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Genomic regions governing days to heading (DH), grain filling duration (GFD),

grain number per spike (GNPS), grainweight per spike (GWPS), plant height (PH),

and grain yield (GY) were investigated in a set of 280 diverse bread wheat

genotypes. The genome-wide association studies (GWAS) panel was genotyped

using a 35K Axiom Array and phenotyped in five environments. The GWAS

analysis showed a total of 27 Bonferroni-corrected marker-trait associations

(MTAs) on 15 chromosomes representing all threewheat subgenomes. TheGFD

showed the highest MTAs (8), followed byGWPS (7), GY (4), GNPS (3), PH (3), and

DH (2). Furthermore, 20 MTAs were identified with more than 10% phenotypic

variation. A total of five stable MTAs (AX-95024590, AX-94425015, AX-

95210025 AX-94539354, and AX-94978133) were identified in more than

one environment and associated with the expression of DH, GFD, GNPS,

and GY. Similarly, two novel pleiotropic genomic regions with associated

MTAs i.e. AX-94978133 (4D) and AX-94539354 (6A) harboring co-localized

QTLs governing two or more traits were also identified. In silico analysis

revealed that the SNPs were located on important putative candidate genes

such as F-box-like domain superfamily, Lateral organ boundaries, LOB,

Thioredoxin-like superfamily Glutathione S-transferase, RNA-binding domain

superfamily, UDP-glycosyltransferase family, Serine/threonine-protein kinase,

Expansin, Patatin, Exocyst complex component Exo70, DUF1618 domain,

Protein kinase domain involved in the regulation of grain size, grain number,

growth and development, grain filling duration, and abiotic stress tolerance. The

identified novel MTAs will be validated to estimate their effects in different

genetic backgrounds for subsequent use in marker-assisted selection (MAS).
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Introduction

Bread wheat (Triticum aestivum L., 2n = 6x = 42) is one of the

most important staple food and the world’s highest-grown and

traded cereal. It provides about 21% of calories and 19% of day-

to-day protein to approximately 4.5 billion global populations

(Braun et al., 2010). The annual gain in wheat yield should be

increased from the current level of around 1%–1.6% to meet the

food demand of the estimated global population of 9 billion by

the year 2050 (Wheat Initiative, 2013; FAO, 2017). The available

resources likely be reduced to a great extent; the problem will be

further complicated by the erratic rainfall, reduced water table,

change in temperature, and reduced soil health. For sustainable

crop production, we need to increase the yield potential, and

multiple stress tolerance and improve input use efficiency along

with climate-smart agronomic practices (Giraldo et al., 2019).

Integration of modern plant breeding tools like marker-aided

selection (MAS), marker-assisted recurrent selection (MARS),

genomic selection, and speed breeding with conventional

breeding approaches is of paramount importance to enhance

yield gain in wheat (Krishnappa et al., 2021).

Grain yield is a genetically complex trait and is an outcome of

the combined effect of several agro-morphological and

physiological traits (Chen et al., 2012; Sukumaran et al.,

2018). Agro-morphological traits include grain number per

spike, thousand kernel weight, biomass, harvest index,

productive tillers number, spike length, grain weight per spike,

and plant height has a significant effect on wheat grain yield

along with phenological traits like days to heading, maturity, and

grain filling duration (Sun et al., 2017;Wang et al., 2017; Liu et al.,

2018; Ma et al., 2018; Jamil et al., 2019; Li et al., 2020). Unlike

grain yield, many of the yield component traits have high

heritability and are easier to select particularly during the

early stages of breeding cycles. The yield plateaus may be

avoided by selecting the yield components, as they offer

additional avenues for genetic gain enhancement. It is

suggested for trait-based breeding using elite and genetically

complementary genotypes to enhance wheat yield

improvement (Liu et al., 2015; Reynolds et al., 2017). The

grain yield and its component traits are complex and

quantitative, as each of these traits is controlled by several

genes with small effects. Furthermore, most of the traits have

low to moderate heritability with significant genotype ×

environment interactions (Kaya and Akcura, 2014). Molecular

breeding is a potential strategy to improve complex traits like

yield and its contributing traits, but a better understanding of

genetic architecture is important for the effective utilization of

molecular tools. Therefore, genetic dissection of agro-

morphological traits is essential for the improvement of wheat

yield.

Two approaches i.e. genome-wide association studies

(GWAS) and quantitative trait loci (QTL) mapping are widely

used methods to dissect the genetic basis of complex quantitative

traits in crop plants. In the past decade, extensive efforts have

been made to identify QTLs associated with grain yield and its

component traits (Gao et al., 2015; Zhang et al., 2016; Jin et al.,

2020; Isham et al., 2021; Kang et al., 2021; Li et al., 2022) in wheat

through bi-parental populations based QTL mapping.

Conventional QTL mapping mainly depends on structured

populations like recombinant inbred lines (RIL), back-crosses

(BC), and doubled haploids (DH). The several shortcomings

associated with QTL mapping are low resolution due to one or

few cross-overs and low marker density (Korte and Farlow,

2013). Recent advances in sequencing technologies created

valuable genomic resources including high-quality genome

data (Brenchley et al., 2012; Chapman et al., 2015), as result,

several high throughput SNP arrays have been developed and

utilized in wheat. GWAS becomes a complementary strategy to

QTL mapping to dissect complex traits, particularly after the

availability of large-scale genomic resources (Saidou et al., 2014).

Unlike bi-parental population-based QTL mapping, GWAS

consists of more genetically diverse lines that harbor several

historical and ancestral recombination events. Additionally, the

use of diverse germplasms as study materials has the potential to

capture superior alleles that have been missed by breeding

practices. GWAS is based on the linkage disequilibrium (LD)

that has formed in a population over the generations, the

genomic regions harboring QTLs can be detected even in the

absence of inclusion of causal mutations among the set of

available molecular markers.

The two common limitations (i.e. limited allelic diversity and

low genomic resolution) associated with the bi-parental QTL

mapping methods can be overcome in the GWAS approach

(Brachi et al., 2011). However, the major challenge for GWAS is

the control of false positives caused by population structure and

family relatedness (Kaler et al., 2020). Incorporation of these two

confounding factors as covariates in the mixed linear model

(MLM) addressed the issue of false positives (Price et al., 2006),

however, false negatives have been significantly increased which

might exclude the important loci. To overcome the false

negatives, multi-locus GWAS methods like multi-loci mixed

linear model (MLMM), fixed and random model circulating

probability unification (FarmCPU), and Bayesian-information

and linkage-disequilibrium iteratively nested keyway (BLINK)

have been developed (Zhang et al., 2019). The statistical power of

BLINK is superior and gives reduced false-positive discovery

compared to many available GWAS models including SUPER

and FarmCPU, as BLINK removes the assumption of equal

distribution of causal genes in the whole genome (Huang

et al., 2019).

GWAS has been successfully used in wheat to dissect the

genetic basis of yield and its component traits. In previous

studies, GWAS panels have been phenotyped in a range of

production conditions including drought, irrigated, and salt

stress to identify QTLs. Several drought-tolerance QTLs

associated with grain yield and its component traits have been
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identified (Edae et al., 2014; Ain et al., 2015; Gahlaut et al., 2019;

Suliman et al., 2021; Bennani et al., 2022; Said et al., 2022).

Similarly, genomic regions governing yield and its attributing

traits in normal irrigated production conditions were also

identified (Sukumaran et al., 2015; Sun et al., 2017; Godoy

et al., 2018; Liu et al., 2018; Ma et al., 2018; Sukumaran et al.,

2018; Bajgain et al., 2019; Jamil et al., 2019; Li et al., 2019; Rahimi

et al., 2019; Sheoran et al., 2019; Ward et al., 2019; Ali et al., 2020;

Alqudah et al., 2020; Pang et al., 2020; Alemu et al., 2021; Eltaher

et al., 2021; Gao et al., 2021; Malik et al., 2021; Saini et al., 2022;

Zhang et al., 2022). Also, QTLs were identified in hostile soils

under salt stress conditions for yield and related traits (Hu et al.,

2021). Similarly, MTAs were also identified for biotic stresses

(Vikas et al., 2022) and quality traits (Sandhu et al., 2021; Rathan

et al., 2022) in wheat. Although several marker-trait associations

(MTAs) were identified in different GWAS studies for yield and

its component traits, there might be several false positives in most

of the studies due to a very low threshold (−log10 p-value ≥ 3.0)

fixation to consider the MTA as a significant. In only a few

GWAS (Gahlaut et al., 2019; Eltaher et al., 2021; Malik et al.,

2021; Zhang et al., 2022), the threshold–log10 p values were

adjusted by the calculation of the corresponding Bonferroni

correction at a significance level of 5% to reduce the false

positives. In wheat, many QTLs/MTAs have been identified;

however, additional genetic studies are warranted using

different genetic materials, as we have not reached a

saturation point (Singh et al., 2021). Thus, more efforts are

required to dissect the genetic mechanisms of yield and

component traits in wheat and to devise marker-based

breeding approaches that involve marker-assisted selection or

genome-wide selection to obtain increased genetic gains. The

present study aimed to identify the genomic region (s) associated

with grain yield and component traits i.e. days to heading (DH),

grain filling duration (GFD), grain number per spike (GNPS),

grain weight per spike (GWPS), grain yield (GY), and plant

height (PH) in a panel of diverse bread wheat genotypes in a

range of environments through the GWAS approach and the

putative candidate genes associated with the SNPs.

Materials and methods

Plant material and field experiments

A set of 280 diverse bread wheat genotypes (Supplementary

Table S1) consisting of advanced breeding lines and commercial

cultivars were used for GWAS analysis. The GWAS panel of

280 genotypes was selected from the All India Coordinated

Research Project on Wheat and Barley. The GWAS panel was

evaluated at five different environments: E1- University of

Agricultural Sciences, research farm, Dharwad (15°29′20″N,
74°59′3″E, 750 m AMSL), E2- ICAR-Indian Agricultural

Research Institute, New Delhi (28°38′30″N, 77°09′58″E, 228 m

AMSL), E3- ICAR-Indian Agricultural Research Institute,

Jharkhand (24°16′58.4″N, 85°21′16.1″E, 651 m AMSL), E4-

ICAR-Indian Institute of Wheat and Barley, Karnal

(29°41′8″N, 76°59′25″E, 250 m AMSL), and E5- Punjab

Agricultural University, Ludhiana (30o54’ N, 75o48′E, 247 m
AMSL). The crop was sown in the first fortnight of November

during the 2020–21 Rabi (winter) season under irrigated

conditions. The genotypes were planted in an augmented

block design with only the checks (DBW187, MACS6222,

WH1124, and WH1142) repeated in a 2 row of 2 m length

with a row spacing of 20 cm.

Phenotyping and phenotypic data analysis

All the genotypes of a GWAS panel were phenotyped for six

quantitative traits i.e. GWPS (gm), GNPS (number), GY (gm),

DH (days), GFD (days); PH (cm) at Dharwad (E1), IARI-Delhi

(E2) (except GNPS), IARI Jharkhand (E3), Karnal (E4) (except

GNPS) locations. However, the GWAS panel was phenotyped for

only three traits i.e. GWPS (gm), GY (gm), and PH (cm) at the

Ludhiana location. Plant height (PH) was recorded at

physiological maturity as the average of randomly selected

three plants of each genotype by measuring from the soil

surface to the spike tip excluding awns. Days to heading (DH)

were recorded as the number of days from the planting when

more than 50% of the plants in each plot showed the emergence

of spikes. Physiological maturity was recorded when the majority

of plants in the plot showed a complete loss of green colour from

the flag leaf. The difference between the days to physiological

maturity and the days to heading was used to compute the grain

filling duration (GFD). Grain number per spike (GNPS) was

calculated as the average of grain number in the main stem spikes

of ten randomly selected plants from each genotype. Similarly,

grains of all the randomly selected 10 spikes of each entry were

weighed separately and the average of 10 spikes was recoded as

grain weight per spike (GWS). Grain yield (GY) in grams for each

genotype was recorded after harvesting the whole plot.

Phenotypic data were analyzed using the R package

‘augmentedRCBD’ (Aravind et al., 2021).

Genotyping and quality control (QC)

Cetyl Trimethyl Ammonium Bromide (CTAB) method

(Murray and Thompson, 1980) was used to extract the

genomic DNA from the leaves of 21 days-old seedlings. The

GWAS panel was genotyped using Axiom Wheat Breeder’s

Genotyping Array (Affymetrix, Santa Clara, CA,

United States) having 35,143 genome-wide SNPs. The

monomorphic, markers with minor allele frequency (MAF)

of <5%, missing data of >20%, and heterozygote

frequency >25% were removed from the analysis. The
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remaining set of 14,790 high-quality SNPs was used in GWAS

analysis (Supplementary Table S2).

Population statistics and GWAS

The pair-wise LD values (r2) between the SNPs located in

each chromosome were calculated with Trait Analysis by

aSSociation Evolution and Linkage (TASSEL) version 5.0

(Bradbury et al., 2007). The LD block size in the whole

genome and three subgenomes was estimated by keeping the

r2 threshold at half LD decay. The principal component analysis

(PCA) and Kinship relationship were done through GAPIT

(Lipka et al., 2012) to understand the structure of the

population used in the GWAS model.

The phenotypic values of GWPS, GNPS, GY, DH, GFD, and

PH of 280 diverse genotypes along with corresponding

genotyping data were used in GWAS analysis. Significant

MTAs were identified using the BLINK (Bayesian-information

and Linkage-disequilibrium Iteratively Nested Keyway) model

(Huang et al., 2019) implemented in Genome Association and

Prediction Integrated Tool (GAPIT) version 3.0 (Wang and

Zhang, 2021) in the R software package. Determining the

correct p-value threshold for statistical significance is critical

to differentiate the true positives from false positives. To

determine the statistical significance threshold in GWAS,

Bonferroni correction has been employed. To estimate

Bonferroni correction, α was set to 0.05 which is divided by

the total number of SNPs. The Bonferroni-corrected SNPs

were considered for significant association and R2 was used to

describe the percentage variation explained (PVE) by

significant MTAs.

In silico analysis

The sequence information of the significant SNPs was used to

search for putative candidate genes with the Basic Local

Alignment Search Tool (BLAST) using default parameters in

the Grain Gene database (https://wheat.pw.usda.gov/GG3/) of

the bread wheat genome (Wheat Chinese Spring IWGSC RefSeq

v2.1 genome assembly (2021)). The genes found in the

overlapping region and within the region of 0.1 Mb intervals

flanking either side of the associated marker were considered

putative candidate genes and their molecular functions were

determined. In addition, their expression patterns were

investigated using the Wheat Expression database (http://

www.wheat-expression.com/) and potential links to

phenotypes were determined using the Knetminer tool

integrated with the Wheat Expression database. The role of

the identified putative candidate genes in the regulation of

GWPS, GNPS, GY, DH, GFD, and PH was also determined

by the previous reports.

Results

The environment-wise heritability and variance components of

the GWAS panel are presented in Table 1. All the studied traits

recorded a wider distribution across the environments i.e. DH, GFD,

GNPS, GWPS, PH, and GY ranging from 50.4 to 116.4 days,

19.6–55.3 days, 11.6–80.1 number, 0.2–4.6 gm, 57.6–134.8 cm, and

133.8–752.3 gm, respectively. The percent CV of all the studied

environments is less than 10.0%, except GFD in E3 (11.1%) and

GWPS in E2 (10.8%). The trend of heritability is more environment-

specific than trait per se, as none of the environments recorded either

only low or high performance for the studied traits. There is much

variation in the trait’s heritability, which ranged from 50.5% to

97.2%.The genotypic variance (σ2G) and environmental variance

(σ2E) are presented in Table 1.

The trait and environment-wise mean values are illustrated

graphically through boxplots and presented in Figure 1. The

location means of DH were recorded as similar and highest for

E2 and E4 followed by E3, and E1, whereas, E1 and E2 were recorded

as similar and highest followed by E4 and E3 for GFD. The

E4 recorded the highest mean for GWPS followed by E3, E1, E5,

and E2. The expression of PH is also similar to DH, as the highest and

lowest are recorded by E4 and E1 respectively. The highest yields were

recorded by E4 and E5, which is higher than the grand pooled mean,

followed by E2, E1, and E3. The general yield trend of E4 and E5 are

similar and higher than the pooled mean, the trend was exactly the

opposite in E1 and E3 as both of them are similar, which are lower

than the grand pooled mean. Whereas, the grain yield of E2 hovers

around the pooled mean (Figure 1). The frequency distribution of

grain yield and component traits in the GWAS panel evaluated at

E1–E5 during 2020–2021 is presented in Figure 2. The genotypes in

the GWAS panel showed continuous frequency distributions for all

the studied traits. Pearson’s correlation coefficient (r2) of DH, GFD,

GNPS, GWPS, PH, andGYwas determined and presented in Table 2.

The grain-related traits i.e. GNPS and GWPS were a significant

positive association with GY in all the environments and pooled

mean except E2, where the association was neutral. A similar trend of

significant positive association was observed between GY and PH in

all the environments and pooled mean, except E4 and E5, where the

association was neutral. However, the correlation between DH and

GFD is consistent and significant negative in all the environments and

pooled mean.

Genome-wide SNP markers distribution

The 35K SNP array was processed to obtain high-quality SNPs, as

a result, a set of 14,790 cured genome-wide SNPs was selected. These

high-quality set of SNPs along with phenotypic data were further used

forGWAS analysis. The highest number of SNPsweremapped on the

B subgenome (5649) followed by the D subgenome (4590), and the A

subgenome (4551). Chromosome-wise highest SNPsweremapped on

1B (1077), followed by 2B (992), 1D (986), 2D (951), 5B (863), 6B
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(766), 7B (760), 2A (756), 1A (751), 7A (750), 3B (726), 5A (699), 5D

(657), 3D (648), 7D (625), 3A (587), 6A (515), 4A (493), 4B (465), 6D

(459), and 4D (264).

Population structure and linkage
disequilibrium

The PCA analysis (Figure 3) indicated that there were no

clear distinct sub-populations in the GWAS panel. The LD was

estimated by calculating the squared correlation coefficient (r2)

for all the SNPs. The LD decay for the whole genome was 4.9 cM

and it was found that the decay was rapid in the A genome

(3.6 cM) followed by the D genome (5.2 cM) and B genome

(5.7 cM).

Genome-wide association studies

A total of 27 Bonferroni-corrected MTAs were identified for

DH, GFD, GNPS, GWPS, PH, and GY. The details of the

identified MTAs are presented in Table 3 and illustrated in

Manhattan plots in Figures 4A,B. The Q-Q plots depicting the

observed associations of SNPs of DH, GFD, GNPS, GWPS, PH,

and GY compared to the expected associations after accounting

for population structure are presented in Figures 4A,B.

TABLE 1 Descriptive statistics, variance, and heritability estimates of grain yield and component traits in GWAS panel evaluated at Dharwad, IARI
Delhi, IARI Jharkhand, Karnal, and Ludhiana during 2020–2021.

Trait Env. Mean ± SD Range CV (%) LSD h2BS GV EV

DH E1 59.2 ± 3.8 50.4–72.2 2.4 4.1 85.2 11.9 2.1

E2 95.8 ± 5.6 81.6–116.4 1.5 4.0 93.5 29.2 2.0

E3 85.7 ± 4.8 69.8–98.8 1.0 2.3 97.2 23.1 0.7

E4 94.7 ± 5.2 81.6–116.6 1.9 5.0 88.2 23.7 3.2

GFD E1 45.0 ± 0.1 31.3–49.1 5.5 6.9 65.1 15.3 6.0

E2 44.9 ± 0.1 26.9–51.9 4.9 6.2 60.5 13.5 4.8

E3 31.6 ± 0.3 19.6–46.3 11.1 9.8 50.5 12.4 12.1

E4 42.7 ± 0.3 28.3–55.3 5.6 6.7 70.9 13.7 5.6

GNPS E1 52.3 ± 8.6 24.2–80.1 5.3 6.6 96.7 161.9 5.5

E3 43.9 ± 12.9 11.6–79.4 4.1 6.0 93.9 70.6 4.6

GWPS E1 2.1 ± 0.6 0.4–3.5 8.7 0.5 91.6 0.4 0.03

E2 1.9 ± 0.6 0.2–3.9 10.8 0.6 88.3 0.3 0.04

E3 2.4 ± 0.3 1.2–3.3 8.7 0.6 61.8 0.1 0.04

E4 2.9 ± 0.5 1.5–4.6 8.9 0.8 73.4 0.2 0.07

E5 2.1 ± 0.8 0.4–3.71 8.3 0.5 95.4 0.6 0.03

PH E1 72.9 ± 6.9 57.6–94.1 2.5 5.2 92.9 44.9 3.4

E2 102.2 ± 7.4 82.0–134.8 2.2 6.5 90.6 50.4 5.2

E3 96.2 ± 7.6 77.5–115.8 2.2 5.9 91.5 46.4 4.3

E4 110.8 ± 6.9 94.8–134.5 2.2 6.7 88.2 42.2 5.7

E5 103.9 ± 5.9 81.3–120.1 2.5 7.2 80.6 27.0 6.5

GY E1 312.7 ± 100.7 143.3–611.8 6.12 54.1 96.4 9835.2 366.1

E2 466.8 ± 88.9 232.6–689.3 4.16 55.1 95.1 7348.2 379.6

E3 256.3 ± 39.3 133.8–372.8 4.67 34.0 89.2 1199.6 144.9

E4 556.9 ± 90.5 297.8–752.3 6.85 108.1 79.7 5746.2 1461.0

E5 532.9 ± 82.8 243.2–734.2 5.1 77.2 88.9 5932.8 744.6

DH: days to heading (days); GFD: grain filling duration (days); GNPS: grain number per spike (number); GWPS: grain weight per spike (gm); PH: plant height (cm); GY: grain yield (gm).

E1: Dharwad; E2: IARI, Delhi; E3: IARI, Jharkhand; E4: Karnal; E5: Ludhiana; SD: standard deviation; CV: coefficient of variation; h2BS: broad sense heritability; GV: genotypic variation;

EV: environmental variation.
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MTAs for grain-related traits

A total of seven significant MTAs were identified for GWPS

in E1, E3, and E4 along with pooled mean on chromosomes 1D,

4D, 5A, 6A, 6B, and 7A, explaining the phenotypic variation

ranging from 6.6% to 17.1%. The major MTA (AX-94539354) on

6A chromosome located at 599.2 Mb explained the highest

phenotypic variation of 17.1%. Similarly, two more MTAs

(AX-94602474 and AX-94883693) were identified in E1, which

were mapped at 15.6 Mb and 40.5 Mb and explained 11.4% and

14.0% of PVE, which were located on 7A and 1D, respectively.

TwoMTAs i.e. AX-94978133 and AX-95105308were respectively

mapped at 465.7 and 113.4 Mb on 4D and 6B chromosomes in

the E4 environment. One MTA each on chromosome 6B (AX-

94387482) and 5A (AX-94469473) were mapped at 337.9 and

521.0 Mb, respectively with the phenotypic variation of 11.0%

and 11.4% at pooled mean and E3 environment. Genome-wise, a

total of three significant MTAs were identified in the A genome

while B and D genomes had two each.

A total of three significant MTAs were identified for GNPS in

E1 and pooled mean on chromosomes 4A, 4D, and 6A. One

MTA (AX-94539354) was mapped at 599.2 Mb on 6A in both

E1 and pooled mean and explained 16.3% and 15.6% PVE,

respectively. The remaining two MTAs (AX-94658573 and

AX-94978133) were identified in E1 and mapped at 715.5 and

465.7 Mb on 4A and 4D, explaining more than 10.0% PVE.

Genome-wise, two significant MTAs were identified in the A

subgenome and one in the D subgenome, however, there is no

representation of the B subgenome.

For GY, four significant MTAs (AX-94473624, AX-94483483,

AX-94709904, and AX-94978133) were identified on 1D, 4D, and

7A chromosomes in E3 and E5 along with pooled mean. Three

MTAs i.e. AX-94483483, AX-94709904, and AX-94978133 were

identified in E3 and mapped at 206.1 Mb, 728.2 Mb, and

465.7 Mb with percent PVE of 8.1, 10.8, and 9.3, respectively.

The remaining MTA (AX-94473624) was identified in E5 and

mapped at 19.3 Mb with a percent PVE of 12.5. Also, one

consistent MTA (AX-94978133) was identified in both E3 and

pooled mean. Genome-wise, three significant MTAs were

identified in the D subgenome and one in the A subgenome,

however, there is no representation of the B subgenome.

MTAs for agro-morphological traits

A total of two MTAs (AX-94724456 and AX-95024590) were

identified for DH in E4 and E3 along with pooled mean. One

MTA i.e. AX-95024590 was identified in two environments

FIGURE 1
Boxplots of grain yield and component traits in GWAS panel evaluated at Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and Ludhiana during
2020–2021.
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(E3 and E4) along with pooled mean. The other MTA (AX-

94724456) was identified in E4 and mapped at 484.4 Mb on the

5D chromosome, which explained a PVE of 14.6%. All the MTAs

explained more than 14.0% PVE and were located on the D

subgenome only. For PH, all three MTAs (AX-94452759, AX-

94498579, and AX-94796636) were identified in E4 with low

percent PVE, which ranged from 5.0 to 7.2. Genome-wise, two

significant MTAs were identified in the D subgenome and one in

the B subgenome, however, there is no representation of the A

subgenome.

The highest number of MTAs (8) were identified for GFD in

E2, E3, and E4 along with pooled mean on 1A, 2B, 4A, 4B, 5A,

and 5B chromosomes. A maximum of four MTAs i.e. AX-

94425015, AX-94702510, AX-94794189, and AX-95210025 were

identified in E4 and mapped at 2.0 Mb, 776.2 Mb, 356.1 Mb, and

585.4 Mb on 4B, 2B, 5B, 5A chromosomes, respectively with PVE

ranging from 18.2% to 20.4%. A total of three MTAs i.e. AX-

94598412, AX-94691261, and AX-95181791 were identified in

E3 and mapped at 5.0 Mb, 505.5, and 584.6 Mb on 4A, 1A, and

5A chromosomes, respectively with PVE ranging from 15.9% to

18.1%. Two MTAs (AX-94425015 and AX-95210025), which was

identified for pooled mean, which was mapped at 2.0 and

585.4 Mb on 4B and 5A chromosomes, respectively with PVE

of 16.7% and 15.4%. E2 environment is represented with one

MTA (AX-95107750) on the 1A chromosome and mapped at

112.9 Mb with a PVE of 9.1%. Genome-wise, five significant

MTAs were identified in the D subgenome and three in the B

subgenome, however, there is no representation of the D

subgenome.

Stable and co-localized MTAs

A total of five consistent MTAs were identified on 3D, 4B, 5A,

6A, and 4D chromosomes for DH, GFD, GNPS, and GY. One

MTA i.e. AX-95024590 was identified in two environments

(E3 and E4) along with pooled mean for DH, which was

mapped at 152.5 Mb with PVE ranging from 14.4% to 21.1%.

Similarly, two MTAs i.e. AX-94425015 and AX-95210025 were

mapped at 2.0 and 585.4 Mb with the PVE ranging from 15.4% to

20.4%, respectively, which were consistently identified both in

E4 and pooled mean for GFD. One each consistent MTA was

identified for GNPS (AX-94539354) and GY (AX-94978133) on

6A and 4D chromosomes, respectively, which were mapped at

FIGURE 2
Frequency distribution of grain yield and component traits in GWAS panel evaluated at Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and
Ludhiana during 2020–2021.
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599.3 and 465.7 Mb with PVE ranging from 9.3% to 16.3%. The

GNPSMTAwas identified in both E1 and pooled mean, whereas,

GY MTA was identified in E3 and pooled mean. Furthermore,

two co-localized MTAs were identified on 6A and 3D

chromosomes. One co-localized MTA (AX-94978133) was

identified on the 4D chromosome for all the three-grain

related traits (GNPS, GWPS, and GY), which was mapped at

465.7 Mb with the PVE ranging from 9.3% to 15.4%. The other

co-localized MTA (AX-94539354) was identified on the 6A

chromosome for GNPS and GWPS, which was mapped at

599.2 Mb with the PVE ranging from15.6% to 17.1%.

Putative candidate genes associated with
MTAs

The significant SNPs associated with GWPS, GNPS, GY, DH,

GFD, and PH were used to identify the putative candidate genes

TABLE 2 Estimates of phenotypic correlation coefficients for grain yield and component traits in GWAS panel evaluated at Dharwad, IARI Delhi, IARI
Jharkhand, Karnal, and Ludhiana during 2020–2021.

Environments Traits GWPS GNPS GY DH GFD PH

Dharwad (E1) GWPS 1.00 0.89** 0.45** −0.25** 0.00 0.23**

GNPS 1.00 0.30** −0.11 0.01 0.13*

GY 1.00 −0.11 −0.09 0.35**

DH 1.00 −0.13** 0.00

GFD 1.00 0.042

PH 1.00

IARI-Delhi (E2) GWPS 1.00 — −0.04 0.050 −0.02 −0.02

GY 1.00 0.04 0.00 0.13**

DH 1.00 −0.22** 0.18**

GFD 1.00 −0.09

PH 1.00

IARI Jharkhand (E3) GWPS 1.00 0.55** 0.27** 0.03 0.01 0.25**

GNPS 1.00 0.12* 0.25** −0.13* 0.18**

GY 1.00 −0.01 −0.1 0.15*

DH 1.00 −0.39** 0.10

GFD 1.00 −0.29**

PH 1.00

Karnal (E4) GWPS 1.00 — 0.21** −0.04 −0.00 0.25**

GY 1.00 0.04 −0.08 0.06

DH 1.00 −0.95** 0.21**

GFD 1.00 −0.21**

PH 1.00

Ludhiana (E5) GWPS 1.00 — 0.89** — — 0.12

GY 1.00 — — 0.09

PH 1.00

Across Environment GWPS 1.00 0.61** 0.44** −0.09 −0.07 −0.21**

GNPS 1.00 0.31** 0.09 −0.19** 0.09

GY 1.00 0.04 −0.03 0.18**

DH 1.00 −0.71** 0.19**

GFD 1.00 −0.25**

PH 1.00

GWPS, grain weight per spike (gm); GNPS, grain number per spike (number); GY, grain yield (gm); DH, days to heading (days); GFD, grain filling duration (days); PH, plant height (cm).
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using the annotated wheat reference sequence (Wheat Chinese

Spring IWGSC RefSeq v2.1 genome assembly (2021)) and are

presented in Table 4. AX-94724456 associated with DH found to

encode F-box-like domain superfamily (TraesCS5D03G0939000).

Similarly, SNPs i.e. AX-95107750, AX-94598412, AX-94598412, AX-

95181791, AX-95181791, AX-94691261 associated with GFD and

encodes Lateral organ boundaries, LOB (TraesCS1A03G0271300),

Thioredoxin-like superfamily (TraesCS4A03G0014500),Glutathione

S-transferase (TraesCS4A03G0014500), RNA-binding domain

superfamily (TraesCS5A03G0929100), UDP-glycosyltransferase

family (TraesCS5A03G0929200), Serine/threonine-protein kinase

(TraesCS1A03G0779800), respectively. Another SNP (AX-

94978133) associated with GNPS found to encode Expansin

(TraesCS4D03G0700700). Also, one SNP i.e. AX-94883693

associated with GWPS found to encode Patatin

(TraesCS1D03G0131800). Two SNPs (AX-94452759 and AX-

94796636) associated with PH found to encode DUF1618 domain

(TraesCS2D03G0036000) and Protein kinase domain

(TraesCS5D03G0455800). Similarly, AX-94473624 associated with

GY found to encode Exocyst complex component Exo70

(TraesCS1D03G0081100).

Discussion

Although the phenotype-based selection in conventional

breeding has improved wheat yield for several decades,

genotype-based strategies may further complement the varietal

improvement programmes. Recent efforts to sequence the wheat

genome could promote the rapid improvement of varieties

through molecular breeding by using genetic resources. In

wheat, many QTLs/MTAs have been identified for yield and

component traits, however additional genetic studies are

warranted using different genetic materials, as we have not

reached a saturation point (Singh et al., 2021). Due to the

genetic complexity of the wheat genome, there is always

possibility to identify novel genomic regions with different

genetic materials. Understanding the genetic basis of complex

traits such as grain yield and component traits through GWAS

with a diverse panel of genotypes can significantly improve QTL

mapping resolution compared to bi-parental populations-based

QTL mapping. Using the genome-wide SNPs and multi-

environment data, several significant SNPs were identified in

this study. Furthermore, stable and co-localized MTAs were also

identified.

The significant effect of environment and genotype-

environment interactions (GEI) was observed in the

expression of all the studied traits. Among all traits, GFD was

the most environment-sensitive trait, whereas, GNPS was

relatively the most stable with minimum environmental

influence. The greater magnitude of the environment and GEI

have also been reported in previous studies for the expression of

yield and component traits in wheat (Eltaher et al., 2021; Malik

et al., 2021; Said et al., 2022). The GWAS panel has been tested in

diverse production conditions, as the magnitude of GEI is a key

factor in the identification of environment-specific QTL(s) as

well as stable QTL(s). The highest and lowest heritability was

recorded for GNPS and GFD, respectively, the trend for the

percent contribution of environmental variation for the

expression of GNPS and GFD was also exactly similar.

Generally, the grain-related traits (GNPS and GWPS) and PH

showed a significant positive association with GY in all the

environments and pooled mean. However, the association

between DH and GFD is consistent and significant negative in

FIGURE 3
Population structure of GWAS panel. (A) Three-dimensional plot of the first three principal components. (B) Heat map of pair-wise kinship
matrix.
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all the environments and pooled mean. The strong positive

association of GY with GNPS, GWPS, and PH was further

supported by the identification of two co-localized MTAs

(AX-94978133 and AX-94539354), associated with the same

traits i.e. GNPS, GWPS, and GY. Significant correlations

found in this study have also been reported in earlier studies

(Juliana et al., 2018; Baye et al., 2020; Ullah et al., 2021). In crop

improvement programmes, significant associations of yield and

TABLE 3 Marker trait associations for grain yield and component traits in GWAS panel evaluated at Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and
Ludhiana during 2020–2021.

Trait Environment SNPs Chr. Position p.value PVE (%)

DH E3 AX-95024590 3D 152,556,482 5.00E-08 21.1

E4 AX-94724456 5D 484,426,977 2.04E-07 14.6

AX-95024590 3D 152,556,482 3.17E-07 14.4

Pooled AX-95024590 3D 152,556,482 6.60E-08 17.3

GFD E2 AX-95107750 1A 112,941,690 6.51E-08 9.1

E3 AX-94598412 4A 5,068,136 4.67E-10 17.7

AX-95181791 5A 584,672,964 3.44E-08 18.1

AX-94691261 1A 505,524,324 1.82E-07 15.9

E4 AX-94794189 5B 356,188,192 1.05E-07 18.2

AX-95210025 5A 585,412,855 2.25E-07 19.0

AX-94702510 2B 776,211,899 1.99E-06 19.9

AX-94425015 4B 2,036,666 3.13E-06 20.4

Pooled AX-94425015 4B 2,036,666 1.47E-06 16.7

AX-95210025 5A 585,412,855 3.37E-06 15.4

GNPS E1 AX-94539354 6A 599,237,214 1.70E-09 16.3

AX-94978133 4D 465,771,817 1.26E-07 11.1

AX-94658573 4A 715,512,644 2.65E-06 10.1

Pooled AX-94539354 6A 599,237,214 2.26E-12 15.6

GWPS E1 AX-94602474 7A 15,695,625 3.51E-08 11.4

AX-94539354 6A 599,237,214 4.67E-07 17.1

AX-94883693 1D 40,579,284 7.14E-07 14.0

E3 AX-94469473 5A 521,025,733 4.76E-07 11.4

E4 AX-94978133 4D 465,771,817 1.62E-11 12.5

AX-95105308 6B 113,453,322 1.09E-06 6.6

Pooled AX-94387482 6B 337,941,809 3.39E-07 11.0

PH E4 AX-94452759 2D 8,890,070 5.04E-08 5.4

AX-94498579 3B 82,448,998 1.51E-07 5.0

AX-94796636 5D 294,585,572 2.23E-06 7.2

GY E3 AX-94978133 4D 465,771,817 1.66E-08 9.3

AX-94483483 1D 206,101,173 2.09E-07 8.1

AX-94709904 7A 728,244,062 1.49E-06 10.8

E5 AX-94473624 1D 19,313,725 2.74E-09 12.5

Pooled AX-94978133 4D 465,771,817 3.87E-06 15.4

DH: days to heading (days); GFD: grain filling duration (days); GNPS: grain number per spike (number); GWPS: grain weight per spike (gm); PH: plant height (cm); GY: grain yield (gm);

E1: Dharwad; E2: IARI, Delhi; E3: IARI, Jharkhand; E4: Karnal; E5: Ludhiana; SNPs: single nucleotide polymorphisms; PVE%: percent phenotypic variation explained.Gene and marker

names were italicized.
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FIGURE 4
(A) Manhattan and respective-QQ plots for days to heading, grain number per spike, and grain filling duration in GWAS panel phenotyped at
Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and Ludhiana during 2020–2021. (B)Manhattan and respective-QQ plots for grain weight per spike,
plant height, and yield in GWAS panel phenotyped at Dharwad, IARI Delhi, IARI Jharkhand, Karnal, and Ludhiana during 2020–2021.
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component traits in desired direction are always beneficial for

simultaneous improvement of the associated traits. Furthermore,

for negatively associated traits, it is advised to adopt breeding

methods that could break the undesirable linkages, so that the

traits can be independently improved.

PCA result of the filtered SNP data showed the allele frequencies

of the genotypes were evenly distributed without any distinct sub-

populations in the GWAS panel. The even distribution of allele

frequencies in the GWAS panel was achieved by carefully selecting

advanced breeding lines for different wheat growing zones in India,

representing five agro-ecological zones, namely the Northern Hills

Zone and North Western-Plains, North-Eastern Plains Zone,

Central Zone, and Peninsular Zone. The various factors

including size of the population, genetic drift, admixtures,

selection, mutation, non-random mating, pollination behavior,

and recombination frequency may affect the LD, therefore, LD

may vary in different populations (Gupta et al., 2005; Vos et al.,

2017). Self-pollinated crops like wheat usually have larger LD blocks

and hence decay slowly (Yu et al., 2014), whereas, LD decays rapidly

in outcross crop species such as maize (Dinesh et al., 2016). The

presence of high LD across the genome would reduce the QTL

mapping resolution and vice versa (Dadshani et al., 2021).

Under such situations, a better QTL resolution may be

achieved by using genome-wide SNPs. The LD decay was

found to be high and comparable in the B and D subgenomes

(~5 cM) compared to the A subgenome, which had a shorter

decay distance of around ~3 cM. A similar pattern of LD decay

was also observed in other GWAS studies in wheat

(Sukumaran et al., 2015; Rahimi et al., 2019; Sheoran et al.,

2019). Therefore, marker density and population size are two

TABLE 4 Putative candidate genes for grain yield and component traits.

Trait SNP ID Position TransID Putative candidate
genes

Function

DH AX-
94724456

5D:487240908..487243412
(+strand)

TraesCS5D03G0939000 F-box-like domain
superfamily

Heat Stress tolerance in wheat (Li et al., 2018). Regulate root
growth and abiotic stress tolerance in rice (Yan et al., 2011)

GFD AX-
95107750

1A:115131649..115133537 (-
strand)

TraesCS1A03G0271300 Lateral organ
boundaries, LOB

Floral organs development in Arabidopsis (Shuai et al.,
2002). Stress tolerance in potato (Liu et al., 2019a) and wheat
(Wang et al., 2021)

AX-
94598412

4A:5076587..5077492 (-
strand)

TraesCS4A03G0014500 Thioredoxin-like
superfamily

Seed germination (Guo et al., 2013) and disease resistance in
wheat (Shi et al., 2021)

AX-
94598412

4A:5076587..5077492 (-
strand)

TraesCS4A03G0014500 Glutathione S-transferase Growth and development, salt and drought stress tolerance
in wheat (Wang et al., 2019)

AX-
95181791

5A:586571409..586575276
(+strand)

TraesCS5A03G0929100 RNA-binding domain
superfamily

Extend grain filling duration and improve malt barley
agronomic performance (Alptekin et al., 2021)

AX-
95181791

5A:586576183..586579881
(+strand)

TraesCS5A03G0929200 UDP-glycosyltransferase
family

Regulation of grain size and abiotic stress tolerance in Rice
(Dong et al., 2020)

AX-
94691261

1A:507053551..507056672
(+strand)

TraesCS1A03G0779800 Serine/threonine-protein
kinase, active site

High thousand kernel weight and grains per spike in wheat
(Ur Rehman et al., 2019)

GNPS AX-
94978133

4D:465931660..465932025 (-
strand)

TraesCS4D03G0700700 Expansin Capsule number in tobacco (Chen et al., 2016). Grain size in
wheat (Lizana et al., 2010; Calderini et al., 2020)

GWPS AX-
94883693

1D:43497907..43499982
(+strand)

TraesCS1D03G0131800 Patatin Seed size in Arabidopsis (Huang et al., 2001)

GY AX-
94473624

1D:20838814..20851719
(+strand)

TraesCS1D03G0081100 Exocyst complex
component Exo70

Tissue-specific expression in wheat for biotic and abiotic
stress (Zhao et al., 2018). Role in seed development in
soybean (Wang et al., 2016). Pollen development in
Arabidopsis (Markovic et al., 2020)

PH AX-
94452759

2D:9070785..9073543
(+strand)

TraesCS2D03G0036000 DUF1618 domain Role in development and fitness in rice (Wang et al., 2014)

AX-
94796636

Chr5D:
297449170..297458745
(+strand)

TraesCS5D03G0455800 Protein kinase domain OstMAPKKK5 regulates plant height and yield in rice (Liu
et al., 2019)

DH: days to heading (days); GFD: grain filling duration (days); GNPS: grain number per spike (number); GWPS: grain weight per spike (gm); PH: plant height (cm); GY: grain yield

(gm).Gene and marker names were italicized.
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important determinants in GWAS studies and vary in self and

cross-pollinated crops due to varied LD decay.

A total of 27 Bonferroni-corrected MTAs were identified for

GWPS (7), GNPS (3), GY (4), DH (2), GFD (8), and PH (3). The

highest number of MTAs were identified for A subgenome (11)

followed by the D subgenome (10) and the B subgenome (6). A

similar trend on MTAs identified in the A subgenome for yield

and yield-contributing traits (Ain et al., 2015; Godoy et al.,

2018; Alemu et al., 2021). A high level of stringency through

Bonferroni-correction has been followed to consider MTA as

significant, therefore, these MTAs could be valuable for their

further validation in different genetic backgrounds to use them

in MAS.

The identified MTAs (7) for GWPS on chromosomes 1D,

4D, 5A, 6A, 6B, and 7A in this study were novel as the earlier

reported MTAs on the same chromosomes were identified at

different positions. Although many grain-related traits like

thousand kernel weight have been thoroughly studied, GWPS

is comparatively less explored. Edae et al. (2014) identified an

MTA on the 1D chromosome located at 88.5 cM and on the

7A chromosome located at 107.1 cM. A total of three

significant MTAs were identified for another grain-related

trait i.e. GNPS on 4A (599.2 Mb), 4D (715.5 Mb), and 6A

(465.7 Mb) chromosomes. MTAs for GNPS in the different

chromosomes were identified in different GWAS panels in

previous experiments (Edae et al., 2014; Sun et al., 2017;

Godoy et al., 2018; Jamil et al., 2019). However, Russell

et al. (2020) identified an MTA in the same chromosome of

4D at 479.5 Mb, which was similar to that of AX-94978133

located on the 4D chromosome and mapped at 465.7 Mb,

which explained 11.1% of phenotypic variation. All the

identified MTAs explained more than 10% PVE for both

the traits (GNPS and GWPS) except AX-95105308, which

explained only 6.6% PVE.

The fundamental breeding objective of any wheat breeding

program is the higher gains for GY, a highly complex and

environmentally-sensitive economic trait. In the present study,

a total of four significant MTAs were identified on 1D, 4D, and

7A chromosomes for GY. MTAs in the same chromosomes

were also identified in different GWAS panels in previous

studies on 1D (Bajgain et al., 2019; Jamil et al., 2019), 7A

(Jamil et al., 2019; Ward et al., 2019; Russell et al., 2020) at

different chromosomal locations. However, one MTA

(S7A_720744946) on 7A chromosome was mapped at

720.7 Mb position, which is similar to the MTA identified in

the present study i.e. (AX-94709904) on the 7A chromosome,

which was mapped at 728.2 Mb. Furthermore, MTAs for GY

were also identified in different chromosomes in different

GWAS studies with diverse genetic material (Edae et al.,

2014; Ain et al., 2015; Godoy et al., 2018; Li et al., 2019;

Rahimi et al., 2019; Alemu et al., 2021; Suliman et al., 2021).

GWAS of yield component traits including DH, PH, and

GFD led to the detection of 13 genetic loci associated with

these traits. Two MTAs were identified for DH on 3D

(152.5 Mb) and 5D (484.4 Mb) chromosomes. Previous

reports identified MTAs mostly on different chromosomes,

for instance, 3B (Edae et al., 2014; Ain et al., 2015; Gahlaut

et al., 2019; Russell et al., 2020), 2D (Jamil et al., 2019), 1A, 4A,

5A, and 6A (Godoy et al., 2018) chromosomes. Three MTAs

for PH were identified on 2D (88.9 Mb), 3B (824.4 Mb), and

5D (294.5 Mb) chromosomes. Previous reports also identified

MTAs on the same chromosomes 2D (Ward et al., 2019;

Alemu et al., 2021), 3B (Edae et al., 2014; Gahlaut et al.,

2019) and also on different chromosomes (Ain et al., 2015;

Sun et al., 2017; Godoy et al., 2018; Li et al., 2019; Russell et al.,

2020) for PH. Jamil et al. (2019) identified an MTA on the

same chromosome 3B at 824.6 Mb, which was similar to that

of AX-94498579 located on the 3B chromosome and mapped

at 824.4 Mb. The rate of grain filling and the length of grain

filling period are two important determinants of final grain

yield under different production conditions. In the present

study, the maximum number of MTAs (8) was identified for

GFD on 1A, 2B, 4A, 4B, 5A, and 5B chromosomes. Previous

studies also identified on same chromosomes i.e. 1A (Edae

et al., 2014; Jamil et al., 2019), 2B (Jamil et al., 2019), 5B (Edae

et al., 2014; Jamil et al., 2019; Alemu et al., 2021) but different

positions and different chromosomes (Godoy et al., 2018;

Rahimi et al., 2019) for GFD.

A total of two co-localized MTA were identified, which are

associated with multiple traits including GNPS, GWPS, GY,

and DH. One co-localized MTA (AX-94978133) was identified

on 4D associated with three traits (GNPS, GWPS, and GY).

This MTA encodes expansin genes found to have a key role in

wheat grain growth dynamics in wheat (Lizana et al., 2010;

Calderini et al. (2020), increasing capsule number in tobacco

(Chen et al., 2016). The other co-localized MTA (AX-94539354)

identified on 6A was associated with two traits (GNPS and

GWPS). Pleiotropic MTAs that are associated with multiple

traits were also identified for grain yield and the biological yield

on 1A, 4B, and 6B (Ain et al., 2015). Similarly, Co-localized

QTLs associated with yield and component traits were detected

(Alemu et al., 2021; Bennani et al., 2022). Such co-mapped

SNPs will be much useful in marker-assisted selection for

simultaneous improvement of correlated traits. Similarly, five

consistent MTAs were also identified for grain yield and

component traits in the present study. These co-located and

stable MTAs will be suitable candidates for further validation

and utilization in MAS-based varietal improvement

programmes.

The various putative candidate genes underlying MTAs

with high phenotypic variation for DH, GFD, GNPS, and

GWPS were identified through BLAST search (Table 4). The

MTAs identified in various chromosomes were located in gene

coding regions related to transcription factors, a

transmembrane protein, and kinase-like superfamilies. For

example, AX-94978133 associated with GNPS encodes
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expansin (TraesCS4D03G0700700) genes found to have a role

in wheat grain growth dynamics including grain size (Lizana

et al., 2010). Calderini et al. (2020) demonstrated that the

targeted over-expression of an α-expansin in early

developing wheat seeds leads to a significant increase in

grain size without a negative effect on grain number,

resulting in a yield boost under field conditions. Similarly,

constitutive expression of TaEXPA2, an α-expansin gene in

tobacco improved seed production by increasing capsule

number without having any effect on plant growth patterns

(Chen et al., 2016).

One SNP i.e. AX-95181791 associated with GFD encodes

an important RNA-binding domain superfamily

(TraesCS5A03G0929100) that extends grain filling duration

in barley. Glycine-rich RNA-binding protein (HvGR-RBP1)

and a NAC transcription factor (HvNAM1) extend grain

filling duration and improve agronomic performance in

malt barley (Alptekin et al., 2021). Similarly, AX-94691261

was associated with GFD encodes Serine/threonine-protein

kinase (TraesCS1A03G0779800). The role of wheat protein

kinase gene i.e. TaSnRK2.9-5A was studied and found to be

significantly associated with high thousand kernel weight,

whereas, Hap-5A-4 was associated with high grains per

spike (Ur Rehman et al., 2019). Another SNP (AX-

95181791) for GFD encoding UDP-glycosyltransferase

family (TraesCS5A03G0929200) has also been identified.

The role of UDP-glucosyltransferase studied by Dong et al.

(2020) suggests that UDP-glucosyltransferase regulates grain

size and abiotic stress tolerance in rice. One MTA (AX-

95107750) on 1A associated with GFD which encodes

Lateral organ boundaries, LOB (TraesCS1A03G0271300)

has a role in floral organs development in Arabidopsis

(Shuai et al., 2002). One MTA (AX-94883693) on a 1D

chromosome associated with GWPS encodes Patatin

(TraesCS1D03G0131800). The role of Patatin was studied

by Huang et al. (2001) and found its role in seed size in

Arabidopsis. One SNP (AX-94473624) on the 1D chromosome

associated with grain yield encodes Exocyst complex

component Exo70 (TraesCS1D03G0081100) has been found

to have a role in plant growth and development including

tissue-specific expression in wheat for biotic and abiotic stress

(Zhao et al., 2018), seed development in soybean (Wang et al.,

2016), and pollen development in Arabidopsis (Markovic

et al., 2020). Similarly, two SNPs (AX-94452759 and AX-

94796636) on 2D and 5D chromosomes associated with

plant height encodes the DUF1618 domain

(TraesCS2D03G0036000) and the protein kinase domain

(TraesCS5D03G0455800) are involved in various plant

developmental processes. DUF1618 domain has been found

to have a role in the development and fitness of rice (Wang

et al., 2019), and protein kinase domain regulates plant height

and yield in rice (Liu Y. et al., 2019).

Conclusion

The study with 280 diverse set of bread wheat GWAS panel

has shown that DH, GFD, GNPS, GWPS, PH, and GY were

quantitatively inherited traits. The strong positive correlation

between GY and GNPS, GWPS, and PH suggested the possibility

of improving these traits simultaneously. A total of 27 MTAs

including 7 for GWPS, 3 for GNPS, 4 for GY, 2 for DH, 8 for

GFD, and 3 for PH were identified through the GWAS approach.

A total of five stable MTAs were identified in more than one

environment and associated with the expression of DH, GFD,

GNPS, and GY. Also, two novel pleiotropic genomic regions

harboring co-localized QTLs governing two or more traits were

also identified. The environment-specific and pooled-data MTAs

identified in the present investigation represented novel genomic

regions associated with trait expression. Several putative

candidate genes encoding important molecular functions such

as regulation of grain size, grain number, growth and

development, grain filling duration, and abiotic stress

tolerance were identified. Further validation and functional

characterization of the candidate genes to elucidate the role of

these genes in wheat is envisaged. The identified SNPs,

particularly stable (AX-95024590, AX-94425015, AX-95210025,

AX-94539354, AX-94978133) and pleiotropic SNPs (AX-

94978133 and AX-94539354) could be useful in marker-

assisted selection programs to develop wheat varieties with

increased grain yield.
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