, AC027288.1, AC019117.3,

AC079949.2, AC026369.3, and AL355472.2 still had no

relevant reports. However, we discovered that the lncRNA

AC027288.1 is on chromosome 12q21.2, a locus known to be a

carcinogenesis-associated locus in a previous genome-wide

association analysis (Sánchez-Tomé et al., 2015).

AC002401.4 is positioned on chromosome 17q21.33, which

is thought to predict cancer prognosis (Ruiz-Arenas et al.,

2019). AL079303.1 is located in the chromosome

14q13.3 region, which was recently described to be

associated with lung cancer (Harris et al., 2011). Located

on chromosome 12q21.2, AC026369.3 is known to be a

susceptibility locus for lung squamous cell carcinoma in

previous reports (Shi et al., 2012; Lieberman et al., 2016).

LncRNAs, AL121761.1, AC019117.3, AC079949.2, and

AL355472.2, however, were not reported previously before

this study. Additional investigations are required to ascertain

their function in NSCLC.

Seeking to find the association between the GIrLncSig and

immune responses, we measured 22 infiltrating immune cell

components separately in the low and high-risk groups by the

CIBERSORT algorithm. We found obvious different immune

infiltrating in two groups classified by the GIrLncSig. It suggested

that the proportion of γδ T-cells, resting NK cells, activated mast

cells, and M0 macrophage were infiltrated noticeably in high-risk

patients. All of them are cells of the innate immune system and

interesting mediators in tumor immunotherapy (Marshall and

Jawdat, 2004; Vivier et al., 2011; Miyashita et al., 2021; Ricketts

et al., 2021). Activated γδ T-cells and quiescent NK cells play anti-

tumor roles by inducing the release of cytotoxic molecules and

cytokines such as interferon-γ (IFN-γ) and tumor necrosis factor-α
(TNF-α) on cancer cells. (Bryceson et al., 2006; Matei et al., 2006;

Uchida et al., 2007). Several reports point out that type I IFN

signaling and anti-tumor immunity were induced by BRCA1/

2 deletion which causing DSB accumulation and elevated levels

of GI (Zhao et al., 2019; Reislander et al., 2020; Tarsounas and Sung,

2020). Conversely, six immune cells were apparently in infiltration,

namely plasma cells, resting memory T-cells, regulatory T-cells

(Tregs), resting dendritic cells, monocytes, and resting mast cells

in low-risk patients. Studies have clearly demonstrated that blocking

ATM-related DDR can reverse T-cell senescence and suppressive

TIME generated by Tregs and tumor cells, thereby enhancing anti-

tumor immunity and immunotherapy (Liu et al., 2018).

Immune checkpoints and some chemokines can reflect the

response of immunotherapy. ICIs of PD-1 or PDCD1 and

cytotoxic T lymphocyte antigen-4 (CTLA-4) have made great

achievements in oncology treatment. (Andrews et al., 2017).

Lymphocyte activation gene-3 (LAG3; CD223) is a promising

target for cancer immunotherapy because it negatively regulates

T-cells and binds to PD1 to mediate exhausted state. (Steven et al.,

2016). From our research, we noticed that the expression of PDCD1,

CTLA-4, LAG-3, immunosuppressive cytokines and chemokines for

immune activationwere lower in the high-risk group comparedwith

the low-risk group, which was in agreement with the results of
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several previous works and further demonstrate the predictability of

GIrLncSig. In conclusion, GI is implicated in immune infiltration

and prognosis of NSCLC patients.

As we know, immunotherapy is an effective and promising

therapy in recent years. However, not everyone can get durable

responses and benefit from the immunotherapy which may lead

to the serious side effects (Kennedy and Salama, 2020). One of the

challenges in cancer immunotherapy is developing pre-clinical

models that translate to human immunity, the composition of

immune cells in TME, tumor antigens and immune cell

suppression all make it difficult (Hegde and Chen, 2020). The

hyperresponsiveness or unresponsiveness to tumor

immunotherapy may be related to the heterogeneity of TIME

which is different in different tumor types, patients and tumor

stage. Someone suggested the immunotherapeutic response can be

better predicted by analyzing and understanding the unique classes

and subclasses of TIME and determining the dominant drivers of

cancer immunity (Binnewies et al., 2018). And the study of lncRNA is

a promising direction. To cite but one example, low lncRNA

TCL6 expression may indicate the worse survival rate, while

lncRNA TCL6 positively correlated with TILs infiltration and

immune checkpoint molecules. (Zhang et al., 2020). Among our

study, lncRNA AC027288.1 was one of novel prognostic lncRNAs in

GIrLncSig. We discovered the association between

AC027288.1 expression and PD-1 expression. Additionally, similar

results were also obtained in the external GEO datasets. The outcome

implied thatGIrLncSigmay be as predictive of therapeutic response to

ICI therapy as PD-1.

The DDR pathway protects normal cells from some acquired

genomic alterations and monitors the presence of exogenous or

endogenous DNA damage (Cleary et al., 2020). Many anti-tumor

cytotoxic drugs target the DDR signaling pathway for therapeutic

effects. TheDDRpathway regulatesmanymechanisms of cancer cell

resistance and sensitivity to these cytotoxic drugs (Jiang et al., 2021c).

Our findings supported that GIrLncSig were correlation with both

resistance to chemotherapeutic and targeted agents, like gefitinib,

erlotinib, cisplatin, and paclitaxel, Thereby, drug response to

individualized management for NSCLC patients can be predicted.

Although our research supplied a fresh viewpoint on the

affinity between GI and TIME and the prognosis of NSCLC, it

still existed insufficiencies and required further examination.

Firstly, a larger number of independent data sets and

experimental verification are necessary to confirm GIrLncSig

to make sure its robustness and replicability. Secondly, the

mechanism by which GI and tumor immunity interact with

each other remains still obscure and needs further elaboration.

Besides, there are some new undiscovered lncRNAs in the GI-

lncRNAmodel, and thus prospective studies in the real world will

be desired to understand their mechanism in carcinogenesis and

progression of NSCLC and verify its clinical application value.

Conclusion

This study established a risk prognostic signature

containing 11 GI-related lncRNAs, and validates the

prognostic value from correlation of risk score, immune

infiltration and prediction of drug resistance. What’s more,

it is the first study to reveal the lncRNA signatures associating

with GI and TIME as prognostic marker. One of the

discoveries of our study is that the expression of

AC027288.1 may be able to reflect the ICI response.

Moreover, The DDR pathway is likely to be a potential

pathway to influence the OS of NSCLC patients by

activating tumor immune recognition and targeting.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding authors.

Author contributions

LL, ZH, and CY designed this study. CY, TY, and XL

analyzed the data and wrote the manuscript. CY, CH, XY,

and XX collected the data. CY, WG, and SL analyzed the

data. WZ, LL, ZH, and CY revised the manuscript. All

authors approved the final version for submission.

Funding

This work is supported by the National Natural Science

Foundation of China (82004256).

Acknowledgments

We are sincerely acknowledge the contributions from the

TCGA project (https://portal.gdc.cancer.gov/), the GEO project

(https://www.ncbi.nlm.nih.gov/geo/), and SangerBox portal

(http://SangerBox.com/Tool).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Frontiers in Genetics frontiersin.org20

Yang et al. 10.3389/fgene.2022.982030

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://SangerBox.com/Tool
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.982030


Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.982030/full#supplementary-material
SUPPLEMENTARY FIGURE S1
Forest plot of 34 lncRNAs associated with prognosis in the train set. Red
dots represent risky lncRNAs, while blue dots represent protective
lncRNAs. The black bar represents the 95% CI of the hazard ratio. CI,
confidence interval.

References

Ablasser, A., Goldeck, M., Cavlar, T., Deimling, T.,Witte, G., Röhl, I., et al. (2013).
cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates
STING. Nature 498 (7454), 380–384. doi:10.1038/nature12306

Agarwal, S., Vierbuchen, T., Ghosh, S., Chan, J., Jiang, Z. Z., Kandasamy, R. K.,
et al. (2020). The long non-coding RNA LUCAT1 is a negative feedback regulator of
interferon responses in humans. Nat. Commun. 11 (1), 6348. ARTN 6348. doi:10.
1038/s41467-020-20165-5

Alexander, M., Kim, S. Y., and Cheng, H. (2020). Update 2020: Management of
non-small cell lung cancer. Lung 198 (6), 897–907. doi:10.1007/s00408-020-
00407-5

Ali, M. M., Akhade, V. S., Kosalai, S. T., Subhash, S., Statello, L., Meryet-Figuiere,
M., et al. (2018). PAN-cancer analysis of S-phase enriched lncRNAs identifies
oncogenic drivers and biomarkers. Nat. Commun. 9 (1), 883. doi:10.1038/s41467-
018-03265-1

Andrews, L. P., Marciscano, A. E., Drake, C. G., and Vignali, D. A. A. (2017).
LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev. 276 (1), 80–96.
doi:10.1111/imr.12519

Antonia, S. J., Villegas, A., Daniel, D., Vicente, D., Murakami, S., Hui, R., et al.
(2017). Durvalumab after chemoradiotherapy in stage III non-small cell lung
cancer. N. Engl. J. Med. 377 (20), 1919–1929. doi:10.1056/NEJMoa1709937

Bailey, C., Black, J. R. M., Reading, J. L., Litchfield, K., Turajlic, S., McGranahan,
N., et al. (2021). Tracking cancer evolution through the disease course. Cancer
Discov. 11 (4), 916–932. doi:10.1158/2159-8290.Cd-20-1559

Bao, S., Zhao, H., Yuan, J., Fan, D., Zhang, Z., Su, J., et al. (2020). Computational
identification of mutator-derived lncRNA signatures of genome instability for
improving the clinical outcome of cancers: A case study in breast cancer. Brief.
Bioinform. 21 (5), 1742–1755. doi:10.1093/bib/bbz118

Barber, G. N. (2015). Sting: Infection, inflammation and cancer. Nat. Rev.
Immunol. 15 (12), 760–770. doi:10.1038/nri3921

Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F., Merad, M.,
et al. (2018). Understanding the tumor immune microenvironment (TIME) for
effective therapy. Nat. Med. 24 (5), 541–550. doi:10.1038/s41591-018-0014-x

Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E.,
et al. (2015). Nivolumab versus docetaxel in advanced nonsquamous non-
small-cell lung cancer. N. Engl. J. Med. 373 (17), 1627–1639. doi:10.1056/
NEJMoa1507643

Boussiotis, V. A. (2016). Molecular and biochemical aspects of the PD-1
checkpoint pathway. N. Engl. J. Med. 375 (18), 1767–1778. doi:10.1056/
NEJMra1514296

Bryceson, Y. T., March, M. E., Ljunggren, H. G., and Long, E. O. (2006). Synergy
among receptors on resting NK cells for the activation of natural cytotoxicity and
cytokine secretion. Blood 107 (1), 159–166. doi:10.1182/blood-2005-04-1351

Chae, H., Kim, D., Yoo, C., Kim, K. P., Jeong, J. H., Chang, H. M., et al.
(2019a). Therapeutic relevance of targeted sequencing in management of
patients with advanced biliary tract cancer: DNA damage repair gene
mutations as a predictive biomarker. Eur. J. Cancer 120, 31–39. doi:10.
1016/j.ejca.2019.07.022

Chae, Y. K., Davis, A. A., Raparia, K., Agte, S., Pan, A., Mohindra, N., et al.
(2019b). Association of tumor mutational burden with DNA repair mutations and
response to anti-PD-1/PD-L1 therapy in non-small cell lung cancer. Clin. Lung
Cancer 20 (2), 88–96. e86. doi:10.1016/j.cllc.2018.09.008

Cleary, J. M., Aguirre, A. J., Shapiro, G. I., and D’Andrea, A. D. (2020).
Biomarker-guided development of DNA repair inhibitors. Mol. Cell 78 (6),
1070–1085. doi:10.1016/j.molcel.2020.04.035

Dai, Y., Xu, C., Sun, X., and Chen, X. (2017). Nanoparticle design strategies for
enhanced anticancer therapy by exploiting the tumour microenvironment. Chem.
Soc. Rev. 46 (12), 3830–3852. doi:10.1039/c6cs00592f

Desrichard, A., Snyder, A., and Chan, T. A. (2016). Cancer neoantigens and
applications for immunotherapy. Clin. Cancer Res. 22 (4), 807–812. doi:10.1158/
1078-0432.CCR-14-3175

Elguindy, M. M., and Mendell, J. T. (2021). NORAD-induced Pumilio phase
separation is required for genome stability. Nature 595 (7866), 303–308. doi:10.
1038/s41586-021-03633-w

Fan, B., Niu, Y., Ren, Z., Wei, S., Ma, Y., Su, J., et al. (2022). Long noncoding RNA
MMP2-AS1 contributes to progression of renal cell carcinoma by modulating miR-
34c-5p/MMP2 Axis. J. Oncol. 2022, 7346460. doi:10.1155/2022/7346460

Feng, H., Wang, X., Zhang, Z., Tang, C., Ye, H., Jones, L., et al. (2015).
Identification of genetic mutations in human lung cancer by targeted
sequencing. Cancer Inf. 14, 83–93. doi:10.4137/CIN.S22941

Gandhi, L., Rodriguez-Abreu, D., Gadgeel, S., Esteban, E., Felip, E., De Angelis, F.,
et al. (2018). Pembrolizumab plus chemotherapy in metastatic non-small cell lung
cancer. N. Engl. J. Med. 378 (22), 2078–2092. doi:10.1056/NEJMoa1801005

Garon, E. B., Gandhi, L., Rizvi, N., Hui, R., Balmanoukian, A. S., Patnaik, A., et al.
(2014). Antitumor activity of pembrolizumab (pembro; mk-3475) and correlation
with programmed death ligand 1 (Pd-L1) expression in a pooled analysis of patients
(pts) with advanced non–small cell lung carcinoma (nsclc). Ann. Oncol. 25. doi:10.
1093/annonc/mdu438.51

Geng, Y., Shao, Y., He, W., Hu, W., Xu, Y., Chen, J., et al. (2015). Prognostic role
of tumor-infiltrating lymphocytes in lung cancer: A meta-analysis. Cell. Physiol.
biochem. 37 (4), 1560–1571. doi:10.1159/000438523

Grabsch, H., Dattani, M., Barker, L., Maughan, N., Maude, K., Hansen, O., et al.
(2006). Expression of DNA double-strand break repair proteins ATM and
BRCA1 predicts survival in colorectal cancer. Clin. Cancer Res. 12 (5),
1494–1500. doi:10.1158/1078-0432.Ccr-05-2105

Guo, F., Li, L., Yang, W., Hu, J. F., and Cui, J. (2021a). Long noncoding RNA: A
resident staff of genomic instability regulation in tumorigenesis. Cancer Lett. 503,
103–109. doi:10.1016/j.canlet.2021.01.021

Guo, Z., Dai, Y., Hu, W., Zhang, Y., Cao, Z., Pei, W., et al. (2021b). The long
noncoding RNA CRYBG3 induces aneuploidy by interfering with spindle assembly
checkpoint via direct binding with Bub3. Oncogene 40 (10), 1821–1835. doi:10.
1038/s41388-020-01601-8

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: The next
generation. Cell 144 (5), 646–674. doi:10.1016/j.cell.2011.02.013

Harris, T., Pan, Q. L., Sironi, J., Lutz, D., Tian, J. M., Sapkar, J., et al. (2011). Both
gene amplification and allelic loss occur at 14q13.3 in lung cancer. Clin. Cancer Res.
17 (4), 690–699. doi:10.1158/1078-0432.Ccr-10-1892

Hegde, P. S., and Chen, D. S. (2020). Top 10 challenges in cancer immunotherapy.
Immunity 52 (1), 17–35. doi:10.1016/j.immuni.2019.12.011

Huang, R. X., and Zhou, P. K. (2021). DNA damage repair: Historical
perspectives, mechanistic pathways and clinical translation for targeted cancer
therapy. Signal Transduct. Target. Ther. 6 (1), 254. ARTN 254. doi:10.1038/s41392-
021-00648-7

Hunter, C. A., and Reiner, S. L. (2000). Cytokines and T cells in host defense.
Curr. Opin. Immunol. 12 (4), 413–418. doi:10.1016/s0952-7915(00)00110-2

Jamal-Hanjani, M., Wilson, G. A., McGranahan, N., Birkbak, N. J., Watkins, T. B.
K., Veeriah, S., et al. (2017). Tracking the evolution of non-small cell lung cancer. N.
Engl. J. Med. 376 (22), 2109–2121. doi:10.1056/NEJMoa1616288

Frontiers in Genetics frontiersin.org21

Yang et al. 10.3389/fgene.2022.982030

https://www.frontiersin.org/articles/10.3389/fgene.2022.982030/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.982030/full#supplementary-material
https://doi.org/10.1038/nature12306
https://doi.org/10.1038/s41467-020-20165-5
https://doi.org/10.1038/s41467-020-20165-5
https://doi.org/10.1007/s00408-020-00407-5
https://doi.org/10.1007/s00408-020-00407-5
https://doi.org/10.1038/s41467-018-03265-1
https://doi.org/10.1038/s41467-018-03265-1
https://doi.org/10.1111/imr.12519
https://doi.org/10.1056/NEJMoa1709937
https://doi.org/10.1158/2159-8290.Cd-20-1559
https://doi.org/10.1093/bib/bbz118
https://doi.org/10.1038/nri3921
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1056/NEJMoa1507643
https://doi.org/10.1056/NEJMoa1507643
https://doi.org/10.1056/NEJMra1514296
https://doi.org/10.1056/NEJMra1514296
https://doi.org/10.1182/blood-2005-04-1351
https://doi.org/10.1016/j.ejca.2019.07.022
https://doi.org/10.1016/j.ejca.2019.07.022
https://doi.org/10.1016/j.cllc.2018.09.008
https://doi.org/10.1016/j.molcel.2020.04.035
https://doi.org/10.1039/c6cs00592f
https://doi.org/10.1158/1078-0432.CCR-14-3175
https://doi.org/10.1158/1078-0432.CCR-14-3175
https://doi.org/10.1038/s41586-021-03633-w
https://doi.org/10.1038/s41586-021-03633-w
https://doi.org/10.1155/2022/7346460
https://doi.org/10.4137/CIN.S22941
https://doi.org/10.1056/NEJMoa1801005
https://doi.org/10.1093/annonc/mdu438.51
https://doi.org/10.1093/annonc/mdu438.51
https://doi.org/10.1159/000438523
https://doi.org/10.1158/1078-0432.Ccr-05-2105
https://doi.org/10.1016/j.canlet.2021.01.021
https://doi.org/10.1038/s41388-020-01601-8
https://doi.org/10.1038/s41388-020-01601-8
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1158/1078-0432.Ccr-10-1892
https://doi.org/10.1016/j.immuni.2019.12.011
https://doi.org/10.1038/s41392-021-00648-7
https://doi.org/10.1038/s41392-021-00648-7
https://doi.org/10.1016/s0952-7915(00)00110-2
https://doi.org/10.1056/NEJMoa1616288
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.982030


Jiang, H., Xu, A., Li, M., Han, R., Wang, E., Wu, D., et al. (2021a). Seven
autophagy-related lncRNAs are associated with the tumor immune
microenvironment in predicting survival risk of nonsmall cell lung cancer. Brief.
Funct. Genomics 21, 177–187. doi:10.1093/bfgp/elab043

Jiang, J., Lu, Y., Zhang, F., Huang, J., Ren, X. L., and Zhang, R. (2021b). The
emerging roles of long noncoding RNAs as hallmarks of lung cancer. Front. Oncol.
11, 761582. ARTN 761582. doi:10.3389/fonc.2021.761582

Jiang, M., Jia, K., Wang, L., Li, W., Chen, B., Liu, Y., et al. (2021c). Alterations of
DNA damage response pathway: Biomarker and therapeutic strategy for cancer
immunotherapy. Acta Pharm. Sin. B 11 (10), 2983–2994. doi:10.1016/j.apsb.2021.
01.003

Kennedy, L. B., and Salama, A. K. S. (2020). A review of cancer immunotherapy
toxicity. Ca. Cancer J. Clin. 70 (2), 86–104. doi:10.3322/caac.21596

Lee, S., Kopp, F., Chang, T. C., Sataluri, A., Chen, B., Sivakumar, S., et al. (2016).
Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO
proteins. Cell 164 (1-2), 69–80. doi:10.1016/j.cell.2015.12.017

Li, C. G., Mahon, C., Sweeney, N. M., Verschueren, E., Kantamani, V., Li, D., et al.
(2019). PPARγ interaction with UBR5/ATMIN promotes DNA repair to maintain
endothelial homeostasis. Cell Rep. 26 (5), 1333–1343. e1337. doi:10.1016/j.celrep.
2019.01.013

Li, S. K. H., and Martin, A. (2016). Mismatch repair and colon cancer:
Mechanisms and therapies explored. Trends Mol. Med. 22 (4), 274–289. doi:10.
1016/j.molmed.2016.02.003

Lieberman, R., Xiong, D. H., James, M., Han, Y. H., Amos, C. I., Wang, L., et al.
(2016). Functional characterization of RAD52 as a lung cancer susceptibility gene in
the 12p13.33 locus. Mol. Carcinog. 55 (5), 953–963. doi:10.1002/mc.22334

Liu, X., Mo,W., Ye, J., Li, L. Y., Zhang, Y. P., Hsueh, E. C., et al. (2018). Regulatory
T cells trigger effector T cell DNA damage and senescence caused by metabolic
competition. Nat. Commun. 9, 249. ARTN 249. doi:10.1038/s41467-017-02689-5

Luo, H., Bu, D., Shao, L., Li, Y., Sun, L., Wang, C., et al. (2021). Single-cell long
non-coding RNA landscape of T cells in human cancer immunity. Genomics
Proteomics Bioinforma. 19 (3), 377–393. doi:10.1016/j.gpb.2021.02.006

Marabelle, A., Fakih, M., Lopez, J., Shah, M., Shapira-Frommer, R., Nakagawa, K.,
et al. (2020). Association of tumour mutational burden with outcomes in patients
with advanced solid tumours treated with pembrolizumab: Prospective biomarker
analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet.
Oncol. 21 (10), 1353–1365. doi:10.1016/s1470-2045(20)30445-9

Marshall, J. S., and Jawdat, D. M. (2004). Mast cells in innate immunity. J. Allergy
Clin. Immunol. 114 (1), 21–27. doi:10.1016/j.jaci.2004.04.045

Matei, I. R., Guidos, C. J., and Danska, J. S. (2006). ATM-Dependent DNA
damage surveillance in T-cell development and leukemogenesis: The DSB
connection. Immunol. Rev. 209, 142–158. doi:10.1111/j.0105-2896.2006.00361.x

Miao, R., Ge, C., Zhang, X., He, Y., Ma, X., Xiang, X., et al. (2019). Combined
eight-long noncoding RNA signature: A new risk score predicting prognosis in
elderly non-small cell lung cancer patients. Aging (Albany NY) 11 (2), 467–479.
doi:10.18632/aging.101752

Miao, Y., Wang, J., Li, Q., Quan, W., Wang, Y., Li, C., et al. (2020). Prognostic
value and immunological role of PDCD1 gene in pan-cancer. Int.
Immunopharmacol. 89, 107080. doi:10.1016/j.intimp.2020.107080

Miyashita, M., Shimizu, T., Ashihara, E., and Ukimura, O. (2021). Strategies to
improve the antitumor effect of γδ T cell immunotherapy for clinical application.
Int. J. Mol. Sci. 22 (16), 8910. doi:10.3390/ijms22168910

Mouw, K. W., Goldberg, M. S., Konstantinopoulos, P. A., and D’Andrea, A. D.
(2017). DNA damage and repair biomarkers of immunotherapy response. Cancer
Discov. 7 (7), 675–693. doi:10.1158/2159-8290.Cd-17-0226

Munschauer, M., Nguyen, C. T., Sirokman, K., Hartigan, C. R., Hogstrom, L.,
Engreitz, J. M., et al. (2018). The NORAD lncRNA assembles a topoisomerase
complex critical for genome stability. Nature 561 (7721), 132–136. doi:10.1038/
s41586-018-0453-z

Park, E. G., Pyo, S. J., Cui, Y., Yoon, S. H., and Nam, J. W. (2022). Tumor immune
microenvironment lncRNAs. Brief. Bioinform. 23 (1), bbab504. doi:10.1093/bib/
bbab504

Parkes, E. E., Walker, S. M., Taggart, L. E., McCabe, N., Knight, L. A., Wilkinson,
R., et al. (2017). Activation of STING-dependent innate immune signaling by
S-Phase-Specific DNA damage in breast cancer. J. Natl. Cancer Inst. 109 (1),
djw199. doi:10.1093/jnci/djw199

Permata, T. B. M., Hagiwara, Y., Sato, H., Yasuhara, T., Oike, T., Gondhowiardjo,
S., et al. (2019). Base excision repair regulates PD-L1 expression in cancer cells.
Oncogene 38 (23), 4452–4466. doi:10.1038/s41388-019-0733-6

Reislander, T., Groelly, F. J., and Tarsounas, M. (2020). DNA damage and cancer
immunotherapy: A sting in the tale. Mol. Cell 80 (1), 21–28. doi:10.1016/j.molcel.
2020.07.026

Reynolds, T. Y., Rockwell, S., and Glazer, P. M. (1996). Genetic instability induced
by the tumor microenvironment. Cancer Res. 56 (24), 5754–5757.

Ricciuti, B., Recondo, G., Spurr, L. F., Li, Y. Y., Lamberti, G., Venkatraman, D.,
et al. (2020). Impact of DNA damage response and repair (DDR) gene mutations on
efficacy of PD-(L)1 immune checkpoint inhibition in non-small cell lung cancer.
Clin. Cancer Res. 26 (15), 4135–4142. doi:10.1158/1078-0432.Ccr-19-3529

Ricketts, T. D., Prieto-Dominguez, N., Gowda, P. S., and Ubil, E. (2021).
Mechanisms of macrophage plasticity in the tumor environment: Manipulating
activation state to improve outcomes. Front. Immunol. 12, 642285. ARTN 642285.
doi:10.3389/fimmu.2021.642285

Rittmeyer, A., Barlesi, F., Waterkamp, D., Park, K., Ciardiello, F., von Pawel, J.,
et al. (2017). Atezolizumab versus docetaxel in patients with previously treated non-
small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised
controlled trial. Lancet 389 (10066), 255–265. doi:10.1016/S0140-6736(16)32517-X

Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J.,
et al. (2015). Cancer immunology. Mutational landscape determines sensitivity to
PD-1 blockade in non-small cell lung cancer. Science 348 (6230), 124–128. doi:10.
1126/science.aaa1348

Ruiz-Arenas, C., Caceres, A., Moreno, V., and Gonzalez, J. R. (2019). Common
polymorphic inversions at 17q21.31 and 8p23.1 associate with cancer prognosis.
Hum. Genomics 13 (1), 57. ARTN 57. doi:10.1186/s40246-019-0242-2

Sánchez-Tomé, E., Rivera, B., Perea, J., Pita, G., Rueda, D., Mercadillo, F., et al.
(2015). Genome-wide linkage analysis and tumoral characterization reveal
heterogeneity in familial colorectal cancer type X. J. Gastroenterol. 50 (6),
657–666. doi:10.1007/s00535-014-1009-0

Santarpia, M., Aguilar, A., Chaib, I., Cardona, A. F., Fancelli, S., Laguia, F.,
et al. (2020). Non-small cell lung cancer signaling pathways, metabolism, and
PD-1/PD-L1 antibodies. Cancers (Basel) 12 (6), E1475. doi:10.3390/
cancers12061475

Sato, H., Niimi, A., Yasuhara, T., Permata, T. B. M., Hagiwara, Y., Isono, M., et al.
(2017). DNA double-strand break repair pathway regulates PD-L1 expression in
cancer cells. Nat. Commun. 8, 1751. ARTN 1751. doi:10.1038/s41467-017-01883-9

Shi, J. X., Chatterjee, N., Rotunno, M., Wang, Y. F., Pesatori, A. C., Consonni, D.,
et al. (2012). Inherited variation at chromosome 12p13.33, including RAD52,
influences the risk of squamous cell lung carcinoma. Cancer Discov. 2 (2),
131–139. doi:10.1158/2159-8290.Cd-11-0246

Steven, A., Fisher, S. A., and Robinson, B. W. (2016). Immunotherapy for lung
cancer. Respirology 21 (5), 821–833. doi:10.1111/resp.12789

Sun, C. C., Li, S. J., Zhang, F., Xi, Y. Y., Wang, L., Bi, Y. Y., et al. (2016). Long non-
coding RNA NEAT1 promotes non-small cell lung cancer progression through
regulation of miR-377-3p-E2F3 pathway. Oncotarget 7 (32), 51784–51814. doi:10.
18632/oncotarget.10108

Sun, J., Zhang, Z., Bao, S., Yan, C., Hou, P., Wu, N., et al. (2020a). Identification of
tumor immune infiltration-associated lncRNAs for improving prognosis and
immunotherapy response of patients with non-small cell lung cancer.
J. Immunother. Cancer 8 (1), e000110. doi:10.1136/jitc-2019-000110

Sun, X., Thorne, R. F., Zhang, X. D., He, M., Li, J., Feng, S., et al. (2020b).
LncRNA GUARDIN suppresses cellular senescence through a LRP130-PGC1α-
FOXO4-p21-dependent signaling axis. EMBO Rep. 21 (4), e48796. doi:10.15252/
embr.201948796

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer Statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71 (3),
209–249. doi:10.3322/caac.21660

Tarsounas, M., and Sung, P. R. (2020). The antitumorigenic roles of BRCA1-
BARD1 in DNA repair and replication. Nat. Rev. Mol. Cell Biol. 21 (5), 284–299.
doi:10.1038/s41580-020-0218-z

Teo, M. Y., Seier, K., Ostrovnaya, I., Regazzi, A. M., Kania, B. E., Moran, M.
M., et al. (2018). Alterations in DNA damage response and repair genes as
potential marker of clinical benefit from PD-1/PD-L1 blockade in advanced
urothelial cancers. J. Clin. Oncol. 36 (17), 1685–1694. doi:10.1200/Jco.2017.75.
7740

Tlsty, T. D., and Coussens, L. M. (2006). Tumor stroma and regulation of cancer
development. Annu. Rev. Pathol. 1, 119–150. doi:10.1146/annurev.pathol.1.110304.
100224

Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C.,
McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-
PD-1 antibody in cancer. N. Engl. J. Med. 366 (26), 2443–2454. doi:10.1056/
NEJMoa1200690

Uchida, R., Ashihara, E., Sato, K., Kimura, S., Kuroda, J., Takeuchi, M., et al.
(2007). gamma delta T cells kill myeloma cells by sensing mevalonate metabolites
and ICAM-1 molecules on cell surface. Biochem. Biophys. Res. Commun. 354 (2),
613–618. doi:10.1016/j.bbrc.2007.01.031

Frontiers in Genetics frontiersin.org22

Yang et al. 10.3389/fgene.2022.982030

https://doi.org/10.1093/bfgp/elab043
https://doi.org/10.3389/fonc.2021.761582
https://doi.org/10.1016/j.apsb.2021.01.003
https://doi.org/10.1016/j.apsb.2021.01.003
https://doi.org/10.3322/caac.21596
https://doi.org/10.1016/j.cell.2015.12.017
https://doi.org/10.1016/j.celrep.2019.01.013
https://doi.org/10.1016/j.celrep.2019.01.013
https://doi.org/10.1016/j.molmed.2016.02.003
https://doi.org/10.1016/j.molmed.2016.02.003
https://doi.org/10.1002/mc.22334
https://doi.org/10.1038/s41467-017-02689-5
https://doi.org/10.1016/j.gpb.2021.02.006
https://doi.org/10.1016/s1470-2045(20)30445-9
https://doi.org/10.1016/j.jaci.2004.04.045
https://doi.org/10.1111/j.0105-2896.2006.00361.x
https://doi.org/10.18632/aging.101752
https://doi.org/10.1016/j.intimp.2020.107080
https://doi.org/10.3390/ijms22168910
https://doi.org/10.1158/2159-8290.Cd-17-0226
https://doi.org/10.1038/s41586-018-0453-z
https://doi.org/10.1038/s41586-018-0453-z
https://doi.org/10.1093/bib/bbab504
https://doi.org/10.1093/bib/bbab504
https://doi.org/10.1093/jnci/djw199
https://doi.org/10.1038/s41388-019-0733-6
https://doi.org/10.1016/j.molcel.2020.07.026
https://doi.org/10.1016/j.molcel.2020.07.026
https://doi.org/10.1158/1078-0432.Ccr-19-3529
https://doi.org/10.3389/fimmu.2021.642285
https://doi.org/10.1016/S0140-6736(16)32517-X
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1186/s40246-019-0242-2
https://doi.org/10.1007/s00535-014-1009-0
https://doi.org/10.3390/cancers12061475
https://doi.org/10.3390/cancers12061475
https://doi.org/10.1038/s41467-017-01883-9
https://doi.org/10.1158/2159-8290.Cd-11-0246
https://doi.org/10.1111/resp.12789
https://doi.org/10.18632/oncotarget.10108
https://doi.org/10.18632/oncotarget.10108
https://doi.org/10.1136/jitc-2019-000110
https://doi.org/10.15252/embr.201948796
https://doi.org/10.15252/embr.201948796
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41580-020-0218-z
https://doi.org/10.1200/Jco.2017.75.7740
https://doi.org/10.1200/Jco.2017.75.7740
https://doi.org/10.1146/annurev.pathol.1.110304.100224
https://doi.org/10.1146/annurev.pathol.1.110304.100224
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1056/NEJMoa1200690
https://doi.org/10.1016/j.bbrc.2007.01.031
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.982030


Vendetti, F. P., Karukonda, P., Clump, D. A., Teo, T., Lalonde, R., Nugent, K., et al.
(2018). ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor
activity following radiation. J. Clin. Invest. 128 (9), 3926–3940. doi:10.1172/jci96519

Vivier, E., Raulet, D. H., Moretta, A., Caligiuri, M. A., Zitvogel, L., Lanier, L. L.,
et al. (2011). Innate or adaptive immunity? The example of natural killer cells.
Science 331 (6013), 44–49. doi:10.1126/science.1198687

Wu, S. L., Gessner, R., von Stackelberg, A., Kirchner, R., Henze, G., and
Seeger, K. (2005). Cytokine/cytokine receptor gene expression in childhood
acute lymphoblastic leukemia - correlation of expression and clinical
outcome at first disease recurrence. Cancer 103 (5), 1054–1063. doi:10.
1002/cncr.20869

Xing, C., Sun, S. G., Yue, Z. Q., and Bai, F. (2021). Role of lncRNA LUCAT1 in
cancer. Biomed. Pharmacother. 134, 111158. ARTN 111158. doi:10.1016/j.biopha.
2020.111158

Yang, Z., Zhao, Y., Lin, G., Zhou, X., Jiang, X., and Zhao, H. (2019).
Noncoding RNA activated by DNA damage (NORAD): Biologic function
and mechanisms in human cancers. Clin. Chim. Acta. 489, 5–9. doi:10.
1016/j.cca.2018.11.025

Yu,W.D.,Wang,H., He, Q. F., Xu, Y., andWang, X. C. (2018). Long noncodingRNAs
in cancer-immunity cycle. J. Cell. Physiol. 233 (9), 6518–6523. doi:10.1002/jcp.26568

Yuan, J., Narayanan, L., Rockwell, S., and Glazer, P. M. (2000). Diminished DNA
repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low
pH. Cancer Res. 60 (16), 4372–4376.

Zhang, R., Xia, L. Q., Lu, W. W., Zhang, J., and Zhu, J. S. (2016). LncRNAs and
cancer. Oncol. Lett. 12 (2), 1233–1239. doi:10.3892/ol.2016.4770

Zhang, X. C., Wang, J., Shao, G. G., Wang, Q., Qu, X., Wang, B., et al. (2019).
Comprehensive genomic and immunological characterization of Chinese non-
small cell lung cancer patients. Nat. Commun. 10 (1), 1772. doi:10.1038/
s41467-019-09762-1

Zhang, Y. Q., Li, Z. Y., Chen, M. F., Chen, H. J., Zhong, Q. Y., Liang, L. Z.,
et al. (2020). lncRNA TCL6 correlates with immune cell infiltration and
indicates worse survival in breast cancer. Breast Cancer 27 (4), 573–585.
doi:10.1007/s12282-020-01048-5

Zhang, Y. Y., and Zhang, Z. M. (2020). The history and advances in cancer
immunotherapy: Understanding the characteristics of tumor-infiltrating immune
cells and their therapeutic implications. Cell. Mol. Immunol. 17 (8), 807–821. doi:10.
1038/s41423-020-0488-6

Zhao, W. X., Wiese, C., Kwon, Y., Hromas, R., and Sung, P. (2019). The
BRCA tumor suppressor network in chromosome damage repair by
homologous recombination. Annu. Rev. Biochem. 88 88, 221–245. doi:10.
1146/annurev-biochem-013118-111058

Zheng, X., Hu, Y., and Yao, C. (2017). The paradoxical role of tumor-infiltrating
immune cells in lung cancer. Intractable Rare Dis. Res. 6 (4), 234–241. doi:10.5582/
irdr.2017.01059

Zhou, B. B., and Elledge, S. J. (2000). The DNA damage response: Putting
checkpoints in perspective. Nature 408 (6811), 433–439. doi:10.1038/35044005

Frontiers in Genetics frontiersin.org23

Yang et al. 10.3389/fgene.2022.982030

https://doi.org/10.1172/jci96519
https://doi.org/10.1126/science.1198687
https://doi.org/10.1002/cncr.20869
https://doi.org/10.1002/cncr.20869
https://doi.org/10.1016/j.biopha.2020.111158
https://doi.org/10.1016/j.biopha.2020.111158
https://doi.org/10.1016/j.cca.2018.11.025
https://doi.org/10.1016/j.cca.2018.11.025
https://doi.org/10.1002/jcp.26568
https://doi.org/10.3892/ol.2016.4770
https://doi.org/10.1038/s41467-019-09762-1
https://doi.org/10.1038/s41467-019-09762-1
https://doi.org/10.1007/s12282-020-01048-5
https://doi.org/10.1038/s41423-020-0488-6
https://doi.org/10.1038/s41423-020-0488-6
https://doi.org/10.1146/annurev-biochem-013118-111058
https://doi.org/10.1146/annurev-biochem-013118-111058
https://doi.org/10.5582/irdr.2017.01059
https://doi.org/10.5582/irdr.2017.01059
https://doi.org/10.1038/35044005
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.982030

	Comprehensive analysis of somatic mutator-derived and immune infiltrates related lncRNA signatures of genome instability re ...
	Introduction
	Materials and methods
	Data collection
	Identification of genomic instability-associated long non-coding RNAs
	Functional enrichment analysis
	Establishment of genomic instability- related long non-coding RNAs signature
	Correlation analysis of genomic instability-related long non-coding RNA signature with tumor immune infiltration
	Performance validation of the long non-coding RNA signature
	Estimating the sensitivity of chemotherapy and molecular targeted drugs
	Statistical analysis

	Result
	Landscape of somatic mutation in non-small cell lung cancer
	Identification of long non-coding RNAs associated with genomic instability in non-small cell lung cancer
	Construction of long non-coding RNA-mRNA Co-expression network and functional enrichment analysis
	Exploration of 11-long non-coding RNA-based prognostic model related to genome instability
	Independent validation of genomic instability-related long non-coding RNA signature in the non-small cell lung cancer data set
	Validation of genomic instability-related long non-coding RNA signature as prognostic model
	The difference in immune cell infiltration
	Immune checkpoint and chemokines expression in the two risk groups
	External validation of genomic instability-related long non-coding RNA signature with other long non-coding RNA signatures
	Genomic instability-related long non-coding RNA signature was predictive to chemotherapy and molecular targeted therapy res ...

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


