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Purpose: Stomach adenocarcinoma (STAD) is one of the common cancers

globally. Cuproptosis is a newly identified cell death pattern. The role of

cuproptosis-associated lncRNAs in STAD is unknown.

Methods: STAD patient data from TCGA were used to identify prognostic

lncRNAs by Cox regression and LASSO. A nomogram was constructed to

predict patient survival. The biological profiles were evaluated through GO

and KEGG.

Results: We identified 298 cuproptosis-related lncRNAs and 13 survival-related

lncRNAs. Patients could be categorized into either high risk group or low risk

group with 9-lncRNA risk model with significantly different survival time (p <
0.001). ROC curve and nomogram confirmed the 9-lncRNA risk mode had good

prediction capability. Patients in the lower risk score had high gene mutation

burden. We also found that patients in the two groups might respond differently

to immune checkpoint inhibitors and some anti-tumor compounds.

Conclusion: The nomogramwith 9-lncRNAmay help guide treatment of STAD.

Future clinical studies are necessary to verify the nomogram.
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1 Introduction

Stomach adenocarcinoma (STAD) is frequently found in the digestive tract (Bray et al.,

2018). It is mostly reported in eastern Asia and South America. There are several risk factors

for STAD, including Helicobacter pylori infection, adenomatous gastric polyps, diet low in

fruits and vegetables and diet high in cured or smoked foods (Wroblewski et al., 2010; Rawla
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and Barsouk, 2019; Akshatha et al., 2021). Although STAD is

treatable surgically in its early stages, advanced STAD has a poor

prognosis. Innovative therapeutics and prognostic models are both

needed to improve prognosis of advanced STAD (Ajani et al., 2017;

Ivey et al., 2022).

Metal micronutrients, especially iron (Fe), zinc (Zn), and

copper (Cu), are essential for life. For example, Zn is involved in

regulation of gene expression, and approximately 2,800 proteins

may bind Zn in vivo (Andreini et al., 2006). Cu is catalyst or

structural cofactor in many cellular activities, including

mitochondrial respiration, immune function, and free radical

scavenging (Festa and Thiele, 2011; Cobine et al., 2021). Despite

its role for normal life, high serum copper level has been linked to

increased risk of cancer (Brady et al., 2014; Tsang et al., 2020) and

atherosclerotic diseases (Reunanen et al., 1992; Ford, 2000; Chen

et al., 2015).

Mostly recently Tsvetkov et al. (2022) demonstrated a novel

mechanism of Cu-induced cell death that is related to mitochondria

dysfunction. This novel form of regulated cell death was termed

“cuproptosis”. Cuproptosis may happen when mitochondrial

enzymes aggregate and leads to mitochondrial stress. Cuproptosis

is different from apoptosis, ferroptosis, or necroptosis. This

discovery suggests mitochondrial Cu homeostasis may be

exploited for cancer therapy.

Here we explored whether cuproptosis-related lncRNAs may

be involved in STAD patient prognosis. The results might help

understand the roles of cuproptosis in the development and

progression of STAD.

2 Materials and methods

2.1 TCGA data

We downloaded RNA sequencing (RNA-seq) and expression

files and mutation files from the Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov/repository). The data

included tumor tissues of 343 STAD patients and 30 matched

normal tissues. Data were downloaded and handled according to

TCGA guidelines.

2.2 Identification of cuproptosis-related
lncRNAs

According to the study by Tsvetkov et al. (2022),

19 cuproptosis-associated genes were evaluated

(Supplementary Table S1). Correlation between cuproptosis-

related genes and differentially expressed lncRNAs was

evaluated. Pearson’s correlation coefficients (R) of gene

expression patterns were used as a measure of gene

coexpression. The PCC threshold to retrieve cuproptosis-

related lncRNAs was 0.4 (|R| > 0.4), with a p value < 0.001.

2.3 Cuproptosis-related lncRNAs
signature for STAD prognosis

The downloaded clinical and demographic data of STAD

patients were analyzed with univariate Cox regression analysis to

identify lncRNAs associated with patient overall survival (OS)

and those associated with cuproptosis were further identified as

candidate lncRNAs for the construction of prognostic signature.

Lasso regression was performed to screen lncRNAs that were

truly correlated with a patient’s survival on the basis of 10-fold

cross-validation. Based on the nine optimal lncRNAs identified,

the risk scores of patients were calculated according to the

following formula:

risk score � ∑
n

i

Xi*Yi

Where X was regression coefficient and Y was expression level of

cuproptosis-related lncRNAs.

A total of 343 STAD patients were allocated to either the

training cohort or the test cohort randomly in a 1:1 ratio for

constructing and validating the cuproptosis-related lncRNAs

signature. Patients in each cohort were classified into either

low--risk group or high-risk group according to the cut-off

value, which was the median risk score (Meng et al., 2019;

Hong et al., 2020). The Chi-square test and the receiver

operating characteristics (ROC) curves were used to help

determine if observed OS was in line with expected OS, and

the 1-year, 3-years, and 5-years OS rates were compared between

the low-risk group and the high-risk group by Kaplan–Meier

analysis. We further constructed a nomogram with cuproptosis-

related lncRNA risk score and established clinical risk factors to

calculated patient survival time. Then concordance index

(C-index) and calibration curves were used to evaluate the

prediction power of the nomogram. Finally, stratified analysis

was used to assess whether the signature retained its predictive

ability in subgroups of patients (stages I–II and stages III–IV).

The “survival”, “rms”, “survminer” and “timeROC” R packages

were used.

2.4 Principal component analysis, gene
ontology and gene set enrichment
analysis

We used principal component analysis (PCA) to characterize

cuproptosis-related lncRNAs expression patterns. PCA is a common

unsupervised method for the analysis of gene expression data. 3D

scatter plots were used to visualize the relationship between the three

variables of samples. The analysis of differentially expressed genes

(DEGs) was performed with the glm method of the “edgeR” R

package. We set the threshold value of log fold change (log2FC) at |

log2FC| ≥ 1, with a false discovery rate (FDR) < 0.05, to identify

important DEGs. Gene Ontology (GO) was used to interpret DEGs
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for the relevant cellular components, biological processes, and

molecular functions. Differential Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways between the high-risk group

and the low-risk group were screened using Gene Set

Enrichment Analysis (GSEA), with a FDR <0.25.

2.5 Immune function

Single-sample GSEA (ssGSEA), an extension of GSEA, was

used to calculate separate enrichment scores for

immunological pathways by the normalized enrichment

score (NES) (Subramanian et al., 2005). Each ssGSEA

enrichment score represents the degree to which the genes

are coordinately upregulated or downregulated within a

sample.

2.6 Tumor mutation burden

We downloaded the somatic mutation file and calculated

each patient’s tumor mutation burden (TMB) score. The

influence of TMB on patient OS was evaluated by

Kaplan–Meier analysis and compared between the high- and

low-risk groups by t-test. Maftools R package was used.

2.7 Tumor immune dysfunction and
exclusion score and drug sensitivity
prediction

To predict treatment response of immune checkpoint blockades

(ICBs), tumor immune dysfunction and exclusion (TIDE) algorithm

was used to identify signatures of T cell dysfunction and signatures

that exclude T cell infiltration into tumors (Jiang et al., 2018). To

predict treatment response of the most important groups of drugs

again STAD, the half-maximal inhibitory concentrations (IC50) were

calculated using pRRophetic as described in Genomics of Drug

Sensitivity in Cancer (GDSC) (Geeleher et al., 2014).

3 Results

3.1 lncRNAs data

Figure 1 illustrates the results of the search and the process of

screening. A total of 16,773 lncRNAs that may be associated with

19 cuproptosis-associated genes were found. Among these lncRNAs,

298 lncRNAsmet the pre-defined criteria ((|R|> 0.4). All 298 lncRNAs
upregulated the expression of cuproptosis genes in the Sankey diagram

(Figure 2A. Univariate Cox regression analysis found that 13 lncRNAs

were prognostic factors of patient survival (Figure 2B).

FIGURE 1
The process of the study.
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3.2 Risk model

To construct a risk model with cuproptosis-related

lncRNAs in STAD, we randomly allocated 343 STAD cases

into the training set and the test set at 1:1 ratio. The chi-square

test showed that the two groups were comparable in terms of

both clinicopathologic and demographic parameters

(Table 1).

To avoid overfitting, nine lncRNAs were further

identified by LASSO regression method (Figures 2C,D. A

formula was established with the expression levels of nine

lncRNAs:

FIGURE 2
Identification of prognostic cuproptosis-related lncRNAs in STAD. (A) The Sankey diagram demonstrates correlation between cuproptosis-
related lncRNAs and cuproptosis-related genes. (B) The prognostic lncRNAs identified by uni-Cox regression analysis. (C) LASSO model, with a 10-
fold cross-validation. (D) The coefficient profile of nine lncRNAs screened by the LASSO model. (E) Correlations between lncRNAs in the risk model
and cuproptosis-related genes.
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Risk score = LINC01094 × (0.5250) +AC022182.1 × (2.02146) +

AC011747.1 × (0.1655) + LINC02476 × (0.1295) + AC005014.2 ×

(−0.6903) + AC090809.1 × (0.2959) + AC084781.2 × (0.3942) +

SENCR × (0.6958) + AC010422.4 × (−0.8166) (Meng et al., 2019).

As expected, the high-risk group had worse survival in each

sample set (Figure 3).

3.3 Assessment of the risk model

The areas under the l-, 3- and 5-years ROC curves (AUC) were

0.719, 0.773, and 0.755 respectively (Figure 4A). The AUC of risk score

was 0.719 and theC-index in the riskmodelwas 0.726, indicting aperfect

predictive ability (Figures 4B,C). In the uni-Cox regression, the hazard

ratios (HR) of the risk scorewas 1.0726 (p< 0.001), and in themulti-Cox

regression, HR of the risk score was 1.092 (p < 0.001) (Figures 4D,E).

3.4 Nomogram

A nomogram model was drawn to predict OS of patients

(Figure 5A). The calibration plots showed the predicted l-, 3-

and 5-years OS was consistent with the actual OS (Figure 5B).

Thus the nomogram was well calibrated, with good prediction

of patient survival. The high value of C index (0.726)

indicated that the nomogram has excellent discriminative

ability.

The results of decision curve analyses to compare the performance

of the nomogram are shown in Figure 5C. The nomogram has greater

net benefit than other clinical parameters in all patients.

3.4 PCA and biological pathways analyses

The 3D scatter diagram showed the low-risk group and the

high-risk group had distinct aggregation features of PCA

(Figures 6A–C). GO analysis indicated related biological

processes included B cell activation signaling pathway,

antigen receptor−mediated signaling pathway, and immune

response−regulating signaling pathway; related cellular

components included immunological synapse, endocytic

vesicle membrane, endocytic vesicle, T cell receptor

complex, and immunoglobulin complex, and related

molecular functions included immune receptor activity,

TABLE 1 Clinicopathologic and demographic characteristics of STAD patients in the training and test cohorts.

Variable Total Training cohort Test cohort p value

≤65 72 (42.6%) 38 (44.71%) 34 (40.48%) 0.6889

>65 97 (57.4%) 47 (55.29%) 50 (59.52%)

Female 69 (40.83%) 30 (35.29%) 39 (46.43%) 0.1882

Male 100 (59.17%) 55 (64.71%) 45 (53.57%)

G1 3 (1.78%) 2 (2.35%) 1 (1.19%) 0.5907

G2 71 (42.01%) 33 (38.82%) 38 (45.24%)

G3 92 (54.44%) 49 (57.65%) 43 (51.19%)

Unknown 3 (1.78%) 1 (1.18%) 2 (2.38%)

Stage I 24 (14.2%) 10 (11.76%) 14 (16.67%) 0.8193

Stage II 46 (27.22%) 23 (27.06%) 23 (27.38%)

Stage III 68 (40.24%) 35 (41.18%) 33 (39.29%)

Stage IV 20 (11.83%) 11 (12.94%) 9 (10.71%)

Unknown 11 (6.51%) 6 (7.06%) 5 (5.95%)

T1 13 (7.69%) 8 (9.41%) 5 (5.95%) 0.1533

T2 29 (17.16%) 9 (10.59%) 20 (23.81%)

T3 74 (43.79%) 39 (45.88%) 35 (41.67%)

T4 47 (27.81%) 25 (29.41%) 22 (26.19%)

Unknown 6 (3.55%) 4 (4.71%) 2 (2.38%)

N0 50 (29.59%) 20 (23.53%) 30 (35.71%) 0.0402

N1 45 (26.63%) 27 (31.76%) 18 (21.43%)

N2 31 (18.34%) 12 (14.12%) 19 (22.62%)

N3 34 (20.12%) 22 (25.88%) 12 (14.29%)

Unknown 9 (5.33%) 4 (4.71%) 5 (5.95%)

M0 148 (87.57%) 75 (88.24%) 73 (86.9%) 1

M1 14 (8.28%) 7 (8.24%) 7 (8.33%)

Unknown 7 (4.14%) 3 (3.53%) 4 (4.76%)
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heparin binding, glycosaminoglycan binding, sulfur compound

binding, immunoglobulin receptor binding, and antigen binding

(Figures 6D,E). GSEA identified genes involved in PI3K−Akt

signaling pathway, cell adhesion, cytokine−cytokine receptor

interaction and chemokine signaling pathway were differentially

expressed between the low--risk group and high-risk group

(Figures 6F,G).

3.5 Correlation analysis between risk
scores and gene mutations

Somatic mutations between the two groups were compared.

The ten most mutated genes were TP53, TTN, PCLO, ZFHX4,

CSMD3, SYNE1, ARID1A, LRP18, MUC16, and ACVR2A. The

high-risk group had more frequent TP53 mutation (Figures

FIGURE 3
Prognosis capability of the model in the three patient sets. (A–C) Distribution of patient with different scores. (D–F) Distribution of patient
survival time. (G–I) The heatmap of nine lncRNAs expression. (J–L) Comparison of OS curves of patients between the two groups of each set. (M,N)
OS curves of stratified by clinicopathologic characteristics in the entire set.
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7A,B) but overall lower TMB (Figure 7C). Patients with higher

scores and lower TMB had the worst prognosis among the four

groups (Figures 7D,E).

3.6 TIDE, immune functions and
prediction of clinical treatment response

The TIDE scores were significantly higher in the high-risk

group compared to the low-risk group. This indicated that TIDE

could be used to evaluate sensitivity to ICB therapy for STAD

patients (Figure 8A). Indeed, several immune-related pathways

had different activities between the two groups. Patients in the

high-risk group had higher activities in terms of T cell

co−inhibition and check−point (Figure 8B). Drug sensitivity

comparison showed most drugs have similar IC50 between the

two groups, and there were eight drugs that had lower IC50 in the

high-risk group: PD−173,074, AZD8055, BEZ235, CGP-60474,

Dasatinib, Pazopanib, TGX221, and HG-6-64-1 (Figure 8C).

4 Discussion

STAD is a common malignancy worldwide. Although the

mortality of STAD has declined due to earlier detection and

treatment advancement including targeted therapy, the OS of

STAD patients remains low due to delayed diagnoses that makes

tumor unresectable. The copper level has been reported to be

increased in cancer patients, which could promote tumor

angiogenesis, progression and metastasis. Recently Tsvetkov

et al. reported cuproptosis, a novel form of regulated cell

death (Tsvetkov et al., 2022). Investigation of cuproptosis-

related genes in cancer could help understand mechanisms of

tumor development. The identification of cuproptosis may also

promote innovations in the development new anti-cancer agents.

Biomarkers, including genetic and epigenetic ones, are

playing a crucial role in cancer treatment and prognosis

(Mishra and Verma, 2010). For example, the TCGA project

classify STAD into four major subtypes with different

genomic profiles to guide targeted therapy (2014). Non-

FIGURE 4
Validation of the model. (A) Time-dependent ROC curve analyses for survival of all patients based on the risk score model. (B) Comparision of
the ROC curves of risk score, patient age, patient gender, tumor grade and tumor stage. (C) The C-index curves of risk score, patient age, patient
gender, tumor grade and tumor stage. (D,E) Uni-Cox and multi-Cox analyses of overall survival for risk score, patient age, patient gender, tumor
grade and tumor stage.
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coding RNA transcripts, such as lncRNAs, can also be used as

biomarkers because lncRNAs might regulate cancer

development (Djebali et al., 2012; Lee, 2012; Huarte, 2015;

Marchese et al., 2017; Mattick, 2018). With the abundant

novel lncRNAs identified recently, the annotation of these

lncRNAs is urgently needed. We found that nine cuproptosis-

related lncRNAs were related to survival of STAD patients. On

one hand, LINC01094, AC022182.1, AC011747.1,

LINC02476, AC090809.1, AC084781.2, and SENCR were

risk factors for STAD patients. On the other hand,

AC010422.4 and AC005014.2 were protective factors for

STAD patients. The underlying mechanisms for the

relationship between STAD prognosis and expression levels

of LINC01094, AC022182.1, AC011747.1, LINC02476,

AC090809.1, AC084781.2, SENCR, AC010422.4 and

AC005014.2 are unknown presently.

Several studies have reported that LINC01094 was associated

with diverse tumors. Jiang et al. (2020) found that

LINC01094 expression was upregulated in clear cell renal cell

carcinoma (ccRCC) in the TCGA database and ccRCC cell lines.

LINC01094 knockdown inhibited ccRCC cell growth and

metastasis via binding miR-224-5p. Increased expression of

LINC01094 was also found in glioma, and was associated with

glioma grade. LINC01094 bound to miR-330-3p in glioma (Zhu

et al., 2020). In ovarian cancer, LINC01094 expression was

elevated and was related to FIGO stage and lymph node

metastasis. LINC01094 expression was also a risk factor for

ovarian cancer patient survival. In ovarian cancer cells,

LINC01094 bound to miR-577 and increased cell

proliferation, migration, and the expressions of β-catenin,
c-Myc and cyclin D1 (Xu et al., 2020). In colorectal cancer,

LINC01094 was also highly expressed and correlated with lymph

node metastasis and TNM stage. LINC01094 promoted

proliferation, invasion, and migration of colorectal cancer cells

by sponging miR-1266-5p (Zhang et al., 2022). Thus

LINC01094 is an oncogene in an array of tumors.

SENCR (Smooth Muscle And Endothelial Cell Enriched

Migration/Differentiation-Associated LncRNA) is a super

enhancer lncRNA originally reported to be overexpressed in

smooth muscle cells and endothelial cells. SENCR promoted

proliferation, differentiation, and migration of endothelial cells

(Bell et al., 2014; Boulberdaa et al., 2016; Sun et al., 2018). Studies

have found that SENCR is closely related to the progress of

several human cancers. Non-small cell lung cancer (NSCLC) had

higher expression of SENCR. Knockdown of SENCR inhibited

the growth and metastasis of NSCLC through miR-1-3p. SENCR

increased CDK4 and CDK6 expression by binding to miR-1-3p

(Cheng et al., 2021). Knockdown of SENCR in cisplatin-resistant

FIGURE 5
Nomogram for survival prediction (A), the calibration curves (B) and the decision curves (C).
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A549 cell reduced cell proliferation, accompanied by decreased

levels of proteins PCNA, MDMX, and P-gp and increased

apoptosis. Overexpressing SENCR could increase

FLI1 expression (Shen et al., 2022).

When we compared somatic mutations between the two

groups, we found mutations were more frequent in the high-

risk group. TP53mutations are very common in cancers, ranging

from 38% to 50% in a variety of solid tumors and in about 5% of

FIGURE 6
PCA, GO, and KEGG analyses. (A–C) 3D scatter plots of sample distribution. (D,E)GO analysis of biological processes, cellular components and
molecular functions. (F,G) KEGG analysis of PI3K−Akt signaling pathway, cell adhesion, cytokine−cytokine receptor interaction and chemokine
signaling pathway.
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primary leukemia. Germline mutations of TP53 are the

underlying cause of Li-Fraumeni syndrome with early-onset

cancers. TP53 (Correa, 2016) mutations may caused by

chemical damage induced by particular mutagens, including

environmental agents. We propose that higher level of Cu in

cancer patients may induce TP53 mutations, which may related

to cuproptosis.

GSEA identified genes of PI3K−Akt signaling pathway might

be differentially expressed between the low-risk group and the

high-risk group. The PI3K/AKT signaling pathway regulates cell

survival and proliferation. Aberrant activation of the pathway is

often associated with tumor progression and resistance to cancer

therapies (LoRusso, 2016). Thus the relationship between

PI3K−Akt signaling pathway and cuproptosis deserves further

studies.

We predicted treatment response of the drugs again STAD

using pRRophetic (Geeleher et al., 2014) and found that

cuproptosis may be related to drug sensitivity. Indeed, Tsvetkov

et al. (2022) reported the hydrophilic antioxidant glutathione

(GSH) blocked the toxicity of elesclomol (ES)-Cu by chelating

intracellular Cu. They also found that NCIH2030 lung cancer cells

that rely on galactose-mediated mitochondrial respiration were

much more sensitive to ES-Cu-induced growth inhibition than

cells that rely on glucose-induced glycolysis. The depletion of GSH

by buthionine sulfoximine also increased susceptibility to

cuproptosis in A549 lung cancer cells. Thus it is reasonable to

expect that drugs involved in galactose regulation pathways may

have different effects on cancer cells with different expression of

cuproptosis-related genes.

To conclude, we constructed a nomogram exploiting

cuproptosis-associated lncRNA expression to predict

survival of patients with STAD. Cu is a crucial metal with

redox properties. Depending on it’s concentration in cells,

Cu may be either beneficial or toxic to the cell. Further

studies of the roles of Cu in cancer development will lead to

more innovative therapies (Ge et al., 2022). The usefulness of

FIGURE 7
Tumor mutation burden (TMB). (A,B) The waterfall plots illustrates the frequencies of mutations of genes with different colors representing
different types of mutations. (C) There were significantly higher TMB in the low-risk group compared to the high-risk group. (D) K-M survival curves
show similar patient survival between the high- and the low-TMB groups. (E) K-M survival curves show different patient survival among the four
groups.
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FIGURE 8
Immune functions and prediction of clinical treatment response. (A)TIDE scores. (B) Immune function heat maps. (C) IC50 of eight drugs.
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this nomogram in predicting patient survival and in

treatment decision-making need to be explored in the

future studies.
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