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Hepatocellular Carcinoma (HCC) is the most frequent malignant tumor of the

liver, but its prognosis is poor. Histone acetylation is an important epigenetic

regulatory mode that modulates chromatin structure and transcriptional status

to control gene expression in eukaryotic cells. Generally, histone acetylation

and deacetylation processes are controlled by the opposing activities of histone

acetyltransferases (HATs) and histone deacetylases (HDACs). Dysregulation of

histone modification is reported to drive aberrant transcriptional programmes

that facilitate liver cancer onset and progression. Emerging studies have

demonstrated that several HDAC inhibitors exert tumor-suppressive

properties via activation of various cell death molecular pathways in HCC.

However, the complexity involved in the epigenetic transcription modifications

and non-epigenetic cellular signaling processes limit their potential clinical

applications. This review brings an in-depth view of the oncogenic mechanisms

reported to be related to aberrant HCC-associated histone acetylation, which

might provide new insights into the effective therapeutic strategies to prevent

and treat HCC.
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1 Introduction

Hepatocellular carcinoma (HCC), the most common form of

primary liver cancer and accounts for ~90% of cases, is a severe

neoplastic disease and the average 5-years survival for HCC patients

is less than 15% (Erstad et al., 2019; Llovet et al., 2021). Currently,

Hepatitis B virus (HBV) and hepatitis C virus (HCV) are considered

as the most important pathogenic factors for HCC, but their

significance will possibly decline in the coming years (Sagnelli

et al., 2020). Unfortunately, the incidence rates of metabolic risk

factors for HCC, including metabolic syndrome, obesity, type II

diabetes and non-alcoholic fatty liver disease (NAFLD) are

increasing and may jointly become the leading cause of HCC

worldwide (Mcglynn et al., 2020). Despite great advances in

prevention, diagnosis and therapeutic strategies, most are

diagnosed at advanced stages where therapeutic options are

limited, and the overall survival of patients with HCC has not

improved significantly in recent decades (European Association for

the Study of The et al., 2012). Sorafenib has long been the treatment

strategy for advanced HCC patients; however, sorafenib resistance is

considered a serious obstacle that must be overcome for HCC

therapy (Zhang et al., 2012). Therefore, it is necessary to

comprehend the cellular mechanisms of hepatocarcinogenesis in

order to develop new and effective therapeutic targets.

Over the past decades, the development of epigenetics (e.g.,

microRNA, DNA methylation, and histone modification) has

provided a fresh view to uncover the mechanisms of liver

carcinogenesis (Bayo et al., 2019; Ganai, 2020b; Liu et al.,

2021). Epigenetic phenomena refer to heritable adaptive

reversible changes in gene expression that are not induced by

changes in the DNA sequence (Cavalli and Heard, 2019). In

eukaryotic cells, histone modifications, such as acetylation,

phosphorylation, methylation, SUMOylation, and

ubiquitination are a major source of molecular functional

diversity, and their aberrant regulation is a common feature of

many diseases (Bhat et al., 2021). Histone acetylation represent a

prevalent event in epigenetic regulation and manipulates

oncogenes and tumor suppressor genes during cancer

progression (Lawrence et al., 2016). Generally, histone

acetylation and deacetylation processes are catalyzed by the

opposing activities of histone acetyltransferases (HATs) and

histone deacetylases (HDACs) (Verza et al., 2020). In human

cells, HATs mainly include three subfamilies: the MYST family,

the GNAT family, and the p300/CBP family, and all subfamilies

include transcription factor and steroid receptor co-activators

with catalytic activity (Gajer et al., 2015). According to the

specialized functions of HDACs, they are divided into 4 major

classes of 18 members, namely class I (HDAC1, 2, 3, 8), class II

(IIa 4, 5, 7, 9, and IIb 6,10), class III [Sirtuin1-7 (SIRT1-7)], and

class IV (HDAC11) (Mcclure et al., 2018). Group I HDACs

(Class I, II, and VI) are zinc-dependent amidohydrolases. The

majority of class I HDACs exist in the nucleus, except for

HDAC3 and HDAC8, which can shuttle between the nucleus

and cytoplasm (Ganai, 2019). The distribution of Class I HDACs

show highly specific tissue expression. Class II HDACs are

mostly located in both the nucleus and cytoplasm and require

Class I HDACs to obtain catalytic activity (Martin et al., 2007).

The second group of mammalian HDACs, Sirtuins, are named

for their homology to the yeast silent information regulator 2

(Sir2) gene. Sirtuins are structurally and functionally distinct

from Group I HDACs in that their deacetylase activity is NAD +

dependent (Bheda et al., 2016). HATs are involved in histone

acetylation by the transfer of acetyl groups from acetyl-CoA to

lysine residues located on the histones, leading to an open state of

chromatin and allowing access of transcription factors and

promoting gene transcription. Conversely, HDACs erase the

acetyl groups from the lysine residues located on N-terminal

ends of histone proteins and recover the positive charge of lysine,

resulting in a closed state of chromatin and silencing gene

expression (Gray and Dangond, 2006; Falkenberg and

Johnstone, 2014; Ganai, 2020c). Histone acetylation has been

described to be capable of post-transcriptionally modulating

various biochemical pathways that are essential for

tumorigenesis (Biswas and Rao, 2017). Because HATs/HDACs

can reversibly control the modifications (Tomaselli et al., 2020), it

is appealing to develop epigenetic drugs as one of many tools in

the fight against liver cancer.

HCC progression is a complex process with dysregulated

cellular and molecular events driven by aberrant genetic and

epigenetic activities. In particular, the pathogenesis of Hepatitis B

virus X protein (HBx)/hepatitis C virus/nonalcoholic

steatohepatitis-mediated HCC is tightly related to HATs/HDACs

activities (Tsukiyama-Kohara, 2012; Liu et al., 2015; De Conti et al.,

2017). Recently, quantitative acetylome analysis and lysine

acetylome study revealed that abnormal histone modifications

may predict prognosis in HCC patients (Zhao et al., 2020; Chai

et al., 2021). Furthermore, several liver-targeting HDAC inhibitors

potently suppress HCC growth and animal and preclinical studies

with HDAC inhibitors suggest survival benefits (Yeo et al., 2012;

Afaloniati et al., 2020; Tapadar et al., 2020). However, the role of

acetylated proteins and the precisemechanism of individualHDACs

in HCC progression is still not clear. In the present review, we

provide an explicit summary of the roles and the underlying

regulatory mechanisms of histone acetylation modification in

HCC, which will provide us with new strategies for the

treatment of HCC.

2 Regulatory mechanism underlying the
development of hepatocellular carcinoma

2.1 Histone acetylation is implicated in
hepatocellular carcinoma metastasis and
angiogenesis

Cancer metastasis is the primary obstacle to successful

treatment of HCC. Epithelial-mesenchymal transition (EMT),
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which is characterized by the loss of epithelial cell markers

epithelial-cadherin (E-cadherin), as well as the increased

expression of the mesenchymal proteins such as N-cadherin,

Vimentin, α-smooth muscle actin (α-SMA), and the EMT-

transcription factors Snail, Slug, Twist, ZEB (Wang et al.,

2018), is an essential process in invasion and metastasis of

cancer cell (Dong et al., 2019). Recent evidence has suggested

that aberrant acetylated activity of EMT-related genes and EMT

upstream genes were tightly associated with tumorigenicity and

HCCmetastasis (Han et al., 2018). To drive HCCmetastasis from

primary tumors, HDACs-mediated histone acetylation restrain

E-cadherin expression or prompt mesenchymal proteins

transcription, thereby facilitating migration and invasion in

HCC (Han et al., 2019; Hu et al., 2019). On the contrary,

EMT process and cell migration in HCC was suppressed by

overexpression of the non-acetylation Vimentin (Guo et al.,

2018). β-catenin pathway is one of the critical regulatory

pathways in EMT process and cancer metastasis, and the

acetylated status of β-catenin or the upstream signal protein

kinase B (PKB) might mediate the canonical Wnt pathway in

HCC (Chen et al., 2013; Yuan et al., 2020; Han et al., 2021).

Interestingly, as the substrate for acetylation reactions, acetyl-

CoA plays an important role in epigenetic modifications due to

its dynamic association with histone acetylation; and acyl-CoA

thioesterase 12 have been reported to epigenetically inducing

TWIST2 expression and the promotion of EMT in HCC (Lu

et al., 2019). Therefore, biological products that interact with

HDAC to correct aberrant acetylated activities provide an

attractive approach for cancer therapy (Huo et al., 2021;

Zhang et al., 2021). Panobinostat, a new hydroxamic acid-

derived histone deacetylase inhibitor (HDACI) has shown

promising anticancer effects by inhibiting HCC growth and

metastasis recently (Song et al., 2013). However, opposite

results highlighted that HDACI promote the expression of

Snail and induce EMT in hepatoma cells, thus limiting the

clinical outcome of HDACI-based therapies in HCC (Xu

et al., 2018; Xiao et al., 2020).

Angiogenesis has a key role in the formation of a new vascular

network and HCC is largely dependent on angiogenesis for its

energy supply during metastasis process (Morse et al., 2019).

Angiogenic gene, such as vasohibin 2 and integrin αV subunit

gene, were transcriptionally activated by histone modification and

promotes angiogenesis in HCC (Xue et al., 2013; Cai et al., 2018; Cai

et al., 2019). Angiogenesis is driven by hypoxic microenvironment,

and the cellular response to hypoxia is triggered by the transcription

factor hypoxia-inducible factors (HIFs) (Pugh and Ratcliffe, 2003).

HIFs play a critical role in the adaptation of cancer cells to hypoxic

conditions by activating the transcription of several pro-oncogenic

genes (Albadari et al., 2019). Increasing evidence showed that the

stability and activity of HIF-1α and HIF-2α were precisely regulated
by acetylation modification, thereby contributing to the subsequent

EMT process and HCC metastasis (Yoo et al., 2008; Liu et al., 2013;

Sun et al., 2017; Cao et al., 2020). In contrast, HDACI destabilizes

HIF-1α and diminishes its transcriptional activity during hypoxic

microenvironment (Lee et al., 2016). Although the antiangiogenic

activity of HDACI has been determined to be associated with

decreased expression of proangiogenic genes, the specific effect of

individual HDAC enzymes on HCC angiogenesis is still

controversial (Lv et al., 2016). Therefore, more selective novel

HDACIsmight improve the prognosis of patients to a greater extent.

In addition, histone acetyltransferase p300 and hMOF are

involved in inducing HCC migration and vascular invasion by

mediating the acetylation of some oncogenes and enhancing their

transcriptions (Niu et al., 2020; Pote et al., 2020; Liang et al.,

2021). Epigenetic activation of the microRNAs by histone

acetylation also contributes to EMT process and HCC

metastasis (Zhang et al., 2013; Wen et al., 2020). Hence,

targeting aberrant acetylation present a promising new class of

compounds for anticancer therapy. Given the diverse molecular

targets and downstream cellular pathways of HDACs (Figure 1),

understanding of the context-dependent roles of individual

HDACs on HCC metastasis might give us an advantage to

treat cancers by exploiting this field in a specifically targeted

manner.

2.2 Histone acetylation is implicated in
hepatocellular carcinoma metabolism

Special metabolic change, including the Warburg effect,

unsaturated fatty acid biosynthesis, and so on, induces

molecular changes in cancer cell, thereby allowing it to grow

FIGURE 1
Target genes of HATs/HDACs in HCC. HATs/HDACs
mediated-histone modifications affect key protein function that
govern a wide array of biological processes in HCC metastasis,
apoptosis, and metabolic homeostasis.
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and proliferate in a nutrient-poor environment (Pavlova and

Thompson, 2016). Cancer cells metabolize glucose to lactic acid

to produce ATP and generate metabolic intermediates for the

synthesis of lipids, nucleic acids, and proteins during aerobic

glycolysis (Warburg effect). As such, it represents a potential

therapeutic strategy for cancer. There is an amount of

information indicated that histone acetylation was an

important factor in cancer metabolism. More than

1000 acetylation sites in proteins were identified in human

liver tissues, and metabolic enzymes accounted for a large

amount (Zhao et al., 2010). More importantly, acetylation of

significant enzymes in the metabolic glycolysis pathway is

considered a mainly regulatory mechanism for promoting

their enzymatic activities and liver cancer cell metabolism

(Figure 1)(Table 1) (Hu et al., 2017; Zhang R. et al., 2020;

Gao et al., 2021). The acetylation status of pyruvate kinase

M2 isoform (PKM2), a key enzyme for glycolysis, affects the

metabolic phenotype of HCC cells. HDAC8 reprograms the

glucose metabolism of HCC cells by regulating

K62 acetylation of PKM2 protein, and TSP50 promotes the

Warburg effect by increasing PKM2 K433 acetylation level

(Zhang R. et al., 2020; Gao et al., 2021). Sirtuin-mediated

deacetylation of hnRNP A1 also suppresses glycolysis and

growth in HCC by PKM2 pathway (Yang et al., 2019). Some

HDACI is protective against HCC via correcting aberrant

acetylated activity of fructose-1,6-bisphosphatase (FBP1) gene,

thus, suppressing glucose metabolism and HCC cell growth

in vitro and tumor growth in mice (Yang et al., 2017).

Particularly, the tumor suppressor gene p53 was shown to

revert the Warburg effect and negatively influence the

oncogenic metabolic adaption of cancer cells (Gomes et al.,

2018). p53 was the first non-histone protein shown to be

regulated by histone acetyltransferases and histone

deacetylases, and this type of modification is essential for

p53 activity in HCC. The acetylated p53 is responsible for the

deregulation of glycogen metabolism and represents a promising

therapeutic target for the clinical management of HCC (Chen

et al., 2019; Di Leo et al., 2019). Of note, the glycolytic product

lactate also plays a crucial role in regulating gene transcription by

inhibiting the HDAC enzymes, promoting hyperacetylation in

nucleosomes and active transcriptional state (Liu and Zhang,

2018). The HAT activity of p300/CBP is often aberrantly

controlled in human disease, and targeting p300/CBP has

been shown to produce antitumor effects in vitro against

several hematological malignancies, prostate and colorectal

cancers (Du et al., 2017; Lasko et al., 2017). Increased

expression of p300 has also been reported to correlate with

poor survival and aggressive phenotypes in HCC, and

p300 inhibitor attenuates HCC through epigenetic regulation

of glycolytic function and nucleotide synthesis (Cai et al., 2021).

Increasing evidence suggests that hyperactive lipogenesis

contribute to the establishment and maintenance of the

tumorigenic state. Fatty acid synthase (FASN) is a key enzyme

for the synthesis of long-chain fatty acids from malonyl-CoA,

and FASN overexpression has been identified in many cancer

types (Kuhajda et al., 1994). Stabilization of FASN by ACAT1-

mediated GNPAT acetylation promotes lipid metabolism and

HCC progression (Gu et al., 2020). Acetyl-CoA is an important

metabolic intermediate that act the substrate of histone

acetyltransferases regulating gene expression. It’s reported that

liver mitochondrial fatty acid-derived acetyl-CoA would, like

glucose-derived acetyl-CoA, be used for lipid anabolism and fuel

nuclear acetylation events in citrin-deficient liver (Mention et al.,

2021). Similarly, eicosapentaenoic acid (EPA), a fatty acid with

anti-cancer properties, inhibited HDAC1 and DNMT expression

and activity, thus promoting tumor suppressor gene expression

in HCC (Ceccarelli et al., 2020).

Metabolic reprogramming plays an important role in

supporting liver tumor growth. However, little is known about

the histone modifications that cause HCC metabolic alterations;

and whether metabolic intermediate influence the HCC

progression by epigenetic manner. Those information will be

helpful for better understanding the mechanisms by which

oncogenic metabolites regulate the malignant phenotypes of

cancer.

2.3 Histone acetylation is implicated in
hepatocellular carcinoma apoptosis

Apoptosis is a precise process of programmed cell death that

is crucial for progression of certain cancers including HCC.

TABLE 1 Key proteins modified by acetylation during HCC metabolism.

Acetylated Proteins upstream Regulator metabolic Process references

PKM2 HDAC8 Glucose metabolism (Zhang et al., 2020c)

SIRT2 Warburg effect (Gao et al., 2021)

SIRT1 and SIRT6 Glycolysis (Yang et al., 2019)

p53 P300 lycogen metabolism (Chen et al., 2019)

Glycolytic rewiring (Di Leo et al., 2019)

FASN ACAT1 Lipid metabolism (Gu et al., 2020)
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Accumulating evidence indicates that apoptotic genes can be

regulated by epigenetic mechanisms (Zhou et al., 2019). Some

HDAC inhibitors such as panobinostat (Choi et al., 2021), SAHA

analogues (Srinivas et al., 2016), and traditional Chinese

medicine galangin (Li et al., 2016) have been recently reported

to regulate apoptosis in HCC through controlling the expression

of pro- and anti-apoptotic genes (Buurman et al., 2016; Li and

Seto, 2016). In general, administrations of HDACI can either

directly prompt apoptosis through the extrinsic (death receptor)/

intrinsic (mitochondria) pathway, or induce the susceptibility of

tumor cells to apoptosis (Li and Seto, 2016). SIRT5 and

SIRT6 were considered as the crucial lysine deacetylases that

promotes HCC progression by regulating mitochondrial

apoptosis (Tao et al., 2017; Zhang et al., 2019). HDAC

inhibitor droxinostat could induce apoptosis in HCC cells via

activation of the mitochondrial apoptotic pathway (Liu J. et al.,

2016). Histone acetyltransferase PCAF also accelerates apoptosis

by repressing pro-apoptotic gene BCL2-Associated X (Bax) axis

or acetylating histone H4 and inactivating AKT signaling in HCC

(Zheng et al., 2013; Gai et al., 2015).

One of the several biological functions of p53 is the ability to

prompt apoptotic cell suicide. It’s reported that intracellular

hepatitis B e antigen (HBeAg) and its precore precursors

could inhibit the acetylation and translocation of p53 from

cytosol to the nucleus, resulting in degradation of p53 and

suppression of p53-dependent apoptosis (Liu D. et al., 2016).

Long non-coding RNA (lncRNA) LOC100294145 also impedes

p53 acetylation by interacting with HDAC1 and p300 to prevent

HDAC1 degradation and attenuate p300 activity, leading to

abrogation of p53 activity and subsequent cell proliferation

and apoptosis resistance (Zhang L. Z. et al., 2020). In

addition, the p53 deacetylase, SIRT1, was phosphorylated and

inactivated by AMPK, resulting in p53 acetylation and apoptosis

of HCC cells (Lee et al., 2012). Intriguingly, histone acetylation

may regulate HCC apoptotic processes not only via p53-

dependent way, but also through p53-independent pathways

(Figure 1) (Lou et al., 2015; Liu D. et al., 2016; Lin et al.,

2019). Treatment of pan-deacetylase inhibitor panobinostat or

inducing p53 protein acetylation provide a novel therapeutic

strategy for HCC by inducing apoptosis and inhibiting hepatoma

cell growth (Zhu et al., 2009; Park et al., 2012; Song et al., 2013;

De Matteis et al., 2018; Lim et al., 2020).

2.4 Histone acetylation is implicated in
hepatocellular carcinoma immune
homeostasis

Insufficient T cell infiltration in HCC limits the effectiveness

of immune-checkpoint blockade (ICB) for a subset of patients.

Epigenetic therapy provides further opportunities to activate

cancer-associated transcriptional programs through immune

regulation. It has been demonstrated that a selective

HDAC8 inhibitor potentiates antitumor immunity and

efficacy of immune checkpoint blockade in HCC (Yang et al.,

2021). Similarly, disruption of SIRT7 increases the efficacy of

checkpoint inhibitor via MEF2D regulation of programmed cell

death 1 ligand 1 in HCC cells (Xiang et al., 2020). The

information regarding acetylation modulation of immune in

HCC is increasing, but the mechanism of selective epigenetic

inhibition counteracts the immune-excluded phenotype is still

unclear. Understanding the epigenomes of HCC may improve

the response rate of the combination of ICB with HDACI.

2.5 Histone acetylation is implicated in
cancer signaling pathway of
hepatocellular carcinoma

The alterations of intracellular and extracellular cancer-

associated signaling pathway have profound effects on gene

transcription, cellular differentiation, and tumor

microenvironment, all of which participate in the

establishment and maintenance of the tumorigenic state. It

has been confirmed that many cancer signaling pathways are

linked with the modifications of acetylation (Table 2). An active

area of research is to understand HATs/HDACs mediated-

histone modifications affect key protein function and how

they do so. In many cases, HDACs reverse chromatin

acetylation and alter transcription of oncogenes and tumor

suppressor genes by removing acetyl groups. HDACs also

deacetylate nonhistone cellular substrates that govern a wide

array of biological processes in liver cancer initiation and

progression. HATs and HDACs activity antagonize each other

to balance intracellular acetylation status. The cellular levels and

biological activities of these enzymes provide a direct link

between epigenetic modifications and the control of cancer

signaling, transcription, and cell growth. Furthermore,

acetylation of histone variant H2A.Z is also implicated in the

transcriptional misregulation in cancer signaling pathway in

HCC (Yuan et al., 2021). Aberrant regulation by acetylation

on these signaling pathways and biological processes resulted in

carcinogenesis and progression of HCC. Therefore, acetylation

may function as a promising target of anti-HCC treatment.

3 Anticancer effect of histone
deacetylase inhibitors in
hepatocellular carcinoma

The possibility to modulate epigenetic alterations of tumor

cells by HDACIs provide new treatment options for HCC that

exhibit an inherent resistance to cytostatic agents (Table 3).

HDACs reversibly modify the acetylated histones and

nonhistones, and cause widespread alterations in genes

expression without a change in DNA sequence. The disrupted
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acetylation homeostasis in cells might contribute to

tumorigenesis, and HDACIs can counteract the abnormal

acetylation status of proteins existed in liver cancer cells, and

can reactivate many tumor suppressors (Lai et al., 2006).

Moreover, HDAC inhibitors induced considerable cellular

damage in HCC-derived cells, but did not impair cellular

integrity of primary human hepatocytes (Armeanu et al.,

2005). However, mechanisms of anticancer effects of HDAC

inhibitors are not uniform, which may depend on the cancer

type, HDAC inhibitors, doses, etc. In addition to designing

inhibitors against the aberrant activity of HDAC, targeting

other key molecules that regulate acetylation has also been

shown to exert significant effects in anti-HCC therapy,

although data are limited. For example, B029-2 (a novel

p300 inhibitor) disrupts the metabolic reprogramming of

HCC cells by reducing H3K18Ac and H3K27Ac levels at the

promoter regions of amino acid metabolism and nucleotide

synthesis enzyme genes, and thus is a potential drug for the

treatment of HCC (Cai et al., 2021). Bromodomains are

epigenetic "readers” of histone acetylation and bromodomain

inhibitors also have exhibited promising therapeutic potential for

liver cancer treatment (Cheng et al., 2021).

After the FDA approval of HDAC inhibitors such as vorinostat

and romidepsin as anticancer agents, many novel epigenetic drugs

have been investigated to reverse immune resistance and synergize

with ICB treatment (Zheng H. et al., 2016). It has been confirmed

that disruption of SIRT7 expression or administration of a selective

HDAC8 inhibitor enhances antitumor immunity and efficacy of

TABLE 2 The target cancer signaling pathways by acetylation modifications in HCC.

HATs/HDACs Target Signaling Pathways Cellular Function References

P300 TGF-β1 signaling Cell proliferation Guo et al. (2021)

MOF Estrogen receptor α signaling pathway Cell growth, migration, and invasion Wei et al. (2021)

N-α-acetyltransferase 20 (Naa20) AMPK-mTOR signaling pathway Cell proliferation, autophagy Jung et al. (2020)

- PTEN signaling Cell proliferation and angiogenesis Zhang et al. (2020a)

CBP and SIRT1 PTEN signaling and pro-apoptotic protein caspase-3 Cell proliferation, migration, invasion, and apoptosis Xue et al. (2020)

- p38 MAPK signaling Cell stemness and metastasis Luk et al. (2020)

HDAC3 TRAF6/c-Myc signaling Cell proliferation Wu et al. (2020)

HDAC1 PTEN/Akt signaling Cell proliferation, migration and invasion Tian et al. (2017)

PCAF STAT3 signaling Cell proliferation Zheng et al. (2016b)

HDAC11 AMPK Signaling Cell stemness Bi et al. (2021)

P300/SIRT1 YAP signaling Cell proliferation, apoptosis Wang et al. (2015)

TABLE 3 Anti-cancer effects of HDAC inhibitors in HCC.

HDAC Inhibitor Specificity Effects in HCC References

Panobinostat Classes I, II, IV inhibit HCC growth and metastasis Song et al. (2013)

decreased expression of an anti-apoptotic protein (Choi et al., 2021)

elicits effective responses to sorafenib Lachenmayer et al. (2012)

Vorinostat (SAHA) Classes I, II, IV induce EMT (Xu et al., 2018; Xiao et al., 2020)

sensitize HCC cells to sorafenib Yuan et al. (2014)

sensitize HCC cells to 5-FU Wang et al. (2021)

SAHA analogues Classes I, II, IV inhibits cell proliferation and induces apoptosis Srinivas et al. (2016)

sodium butyrate Classes I, II induce EMT (Xu et al., 2018; Xiao et al., 2020)

suppresses HCC growth Yang et al. (2017)

valproate (VPA) Classes I, II inhibits cell proliferation and induces apoptosis Armeanu et al. (2005)

eicosapentaenoic acid HDAC1 promotes tumor suppressor gene expression Ceccarelli et al. (2020)

Santacruzamate A HDAC2 increasing the sensitivity of radiotherapy Jin et al. (2021)

Droxinostat HDAC3 induces apoptosis Liu et al. (2016b)

PCI-34051 HDAC8 elicits effective responses to ICB Yang et al. (2021)

Rhamnetin SIRT1 enhances the antitumor effect of sorafenib (Li et al., 2021)
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ICB in HCC (Xiang et al., 2020; Yang et al., 2021). In addition to the

effects on the tumor cell growth, HDACI promotes the expression of

MHC class I-related chain molecules A and B (MICA and MICB),

resulting in an increased susceptibility of HCC cells to immune

therapy (Yang et al., 2015). However, nonselective HDAC inhibition

have also shown immunosuppressive effects in cutaneous T-cell

lymphoma patients by reducing the activation and cytokine

production of natural killer cells and dendritic cells (Kelly-Sell

et al., 2012), or increasing the production and

immunosuppressive functions of regulatory T (Treg) cells and

myeloid-derived suppressor cells (MDSCs) (Tao et al., 2007;

Rosborough et al., 2012). Given the diverse outcomes of HDAC

inhibition in immunoregulation, delineating isozyme-specific

HDAC control of HCC tumor microenvironment may provide

insights into rational design of combination immunotherapies.

In recent years, drug combination is an effective strategy to

reduce cell toxicity and improve the efficacy of therapy. Epigenetic

combination therapy that comprise HDACI and demethylating

agents was found to exert significant antitumor effects in HCC

(Venturelli et al., 2007). A portion of HCC patients can benefit from

treatments with sorafenib, adriamycin, 5-fluorouracil and platinum

drugs; however, most of them eventually develop drug resistance,

which partly owing to overexpression of HDACs (Ceballos et al.,

2018). The combination of HDAC inhibitor such as vorinostat

(SAHA) and rhamnetin (an inhibitor of SIRT1) with the

antineoplastic drugs could overcome the drug resistance

(especially sorafenib resistance) in HCC and notably augmented

the anticancer responses (Lachenmayer et al., 2012; Yuan et al., 2014;

Li et al., 2021; Wang et al., 2021). Furthermore, inhibition of

HDAC2 or HDAC4 expression increases the sensitivity of liver

cancer radiotherapy (Tsai et al., 2018; Jin et al., 2021). However,

many epigenetic drugs of small chemical compounds are cytotoxic,

and epigenetic diets are emerging as relatively safe supplementations

(Lewis and Tollefsbol, 2017). Pterostilbene, a small compound

isolated from plants, could serve as an novel epigenetic drug by

suppressing HDAC1 activity (Qian et al., 2017; Qian et al., 2018),

thus opens up new avenue for the prevention and treatment of

epigenetic disorders in HCC. Intriguingly, plant flavonoid luteolin

also exert therapeutic impact by restoring ethanol-depleted

SIRT1 activity in pre-neoplastic liver lesion mouse model (Ganai

et al., 2021). These results suggest that epigenetic diets might correct

aberrant HDACs abilities to maintain acetylation homeostasis

in HCC.

4 Discussion

In the last decades, epigenetic modifications has been

validated to contribute to the process of various kinds of

cancers (Dawson and Kouzarides, 2012). Histone

deacetylation is one of the earliest discovered epigenetic

mechanisms, regulating many cellular events such as

differentiation, proliferation, apoptosis, metabolic changes,

metastasis and immune homeostasis in HCC (Figure 2). As a

FIGURE 2
Roles of HATs/HDACs in HCC. Aberrant HATs/HDACs-mediated histone acetylation trigger oncogenes activation, and loss in tumor suppressor
gene expression to lead the HCC establishment. p53 was the representative non-histone protein that shown to be acetylated/deacetylated by HATs/
HDACs, and this type of modification is essential for p53 activity in HCC. In turn, the metabolic product from HCC also influence the acetylation
modifications.
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key regulator of acetylation status, HATs/HDACs have been

found to dysregulate and/or function incorrectly in HCC, thereby

providing a crucial attractive target for HCC treatment (Table 4).

Currently, there are numerous HDACIs such as vorinostat,

romidepsin, belinostat, panobinostat, tazemetostat, and

chidamide are approved by the United States Food and Drug

Administration for clinical treatment (Li and Seto, 2016; Ganai,

2020a; Nepali and Liou, 2021). However, opposite regulatory

roles of HDACs were observed in HCC. Besides, the efficacies of

HDAC inhibitory compounds observed against solid tumours

have been disappointing, possibly owing to the lack of specificity.

There is reason to believe that maintenance of the balance of

histone acetylation modifications is essential for the regulation of

gene expression and the maintenance of the normal status of

cells. More studies are needed to systematically dissect the role

and precise mechanisms of individual HDACs in HCC, which

will give United States mechanistic-based rationale for the

clinical use of HDACI. In addition, the effectiveness of

nonselective HDACI relies on its broad-spectrum inhibition

against HDACs, long-term uses of broad spectrum

nonselective HDACI are potentially cytotoxic and might

induce intolerable side effects in certain patients. Moreover,

the activities of HDAC are often mechanistically connected

with DNA methylation, miRNAs and lncRNA in HCC

(Zhang et al., 2010; Yuan et al., 2011; Ding et al., 2017).

Therefore, a combination of epigenetic drugs targeting

multiple epigenetic alterations might incur fewer side effects.

In parallel, it is anticipated that future research developing

HDACI with higher target specificity that might be more

efficacious with less toxicity. Because epigenetic modifications

TABLE 4 Expression and target genes of HATs/HDACs in HCC.

HATs/
HDACs

Differential expression
in HCC

Target genes Biological processes/cellular
functions

References

HDAC1 ↑ E-cadherin EMT Hu et al. (2019)

CCAAT/enhancer binding protein β
(C/EBPβ)

EMT Huo et al. (2021)

hypoxia-inducible factor 1α
(HIF-1α)

EMT Yoo et al. (2008); Liu et al.
(2013)

FBP1 gluconeogenesis Yang et al. (2017)

P53 Apoptosis Zhang et al. (2020b)

HDAC2 ↑ E-cadherin EMT Hu et al. (2019)

integrin αV subunit gene cell migration Cai et al. (2019)

HDAC3 - E-cadherin EMT Hu et al. (2019)

ANCR HCC metastasis Wen et al. (2020)

HDAC6 ↓ HIF-1α and VEGFA angiogenesis Lv et al. (2016)

HDAC8 ↓ PKM2 Glycolysis Zhang et al. (2020c)

SIRT1 ↑ hnRNP A1 Glycolysis Yang et al. (2019)

LC3 Autophagy Li et al. (2016)

P53 Apoptosis Lee et al. (2012); Lin et al. (2019)

SIRT2 ↑ protein kinase B EMT Chen et al. (2013)

SIRT5 ↑ cytochrome c mitochondrial apoptosis Zhang et al. (2019)

SIRT5 ↓ Vimentin EMT Guo et al. (2018)

SIRT6 ↑ FOXO3a; Beclin-1 EMT Han et al. (2019)

hnRNP A1 Glycolysis Yang et al. (2019)

Ku70 Apoptosis Tao et al. (2017)

SIRT7 ↑ PGK1 cell proliferation Hu et al. (2017)

MEF2D Immunity Xiang et al. (2020)

P300 ↑ HMGA2 HCC metastasis Liang et al. (2021)

DDK1 HCC metastasis Niu et al. (2020)

P53 glycogen metabolism Chen et al. (2019); Di Leo et al.
(2019)

P53 apoptosis Zhang et al. (2020b)

hMOF ↑ AXL;LGALS1 cell migration Pote et al. (2020)

PCAF ↓ PGK1 cell proliferation Hu et al. (2017)

GLI1 apoptosis Gai et al. (2015)
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occur in a tissue, cell, or gene-specific manner, different targeted

genes of HDACI might cause its distinct influences. Thus, further

identification of the key genes of acetylation modifications and

understanding the underlying regulatory mechanisms might lead

to clinical benefits for HCC.
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