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The present work focused on the identification of durum wheat QTL hotspots

from a collection of genome-wide association studies, for quality traits, such as

grain protein content and composition, yellow color, fiber, grain microelement

content (iron, magnesium, potassium, selenium, sulfur, calcium, cadmium),

kernel vitreousness, semolina, and dough quality test. For the first time a total of

10 GWAS studies, comprising 395 marker-trait associations (MTA) on 57 quality

traits, with more than 1,500 genotypes from 9 association panels, were used to

investigate consensus QTL hotspots representative of a wide durum wheat

genetic variation. MTA were found distributed on all the A and B genomes

chromosomes with minimum number of MTA observed on chromosome 5B

(15) and a maximum of 45 on chromosome 7A, with an average of 28 MTA per

chromosome. The MTA were equally distributed on A (48%) and B (52%)

genomes and allowed the identification of 94 QTL hotspots. Synteny maps

for QTL were also performed in Zeamays, Brachypodium, andOryza sativa, and

candidate gene identification allowed the association of genes involved in

biological processes playing a major role in the control of quality traits.
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Introduction

Cereals are the main species in Mediterranean cropping systems, well adapted to

semi-arid climate conditions and able to give a stable economic sustain to the farmers.

Wheat represents a target crop forMediterranean agriculture and provides 20% of calories

to the world population, highlighting the relevance of this crop for current and future

strategic cultivation (Royo et al., 2017). In this context, we must intensify efforts toward

crop improvement and yield stability under conditions of sustainable agricultural

production.
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Durum wheat (Triticum turgidum ssp. durum) is largely

produced in the Mediterranean basin being used for

human nutrition, prevalently transformed into semolina

for pasta and couscous, but it can also be used to obtain

flour for bread (Kadkol and Sissons, 2016). Due to the

ongoing climate changes and steady increase in average

temperatures, the flour quality of commercial genotypes

may no longer be able to perform well in the coming

years. The importance of grain quality parameters for

durum wheat end-products in the food chain makes it a

crucial tool in maintaining or increasing durum wheat

production under disease pressure and adverse climatic

conditions to preserve the grain quality (Beres et al., 2020).

Since crop quality is a complex trait, it can be either related to

end-use properties or to nutritional content and these parameters

are regulated by different compounds, the genetic determination

of quality traits is rather complicated. Due to the high

environmental influence on crop quality traits, the search for

genes related to them is more complicated such as the transfer of

these characters, despite the presence of novel genomic tools

(Yang et al., 2022).

The research activities for wheat quality improvement have

been focused in the last decade on the valorization of wheat

germplasm collections including old varieties and wild relatives

besides the obtainment and evaluation of new breeding lines.

Several studies have been conducted on the environmental

effects on quality, development of evaluation methods, and

processing for end-users (Pour-Aboughadareh et al., 2021).

Therefore, the nutritional improvement of crops has a

positive impact on millions of people around the world

without the need to alter their eating habits. Currently, the

aspects related to human health have taken great relevance in

cereal breeding programs to develop biofortified crops (Swamy

et al., 2021).

The increasing awareness of the use of cereal-based

products in a healthy diet is currently becoming more and

more evident, and so plenty of studies focus on the

identification and exploitation of natural variations of

bioactive components in the grain. Wheat has a protein

content of about 13% and is the leading source of

vegetable protein in human food, and it is also an

important source of carbohydrates. When wheat is eaten

as a whole grain, it is an excellent source of dietary fiber and

nutrients (Marcotuli et al., 2020). Many of the

abovementioned traits are polygenic traits associated with

quantitative trait loci (QTL) located on all the tetraploid

wheat chromosomes. To identify main effective genes for

wheat quality is a main target of wheat breeders worldwide,

however, the efficiency of selection is constrained by the

following: 1) the decline of genetic diversity in elite

germplasm (by the pursuit of elite high-performing

cultivars) that leads to scarcity or even absence of suitable

loci in modern breeding lines; 2) limited knowledge on

quality traits that are often complex QTL influenced by

numerous genes and environmental conditions; 3) lack of

adequate molecular knowledge to lay the foundation for

molecular breeding. These limitations are more severe in

durum wheat with respect to bread wheat. The underlined

problem can be solved with the use of high-density genetic

maps, new molecular markers, or a wide collection

summarized in GWAS analyses.

GWAS detects the association between genotype and trait of

interest using conserved linkage disequilibrium (LD) present in

a selected panel of accessions (Myles et al., 2009). Recently,

association or LDmapping, utilizing genome-wide markers, has

been adopted in wheat because of two main advantages: 1)

association mapping does not require the cost and time

associated with the population and genetic map

development, and 2) GWAS provides high mapping

resolution as it efficiently uses the multiple historical

crossover events occurred in the diverse association panel

used (Saini et al., 2022).

GWAS give, also, information about MTAs that could be

utilized for candidate gene discovery and characterization

adoptable in breeding programs. A study from Saini et al.

(2022) underlines that among 86,122 wheat lines studied

under various GWAS analyses 46,940 loci associated with

traits were reported, but further utilization of these markers

was largely limited. To solve this situation QTL hotspots

(genomic locations enriched in QTL) are a common and

notable feature when collecting many QTL for various traits

in many areas of biological studies (Wu et al., 2021). This

approach is a good instrument to study at the same time

many traits, trying to find the consensus and most

robust QTL using the information reported in multiple

studies for the reliability of their location and effect

across different genetic backgrounds and environments, as

well as to refine QTL positions on a consensus map (Goffinet

and Gerber, 2000). The approach developed by these

authors is called QTL meta-analysis and it allows the

identification of the genome regions most involved in trait

variation, being a suitable approach to narrow down QTL

regions, to tackle map-based cloning strategies, and to

identify candidate genes (Soriano and Alvaro, 2019; Wu

et al., 2021). Regarding GWAS, a statistical framework

for QTL hotspot detection was reported by Wu et al.

(2021), allowing the integration of independent GWAS

studies in a reference map for durum wheat. The use of

MTA in meta-analysis represents an important and

complementary tool for the identification of new stable

Genome-wide QTL hotspots and the discovery of new

alleles for durum wheat quality. The most powerful

hotspots have also been used for the detection of the so-

called ortho-Meta-QTL, which are conserved among

species and hence will be more reliable and can be used

in different cereals.
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In the present manuscript, MTA detected by GWAS were

projected for the first time on the durum wheat consensus

map from Maccaferri et al. (2019) allowing the identification

of QTL hotspots related to quality traits in durum wheat,

genes directly associated and controlling different quality

traits and regulatory genes, and finally conserved

orthologous regions among bread wheat, durum wheat,

rice, maize, and Brachypodium.

Materials and methods

Quality traits and marker-trait association
database

Genome-wide association studies for quality traits were

retrieved using the keywords “durum wheat quality GWAS”

from the Web of Science server (http://apps.webofknowledge.

com). The marker-trait association (MTA) for the GWAS studies

database was created from 10 studies published from 2015 to

2020 (Table 1). The database reported information on the

diversity panel used, number of genotypes, number of MTA,

and traits analyzed in each study. A total of 57 different traits

were collected from the GWAS studies (Table 2). The MTA

database reported information on the name of the chromosome

and position of the MTA, the confidence interval (CI), and the

phenotypic variance explained (PVE) by each MTA.

Projection on the consensus map

To represent all the MTA in the same linkage map, the

durum wheat consensus map developed by Maccaferri et al.

(2015) was used for projection following the homothetic

approach described by Chardon et al. (2004) as previously

described in Colasuonno et al. (2021). When the CIs were not

reported in the original studies, they were estimated according to

the linkage disequilibrium (LD) decay for each chromosome.

Identification of quantitative trait loci
hotspots

To simplify the MTA information, the associations were

grouped into QTL hotspots. First, the CIs were standardized

using the formula described by Chardon et al. (2004):

S2i � ( CI
3.92

)
2

where CI corresponded with the original CI or the LD decay for

each chromosome. To define a hotspot, the density of MTAs

along the chromosome was calculated as the QTL overview index

(Chardon et al., 2004) for each cM of the genetic map reported by

Maccaferri et al. (2015):

U �
nbQTL
nbE

Total length of map

where nbQTL is the number of MTA and nbE is the total number

of studies.

Breeding QTL hotspots were selected based on three criteria

according to Löffler et al. (2009): small supporting intervals of the

mQTL, high number of initial QTL, and high phenotypic

variance explained (PVE) by the initial QTL. In our case, we

considered for QTL hotspots a CI lower than 20Mb, and

subsequently, a PVE > 0.04 when 5 or more MTAs per

hotspot were reported or PVE > 0.1 when MTAs per hotspots

was 3. QTL hotspot distribution was compared among the

genetic and physical maps of durum wheat (Maccaferri et al.,

2015; Maccaferri et al., 2019). Chromosomes were equally

distributed in five bins based on their genetic and physical

length. Subsequently, the total number of QTL hotspots per

bin was counted.

TABLE 1 Summary of QTL studies included in the meta-analysis.

References Panel Size N MTA Traits

Marcotuli et al. (2015) Agrogen 104 19 AX

Marcotuli et al. (2016) Agrogen 230 7 BG

Colasuonno et al. (2017) Durum collection (7 subspecies) 124 6 YPC

Reimer et al. (2008) Worldwide elite durum wheat 93 20 YPC

Rosello et al. (2018) Mediterranean landraces 172 14 GPC, GS, TW, YPC

Johnson et al. (2019) Cultivars and inbred lines (1997–2014) 243 163 CLOSS, Color, CWT, dif, FIRM, GLUT, GPC, GS,
MIXO, PPO, SASH, SEXT, SPROT, SV, TEXT, VIT, WG, WTS, YPC

Taranto et al. (2020) Italian durum breeding lines 79 44 Gli, Gli + Glu, HMW/LMW, IP, TPT

Alemu et al. (2020) Ethiopian durum wheat 192 20 a*, b*, L*, GL, GW

N’Diaye et al. (2018) Canadian durum breeding lines 192 80 DEE, DOE, DOTE, GPC, GS, PLOSS, PRLOSS, YPC

N’Diaye et al. (2017) Canadian durum wheat collection 169 22 PLOSS, YPC
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Synteny analysis and identification of
candidate genes underlying the MQTL

A total of 12,606 markers associated with QTL for quality

from Triticum ssp. were palmed on the genomes of O. sativa, Z.

mays, and B. distachyon to extract the syntenic positions of the

markers in the three genomes using a mapping approach and

draw a circus diagram for data view for each analysis. The

following reference genomes were used: B. distachyon version

1 (http://www.plantgdb.org/BdGDB/); O. sativa Japonica Group

version IRGSP-1.0 (http://rice.uga.edu/); and Z. mays version

AGPv3 (https://www.maizegdb.org/).

An ad-hoc mapping pipeline was developed to map the

markers and highlight all the syntenic positions between

Triticum spp. and three different monocot genomes. The core

algorithm of this pipeline was the bwa-mem aligner, and the

workflow was divided into three parts: 1) perform three different

mappings for each genome with different quality parameters,

from higher to lower stringency; 2) merge the results of the five

mapping steps considering several quality parameters including

the redundancy of the alignments, the quality of the markers, and

the quality of the alignments; 3) filter by mapping length >60%,

which means to keep all the hits with a mapping length >60%
with respect to the marker sizes, and a spread-scaled quality >10,
which measures the posterior probability that the mapping

position is wrong.

Gene models within syntenic QTL hotspot were identified

using the high-confidence genes reported for the Svevo durum

wheat reference sequence, available at https://wheat.pw.usda.

gov/GG3/jbrowse_Durum_Svevo, and the bread wheat

Chinese spring reference sequence, available at https://wheat-

urgi.versailles.inra.fr/Seq-Repository. Homologous genes from

“Chinese Spring” and “Svevo” were subsequently identified in

the syntheny region of Maize (https://www.maizegdb.org/), Rice

(http://rice.uga.edu/), and Brachypodium (http://www.plantgdb.

org/BdGDB/) databases.

TABLE 2 Traits analyzed for QTL meta-analysis.

Trait Description Trait Description

a* Redness GSC Grain sulfur content

AX Arabinoxylan GSeC Grain selenium content

b* Yellowness GseY Grain selenium yield

BG β-glucan GW Grain width

CLOSS Cooking loss GZnC Grain zinc content

Color Color a, b, or L HMW High molecular weight GS

Color Pasta color IP Immunogenic gluten epitopes

CWT Cooked weight L* Brightness

DEE Deformation energy LMW Low molecular weight GS

dif Difference in color a, b or L MIXO Mixogram score

DOE Dough extensibility PGC Phosphorus grain content

DOTE Dough tenacity PLOSS Pigment loss

Fb Flour yellow color PPO Polyphenol oxidase activity

FIRM Firmness PRLOSS Protein loss

GCaC Grain calcium content SASH Semolina ash

GCdC Grain cadmium content SEXT Semolina extraction

GCuC Grain copper content SPROT Semolina protein

GFeC Grain iron content SV SDS-sedimentation volume

GKC Grain potassium content TEXT Total extraction

GL Grain length TPT Toxic peptides

Gli Gliadins TW Test weight

Glu Glutenins VIT Kernel vitreouness

GLUT Glutork WG Wet gluten

GMgC Grain magnesium content WTS Work to shear

GMnC Grain manganese content YPC Pasta b*

GPC Grain protein content YPC Semolina b*

GPC Protein content YPC Semolina pigment

GS Gluten index YPC Yellow pigment content

GS Gluten strength
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Circular figures of the QTL hotspots and chromosome

synteny were created using the online software Clico FS

(Cheong et al., 2015) available at http://clicofs.

codoncloud.com.

Results

Marker-trait association distribution and
quantitative trait loci hotspots
identification

Ten studies published from 2015 to 2020 reporting

395 MTA for quality traits were collected (Table 1;

Supplementary Table S1). The studies covered a total of

1,598 genotypes (including elite cultivars, breeding lines,

and landraces). MTA was distributed throughout the

14 chromosomes (A and B genomes) of durum wheat. The

number of MTA per chromosome ranged from 15 on

chromosome 5B to 45 on chromosome 7A, with an average

of 28 MTA per chromosome. Forty-eight percent of the MTA

were identified in genome A, and 52% in genome B

(Figure 1A). When the trait was considered, out of

39 traits, yellow pigment content (YPC) presented the

highest number of MTA (24%). Confidence intervals (CI)

ranged from 0.1 to 43 cm with an average of 3.3 cm. For

203 MTA not reporting a CI in the original study, the intra-

chromosomal LD decay was used to establish their CI. Most of

the MTA (97%) showed a CI lower or equal to 10 cm, whereas

the CI for 83% of the MTAs was lower or equal to 5 cm

(Figure 1B). The proportion of the phenotypic variance

explained (PVE) followed a typical quantitative inheritance

as previously reported in other QTL meta-analysis studies

(Soriano and Alvaro, 2019; Soriano et al., 2021). 79% of the

MTA showed a PVE lower than 0.1, whereas it increases to

95% for a PVE < 0.2 (Figure 1C).

In order to simplify the MTA information, QTL hotspots

were defined using the QTL overview density index defined

by Chardon et al. (2004) for each centimeter of the durum

wheat consensus map. A total of 564 peaks were identified

using the mean of the overview index across the

14 chromosomes (0.15) as the threshold, whereas using a

high threshold (0.75), a total of 158 peaks were detected

(Figure 2). These 158 peaks were reduced to 92 QTL hotspots

FIGURE 1
MTA statistics. (A) Number of MTA per chromosome. (B) Confidence interval from original MTA. (C) PVE from original MTA. (D) Percentage of
QTL hotspots per bin in the genetic and physical maps.
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(Supplementary Table S2), 47 in genome A and 45 in genome

B. QTL hotspots were selected based on three criteria for

candidate gene identification. First, hotspots with a physical

distance lower than 20 Mb were identified, and later only

those containing three or more MTA with a PVE higher or

equal to 0.04 were chosen. As a result, 20 QTL hotspots

including 121 MTA with a PVE mean of 0.11 were selected

(Table 3). These hotspots were considered as breeding QTL.

The comparison of the breeding QTL coverage in the

genetic and physical maps resulted in different distribution

along chromosomes. Consensus genetic and physical

chromosomes were defined based on the differentiation of

five bins per chromosome according to its genetic and

physical distance respectively, and each bin corresponding

to 1/5 of the total length. Whereas for the genetic

chromosome the QTL hotspots were equally distributed in

each one of the bins (with 16% on bin 3, 21% on bins 1, 2, and

5, and 22% on bin 4), for the physical chromosome and

unequal distribution was observed, with the higher number

of QTL hotspots on telomeric bins (83% on bins 1 and 5, 12%

on bin 4, and 2 and 3% on bins 2 and 3, respectively)

(Figure 1D).

Synteny among species and MQTL
candidate genes identification

Thanks to the pipeline described in Materials and Method, it

was possible to identify syntenic genome regions between the

Triticum spp., markers associated with the breeding QTL on

three genomes (Brachypodium, Z. mays, and O. sativa) (Figure 3;

Table 4; Supplementary Table S3).

A total of 134markers from the breeding QTL were identified

in syntenic regions (ortho-MQTL) of the Brachypodium (78),

rice (49), and maize (7) genomes. Chromosome 6A showed the

highest number of markers with syntenic regions with other

genomes, whereas chromosomes 3A, 4A, 5B, 6B, and 7B did not

show any homologous marker. Genome A represented 70% of

the syntenic markers.

Using the genomic sequences located in the breeding QTL

from Svevo, Z. mays, O. sativa, and B. distachyum, candidate

genes correlated to ortho-MQTL were identified (Table 5).

The investigation of collinear regions within the five genomes

resulted in the identification of 17 synthenic regions containing

paralogous genes with similar functions that can be considered as

promising candidate genes controlling the quality trait

FIGURE 2
QTL hotspots defined by the overview density index (red line). Blue boxes represent the projected MTAs on the durum wheat consensus map.
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considered (Table 5). On qhotspot1, which was correlated to the

dough extensibility, firmness, grain protein content, and gluten

index and strength, the genes gamma gliadin-A1, A3, A4, and

LMW-A2, HMW glutenin A gene, and LMW glutenin subunit

(GLU-3) were identified on Chinese Spring, Svevo and

Brachypodium, respectively confirming the correlation between

the genomic region considered and the traits control. Instead,

two different genes were identified in the same qhotspot1 for rice

and maize (ATPase, AAA family domain, and paired

amphipathic helix protein Sin3-like 3, respectively).

On qhotspot4.qhotspot10, qhotspot15, qhotspot35,

qhotspot47, qhotspot52, qhotspot64, and qhotspot81 were

identified in Svevo, maize, rice, and Brachypodium genes for

biological processes, such as DNA replication, cell wall

development, and secondary metabolite production, with no

direct correlation with the traits corresponding to the QTL

regions (Table 5). No colinear genes were detected on

qhotspot5 between the species analyzed, but candidate genes

correlated to the dough extensibility and tenacity, grain protein

content, gluten index, and strength (gamma gliadin-B1, B2, B4,

B6, delta gliadin-B1, omega gliadin-B3, B6, LMW-B2, and LMW-

B3 genes) were detected in Svevo.

Qhotspot26, qhotspot73, qhotspot79, qhotspot85, and

qhotspot92 showed the same genes for all the genomes

considered, involved in biological process, but not directly

correlated with the traits considered, except for qhotspot92,

which showed a correlation between trait IP and sucrose

synthase genes identified in Chinese Spring, Svevo and

Brachypodium. The other two correlations were detected

between traits and genes on qhotspot33 and qhotspot57 in

Brachypudium and rice, respectively, but no collinearity was

found between species.

Discussion

The detection of major loci for quantitative traits (QTL) is a

key tool of modern genetics to identify candidate genes

controlling polygenic traits. Kernel quality traits are often

quantitative, so controlled by multiple genes/QTL, strongly

influencing the end-product quality of commercial wheat

varieties, and determining the type of products that can be

produced. Thus, it is possible to distinguish a commercial

value at the beginning of wheat production and a

technological value linked to the worldwide market

requirements for end-product uses (Colasuonno et al., 2021).

The development of new genotypes with high-quality value is an

important tool for breeders besides industrial and consumer

requirements. (Colasuonno et al., 2021).

The study of quantitative traits is complex and required the

identification of molecular markers and/or genes tightly linked to

quality traits to be used in Marker Assisted Selection (MAS)

programs. A modern approach based on GWAS, and meta-QTL

analysis allowed the evaluation of wide collections identifying

TABLE 3 Selected QTL hotspots. PVE refers to the mean of all the MTA in the hotspot.

QTL Chr CI (cM) CI Svevo (Mb) CI CS (Mb) N MTA PVE Traits

1 1A 1–7 1.1–7.6 1.3–7.6 11 0.07 Color, DEE, DOE, FIRM, GPS, GS, PPO, SV, WTS, YPC

4 1B 2–5 6.3–8.2 6.0–9.6 7 0.08 CWT, FIRM, DOE, GPC, GS, MIXO, SV

5 1B 15–16 19.5–19.6 22.2–22.9 8 0.07 CWT, DEE, DOE, DOTE, GPS, GS, MIXO, SV

10 1B 117–118 628.2–632.4 633.3–637.8 3 0.13 b*, GPC, YPC

15 2A 119 586.6–596.9 593.5–603.6 3 0.19 L*, YPC

26 2B 182–184 775.7–777.5 787.8–789.6 7 0.10 DEE, dif, GPC, GLUT, PRLOSS, VIT, WG

31 3B 5–6 5.8–15.2 6.2–13.9 5 0.06 CLOSS, CWT, FIRM, WTS, YPC

33 3B 87–88 503.1–512.0 491.4–507.0 7 0.06 Color, CWT, dif, FIRM, GS, MIXO, YPC

35 3B 145–146 749.3–752.6 739.2–742.1 3 0.12 HMW-GS/LMW-GS, YPC

47 4B 19–21 19.1–22.1 19.7–22.6 6 0.14 CLOSS, DOE, GPS, PLOSS, VIT, YPC

49 4B 29–30 26.6–27.0 28.1–28.5 3 0.36 PLOSS, YPC

51 4B 39–41 59.1–75.6 60.5–77.0 5 0.12 b*, TW, YPC

52 4B 59–60 473.1–492.7 469.0–488.7 8 0.11 GPC, PLOSS, PRLOSS, WG, YPC

57 5A 111–115 489.4–503.6 526.4–540.6 7 0.19 CWT, FIRM, GLI, Gli + Glu, WTS

64 6A 1–4 4.7–7.4 6.6–9.5 5 0.04 Color, GL, GLUT, IP, YPC

73 6A 125–129 603.5–615.3 609.1–616.3 6 0.05 AX CLOSS, Color, dif

79 7A 59–61 60.9–63.6 63.1–65.5 7 0.09 GPC, SPROT, VIT, WG, YPC

81 7A 102 148.3–159.4 151.4–161.7 5 0.06 DEE, DOTE, GPC, GPS, YPC

85 7A 179–184 691.0–699.0 697.0–705.1 10 0.12 AX, Color, CWT, dif, FIRM, WTS, YPC

92 7B 204–206 714.7–716.2 734.3–741.2 5 0.09 IP, YPC
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FIGURE 3
Synteny among genomes for the selected quality QTL hotspots. For better visualization of the chromosome links the size of the Brachypodium
and rice chromosomes is multiplied by 10.

TABLE 4 Synteny among species in the QTL hotspot regions. bd, Brachypodium distachyum; os, Oryza sativa; zm, Zea mays.

Chromosome Hotspot Chromosome name

1A qhotspot1 bd1 bd2 bd4 os1 os5 os11 os12 zm9

1B qhotspot4 bd2 os5 os7

1B qhotspot5 bd4 bd2

1B qhotspot10 bd2 bd5 os5

2A qhotspot15 bd5

2B qhotspot26 bd5 os4 zm2

3B qhotspot33 bd2 os1 os5 os6

3B qhotspot35 bd2 bd3 os1 zm9

4B qhotspot47 bd1 os3

4B qhotspot52 bd1 os3 zm1

5A qhotspot57 bd1 bd3 bd4 os3 os9 zm2 zm5

6A qhotspot64 bd1 os6 os7

6A qhotspot73 bd1 bd3 bd5 os2 os3 os8 os10 zm5

7A qhotspot79 bd1 bd3 os8

7A qhotspot81 bd1 os6

7A qhotspot85 bd1 os6

7B qhotspot92 bd3
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TABLE 5 Genes identified through meta-QTL analysis in each qhotspot and detected in the following databases: bread wheat cultivar Chinese Spring
(CS) genome sequence, durum wheat cultivar Svevo genome sequence, Brachypodium db, Rice db, and MaizeGDB.

Traits QTL
hotspot

Chrom Chinese spring Svevo Brachypodium Oryza sativa Zea mays

Color, DEE,
DOE, FIRM,
GPC, GS,
PPO, SV,
WTS, YPC

1 1A Gamma gliadin-A1, A3,
A4, and LMW-A2 gene

HMW glutenin A
gene

LMW glutenin subunit
(GLU-3)

ATPase, AAA family
domain

Paired amphipathic
helix protein Sin3-
like 3

CWT, FIRM,
DOE, GPC,
GS, MIXO, SV

4 1B — Transforming
growth factor-beta
receptor-associated
protein 1 G

Methionine
S-methyltransferase

Methionine
S-methyltransferase

Methionine
S-methyltransferase

CWT, DEE,
DOE, DOTE,
GPS, GS,
MIXO, SV

5 1B Gamma gliadin-B1, B2,
B4, B6, delta gliadin-B1,
omega gliadin-B3, B6,
LMW-B2, and LMW-B3
genes

— Pectin acetylesterase 5 — —

b*, GPC, YPC 10 1B Cysteine protease Dynamin-related
protein

F-box/FBD/LRR-repeat
protein

Dynamin family
protein

—

L*, YPC 15 2A Transcription factor Y
subunit B-3-like

— Leucine-rich repeat-
containing G-protein
coupled receptor 4

— —

DEE, dif,
GPC, GLUT,
PRLOSS,
VIT, WG

26 2B Potassium ion transport — K(+) efflux antiporter 2 Potassium efflux
antiporter

K(+) efflux antiporter
2 chloroplastic

Color, CWT,
dif, FIRM, GS,
MIXO, YPC

33 3B Endonuclease activity Evolutionarily
conserved
C-terminal region 2

Glucan 1,3-beta-
glucosidase A

Selenium-binding
protein

—

HMW-GS/
LMW-
GS, YPC

35 3B Golgi transport complex — Potassium transporter 2 Potassium
transporter

Component of
oligomeric Golgi
complex 4

CLOSS, DOE,
GPS, PLOSS,
VIT, YPC

47 4B Acid-amino acid ligase
activity

— Inositol hexakisphosphate
and diphosphoinositol-
pentakisphosphate kinase
VIP2

WD repeat-
containing protein

—

GPC, PLOSS,
PRLOSS,
WG, YPC

52 4B Transmembrane
9 superfamily member 3-
like

Ethylene response
factor 1 (ERF1)

Transmembrane
9 superfamily member 3

Transmembrane
9 superfamily
member

Transmembrane
9 superfamily
member

CWT, FIRM,
GLI, Gli +
Glu, WTS

57 5A Phosphorelay response
regulator activity

Protein PAT1 1 G Protein PAT1 homolog Glycosyl transferase
family 8

Adenylate kinase

Color, GL,
GLUT,
IP, YPC

64 6A Putative nitric oxide
synthase

— Ubiquitin carboxyl-
terminal hydrolase 2

Ubiquitin protein —

AX CLOSS,
Color, dif

73 6A ABC transporter F family
member 3

— ABC transporter F family ABC transporter ABC transporter F
family member 3

GPC, SPROT,
VIT,
WG, YPC

79 7A Cysteine synthase-like — Cysteine synthase Cysteine synthase -

DEE, DOTE,
GPC,
GPS, YPC

81 7A Cell surface glycoprotein
1-like

— Pyrophosphate--fructose
6-phosphate 1-
phosphotransferase
subunit beta 1

WD domain, G-beta
repeat domain

—

AX, Color,
CWT, dif,
FIRM,
WTS, YPC

85 7A Serine/Threonine-
Protein Kinase

— Serine/threonine protein
phosphatase

Ser/Thr protein
phosphatase

—

IP, YPC 92 7B Sucrose synthase 7-like Sucrose synthase Sucrose synthase 7 — —
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numerous new genes/QTL and the comparison of results through

meta-analysis. In the present study, we provide a wide study for

the evaluation of genetic loci controlling kernel quality traits in

durum wheat through the identification of new stable genome-

wide QTL hotspots, and correlation through a synteny analysis

between different species including Z. mays, B. distachyon, andO.

sativa.

The study has been focused on 10 GWAS studies reporting

57 quality traits recorded in wide collections and

representative of durum wheat genetic variability for

protein content and composition (HMW, LMW), yellow

color, fiber, grain microelement content such as iron,

magnesium, potassium, selenium, sulfur, calcium, cadmium,

kernel vitreousness, semolina, and dough quality test (all

reported in Table 1). A total of 395 MTA, equally

distributed on the A and B genomes, were used in genome-

wide QTL hotspot detection. In order to include all the MTA

in a single map they were projected on the durum wheat

consensus map developed by Maccaferri et al. (2015) as

described by Chardon et al. (2004) and Colasuonno et al.

(2021), estimating the CIs, not reported in the original studies,

according to the linkage disequilibrium (LD) decay for each

chromosome (as reported in materials and method). 97% of

the MTAs reported a CI lower than 10 cm, with a phenotypic

variance explained (PVE) lower than 0.1, these values are in

accordance with those reported by Soriano and Alvaro (2019),

Soriano et al. (2021) for quantitative inheritance.

In order to reduce the number of MTA and simplify the

information, 92 QTL hotspots (47 in genome A and 45 in

genome B) were identified using the QTL overview density

index defined by Chardon et al. (2004). Some features were

observed when comparing the distribution pattern of QTL

hotspots in the genetic and physical maps. Chromosomes

were divided into five bins (genetic and physical) and

percentage of QTL hotspots per bin was calculated (as it is

reported in the Material and Methods section). While QTL

hotspots were equally distributed along the genetic

chromosomes, a different distribution was observed for the

physical chromosomes with higher number of QTL hotspots

on telomeric bins (83% on bins 1 and 5). This is in accordance

with what was reported by several authors in QTL mapping,

which observed that QTL are highly abundant in some

genomic regions, and, frequently, correlated traits are

clustered closely together in some specific loci as compared

to others (Goffinet and Gerber, 2000; Schadt et al., 2003;

Chardon et al., 2004; West et al., 2007; Breitling et al.,

2008; Wu et al., 2008; Wang et al., 2014; Basnet et al.,

2015; Martinez et al., 2016; Yang et al., 2019).

A clustering between QTL and traits has also been

reported in classical MQTL analysis by Soriano et al.

(2021) that grouped 318 QTL including quality, biotic and

abiotic traits in 85 MQTL with number of traits involved in

each MQTL ranging from 1 to 12, and the number of QTL per

MQTL ranged from 2 to 11. This phenomenon may have

several causes, including QTL with high allelic

polymorphisms and interesting pleiotropic effect or closely

linked QTL controlling correlated traits and frequently co-

localized in the same regions (Zhao et al., 2011; Vuong et al.,

2015; Mengistu et al., 2016; Zhang et al., 2020). As the QTL

hotspots can lead to the identification of genes that affect the

traits of interest, and further help to build networks among

QTL hotspots, genes, and traits, the qhotspot detection

analysis at genome-wide level has been a key step toward

deciphering the genetic architectures of quantitative traits in

genes, genomes, and genetics studies (Breitling et al., 2008; Fu

et al., 2009; Neto et al., 2012; Wang et al., 2014; Yang et al.,

2019; Wu et al., 2021).

Previous studies identified ortho-MQTL for yield-related

traits and nitrogen use efficiency (Saini et al., 2021; Singh

et al., 2022). According to these authors, the conserved nature

of the ortho-MQTL suggests that may be associated with

regulatory elements affecting many genes.

In this study, we used the breeding QTL for the investigation

of collinear regions between durum and bread wheat, with

Brachypodium, maize, and rice.

The candidate gene investigation allowed the correlation

between some ortho-MQTL with genes, such as for

qhotspot1 which showed collinearity between Chinese Spring,

Svevo, and Brachypodium, a clear association with DOE, FIRM,

GPC, GS, and genes for gliadin and glutenin. A similar

association was investigated on qhotspot5 where it was

detected on the Chinese Spring genome again genes for

gliadin and glutenin associated with DOE, DOTE, GPS, and

GS. Both these associations are in accordance with data reported

in the literature which located genes encoding glutenin and

gliadin on chromosome groups 1 (Gli-A1, Gli-B1, Gli-D1, Glu-

A1, Glu-B1, Glu-D1, Glu-A3, Glu-B3, and Glu-D3 loci) and 6

(Gli-A2, Gli-B2, and Gli-D2 loci) (Zaefizadeh et al., 2010; Dubois

et al., 2016; Utebayev et al., 2019; Asri et al., 2021).

Another association was detected on qhotspot26, which was

mainly related to protein content traits and showed co-location

with potassium ion transport in wheat. In fact, the influence of

potassium transport efficiency in kernel protein content has been

largely studied and reported in the literature (Beaton and Sekhon,

1985). Analyzing the collinearity with the other genomes used in

this study, the syntheny with rice, maize, and Brachypodium was

also detected.

An important correlation was determined on

qhotspot92 between the gliadins (IP traits) and the gene S.

synthase, which was found in Chinese Spring, Svevo, and

Bachypodium genome sequences. The association between this

trait and the gene was already highlighted by Marín-Sanz et al.

(2022) who reported that genes implicated in starch synthesis,

including S. synthase, were up-or down-regulated in RNAi lines

characterized by a strong reduction in α/β-, ω-, and γ-gliadins.
All the other association qhotspot/genes corresponded to genes
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involved in biological processes, mainly regulatory or transport

genes.

Conclusion

This study aimed to a better understanding of the genetic

architecture controlling quality traits in durum wheat. GWAS is

considered a powerful and complementary tool to QTL analysis

for the detection of genes directly correlated to phenotypic traits.

However, a meta-analysis of GWAS permits to identify

consensus regions among different germplasm controlling

different traits and regulatory genes which for some of them

play a major role in the control of the trait per se. Comparative

genomics analysis among bread and durum wheat, rice, maize,

and Brachypodium allowed the identification of the conserved

orthologous set of DNA sequences for candidate genes

underpinning quantitative traits. The strict relation between

comparative genomics and gene identification emphasizes the

importance of the orthologous genes identified, opening the

possibility to transfer information across species.
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