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New technologies, such as next-generation sequencing, have advanced the

ability to diagnose diseases and improve prognosis but require the identification

of thousands of variants in each report based on several databases scattered

across places. Curating an integrated interpretation database is time-

consuming, costly, and needs regular update. On the other hand, the

automatic curation of knowledge sources always results in overloaded

information. In this study, an automated pipeline was proposed to create an

integrated visual single-nucleotide polymorphism (SNP) interpretation tool

called SNPMap. SNPMap pipelines periodically obtained SNP-related

information from LitVar, PubTator, and GWAS Catalog API tools and

presented it to the user after extraction, integration, and visualization.

Keywords and their semantic relations to each SNP are rendered into two

graphs, with their significance represented by the size/width of circles/lines.

Moreover, the most related SNPs for each keyword that appeared in SNPMap

were calculated and sorted. SNPMap retains the advantage of an automatic

process while assisting users in accessing more lucid and detailed information

through visualization and integration with other materials.
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Introduction

Precision medicine is a novel medical approach that customizes healthcare delivery by

performing diagnostic tests, especially genetic sequencing, and analyzing results to select

compatible therapies and treatment plans, rather than performing a general treatment

solution on a large number of patients with varying conditions (Collins and Varmus,

2015; Friedman et al., 2015; Carrasco-Ramiro et al., 2017). In recent years, genetic testing

has become more prevalent and advanced in the clinical setting due to the rapid

development of precision medicine. Progress in high-throughput sequencing

technologies, particularly next-generation sequencing (NGS), has dramatically

improved their applicability across different fields, including hereditary cancer,

pediatrics, and cardiovascular, aiming to diagnose diseases, predict drug reactions,

and select treatment options (Friedman et al., 2015; Stavropoulos et al., 2016;

Nakagawa and Fujita, 2018; Zhang et al., 2020).
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On the other hand, the application of whole-exome

sequencing (WES) and whole-genome sequencing (WGS)

implies that each sequencing could see 200,000–400,000 WES

variants or 3,900,000 WGS variants recognized on each subject

(Yang et al., 2013; Lionel et al., 2018), and hundreds of clinical

variants with potential clinical significance remain even after

multistage filtering (Zhang et al., 2020). Even after interpreting

the variants, ambiguities and inaccuracies can still occur in the

interpretation notes (McCarthy et al., 2014; Wenger et al., 2017).

While recognizing a large number of variants is a critical

milestone in sequencing technology efforts to accurately

interpret have become a considerable obstacle to high-quality

clinical genetic reporting (Zhang et al., 2020), restricting the

development of precision medicine (Good et al., 2014).

Researchers have worked hard over the last few years to

develop accurate, rapid, and cost-effective technologies or

protocols for variant analysis and interpretation, yielding

several distinct approaches. The American College of Medical

Genetics and Genomics (ACMG) and the Association for

Molecular Pathology (AMP) have already published

recommendations for standards and guidelines in sequence

variant interpretation, with detailed rules on evidence,

direction, and strength classification (Richards et al., 2015).

For example, to achieve the classification of pathogenic/benign

variants, four weight levels (“supporting”, “moderate”, “strong”,

and “very strong”) have been created for pathogenic criterion,

while two weight levels (“supporting”, “strong”) have been

created for benign criterion. Creating manually curated

sequence variants interpretation databases is a popular

approach. ClinVar (Landrum et al., 2018), dbSNP (Sherry

et al., 2001; Kitts et al., 2014), and SNPedia (Cariaso and

Lennon, 2011) are the databases with expert-curated content

or community-maintained knowledge and variant

interpretations (Allot et al., 2018). However, manually curated

interpretations necessitate an expert review of each of these

variations individually, which is a time-consuming, costly, and

arduous task. As a result, manually curated interpretations often

have a limited scale and cannot keep up with increasing domain

knowledge. Furthermore, despite the guidelines developed for

variant interpretation, there are still degrees of subjectivity and

uncertainty that can lead to inconsistent classification across

different laboratories (Balmaña et al., 2016; Harrison et al., 2017;

Kim et al., 2019).

Automatically curated databases and tools are developed to

compensate for these shortcomings. LitVar (Allot et al., 2018) is a

powerful semantic search engine for variant information that

addresses issues faced by manually curated tools. It collects

biomedical literature related to a variant using PubMed and

PubTator tools while also utilizing advanced text mining

techniques to compute and extract entities such as diseases

and chemicals that are linked to the variant. It has the

advantage of being automatic, broad, and up to date.

However, the information provided by LitVar on each

variant/SNP is a traditional literature list that requires the

user to read and understand large sections of the paragraph.

Among these approaches, integrated visualization of

information in an automatically updated and curated database

is considered a missing piece of the whole process. Furthermore,

additional valuable data could be further generated from

integrated curated data. Therefore, SNPMap is developed to

facilitate better understanding and comprehension of single-

nucleotide polymorphisms (SNPs), the most common type of

genetic variations.

Materials and methods

The primary reference SNPs were obtained from the

ClinVar using application programming interfaces (API).

These SNPs were selected for their possible relevance to

large amounts of biomedical literature, ensuring the ability

to build a preprocessed database with sufficient information.

When a user initiates a search with SNP that is not pre-selected

in SNPMap, an online workflow (Figure 1) will query relevant

information to build and add new knowledge content to

SNPMap in real-time. This workflow obtains a list of

relevant literature for a specific SNP through a LitVar API

query. Utilizing the PubMed identifiers (PMIDs) of these

literature, literature-related details, such as abstracts,

keywords, etc., are subsequently obtained by accessing

PubTator’s online service. These SNP-related keywords are

divided into three categories (data, genes, and chemicals)

based on PubTator data. Before further using these

keywords, the form of these keywords was standardized

using a python module called LemmInflect (Available from:

https://lemminflect.readthedocs.io).

The significance of the association between a keyword and

SNP depends on how often the keyword appears in all relevant

literature, and this significance was assessed by the frequency of

the two keywords appearing together in the same document. In

the visualization of an SNP, keywords were used to generate

network nodes, where the node size reflects the significance of

the association between keywords and SNPs, and the thickness

of the connecting line between nodes reflects the significance of

the association between the two keywords. Since a keyword can

be associated with multiple SNPs in different works of

literature, through the quantitative assessment of the

significance of keyword and SNP associations, we also

obtained the ranking information of the SNPs and other

keywords corresponding to a keyword, which provides a

basis for retrieving SNPs and other keywords by keyword.

The database of SNPMap is designed to update monthly.

Node.js was used to develop the website, and the

visualization was based on Apache ECharts (https://echarts.

apache.org/). Other calculations and analysis modules used are

implemented via Python.
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FIGURE 1
The data processingworkflowof SNPMap. (A) The process of obtaining keyword information and rendering graph from SNPs. (B) The process of
calculating SNP or external keyword connections of keywords mentioned in SNPMap.
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Results

The visualization of single-nucleotide
polymorphism-associated keywords

In this study, 598219 SNPs recorded with ClinVar

information have their related biomedical literature accessed

through LitVar and PubTator. A total of 789115 keywords

were identified, and their most relevant SNPs in biomedical

literature were counted and sorted. A website called SNPMap

was published online (http://snp.nbscn.org) for users to explore

these millions of associations. First, users can query SNP-related

data and visualize all the association information by entering the

dbSNP Reference SNP identifier (RSID or RefSNP ID) or the

HGVS notation of the SNP in the search field. Visualization of an

SNP (rs2234693) is taken as an example (Figure 2). The node’s

FIGURE 2
The visualization of SNP associated keywords. (A) Show all keywords. (B) Show less keywords. Nodes represent keywords while edges represent
connections. Sizes of the nodes represent the significance of keywords, whilewidth of the edges represent the strength of connections. Colors of the
nodes are assigned based on the different categories (genes, diseases, chemicals) of the keywords.
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color reflects the keyword type, the node’s size represents the

significance of the association with that SNP, and the thickness of

the line linking the nodes represents the association of the two

keywords. Since the research degree of different SNPs varies

greatly, some SNPs with thousands of research reports can

form a very complex visualization network (Figure 2A). For

this reason, SNPMap provides a function to adjust the filtering

keywords dynamically, and users can adjust the complexity of the

visualization network as needed (Figure 2B). Another visualization

layout called Circular Map could show the keywords in a more

organized way. In both layouts, keywords and semantic relations

could be highlighted by hovering the mouse cursor on them.

Double-clicking on a keyword will display a new page showing

only the information associated with that keyword in that SNP.

Relevant literature, keywords, genome-
wide association studies (GWAS) studies,
and distribution in different populations
are further presented on the SNPMap

In addition to visualizing the network, relevant literature,

keywords, GWAS, and distribution in different populations are

further presented on the SNPMap through tables. SNPMap also

allows the use of concept keywords to retrieve information and

sort the list of realistically associated SNPs in addition to

displaying keyword-associated concepts.

As shown in Table 1, the most frequent keyword in SNPMap

is “cancer”, with 48412 SNPs having this word as one of their

keywords. Many of the other top keywords are also cancer-

related, e.g., “breast cancer”, “tumor”, “BRCA1”, “BRCA2”,

“colorectal cancer”, “TP53”, and “EGFR”. Other top keywords

include “diabetes”, “Alzheimer’s disease”, “toxicity”,

“Parkinson’s disease” etc. When rendering the more

prominent SNPMap keywords and connections among them

in a graph, the similar keywords, especially ones related to cancer,

are shown as more significant (Figure 3). This is partly a

reflection of what is heated in biomedical research.

Efficacy comparison between SNPMap
and ClinVar

A total of 100 SNPs were randomly selected to compare the

efficacy of SNPMap and ClinVar, and the differences between

SNPMap and ClinVar were compared in terms of keywords, as

shown in the Venn diagram (Figure 4). A few selected

comparisons are listed in Table 2. Since LitVar information

only contains diseases, only results related to diseases are

selected from SNPMap for comparison. It could be observed

that under many circumstances, SNPMap has more coverage of

the concepts related to each SNP. Among all the concepts

mentioned under the 100 SNPs by the platforms,

283 concepts are mentioned in SNPMap, 106 concepts are

mentioned in LitVar, and 79 concepts are mentioned in both

SNPMap and LitVar (Figure 4).

Efficacy comparison between SNPMap
and LitVar

When the results of SNPMap were compared with another

automatic-curated LitVar, the advantage of SNPMap’s intuitive

visualization could be established. When interpreting the

possible implications of SNPs on LitVar, the main user

interface that the user encounters are biomedical literature

pages (Figure 5); a few selected comparisons are listed in

Table 3. Because both LitVar and SNPMap’s data are mainly

obtained from PubTator, there are similarities between LitVar’s

and SNPMap’s main keywords. Furthermore, it could be

concluded that LitVar’s keywords are more concise and

precise, while SNPMap’s keywords are often expanded and

supplemented based on the most important keywords (Table 3).

Discussion

In this study, we developed an integrated visual SNP

interpretation tool—SNPMap. SNPMap periodically obtains

and updates SNP-related information from LitVar, PubTator,

TABLE 1 Most frequent keywords in SNPMap.

Keyword Frequency

Cancer 48412

Tumor 35927

Breast cancer 20082

BRCA1 12951

BRCA2 11636

Diabetes 11312

TP53 10779

Colorectal cancer 9984

Lipid 9962

Alzheimer’s disease 9851

EGFR 8442

AD 8008

Toxicity 7852

Parkinson’s disease 7733

Inflammation 7302

BRAF 7178

KRAS 7172

Hypertension 6968

Lung cancer 6879

Cholesterol 6672
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and GWAS Catalog API tools, and data is processed for

extraction, integration, and visualization before users’ access.

For each SNP, two graphs are generated to describe keywords

and their semantic relations. We have also calculated and

sorted the most related SNPs for keywords on

SNPMap. Finally, SNPMap can combine the advantages of

an automatic process with the benefits of visualization.

When compared to manually curated SNP interpretation

knowledge bases such as ClinVar, SNPMap lacks some

expert-annotated information (e.g., pathogenic, benign, etc.)

but can provide more association information, which

comprises some associations with insufficient evidence or

inconsistent prevailing results, which has more implications

for clinical discovery and identification of novel variant-disease

associations.

As shown in Table 1, seven of the top 10 entities listed on

SNPMap are closely related to cancer topics, with

neurodegenerative diseases, cardiovascular diseases, and

metabolic diseases accounting for a significant chunk of those

top entities. It is possible that SNPMap tools have adequate

usability under disease-variant research environments,

predominantly cancer research, and would be a valuable tool

in acquiring information on past variant studies and exploring

potential variants for further research. It demonstrates

SNPMap’s ability to facilitate research and knowledge into

various diseases.

In many cases, SNPMap outperforms ClinVar regarding

coverage of the concepts associated with each SNP. As shown

in Figure 4, among all the concepts mentioned under the 100 SNPs

by the platforms, some are only mentioned in SNPMap or

ClinVar, while a significant number are mentioned in both

SNPMap and ClinVar. Among the 100 SNPs, over half of them

contain concepts that are mentioned by both platforms. Many of

the 283 conceptsmentioned exclusively by SNPMap are distinctive

concepts not mentioned by ClinVar under the same SNP, with

some of the concept connections confirmed by the recent

biomedical literature, while some others are extended from a

concept mentioned by both platforms (e.g., symptoms of a

medical syndrome). Although ClinVar has fewer exclusive

concepts covered than SNPMap, it provides information about

whether an SNP variant is linked to a disease and contains clinical

significance information that is not included in SNPMap

(pathogenic, benign, etc.). The reasons for less coverage may be

attributed to the following factors. Firstly, ClinVar information is

maintained by human examiners, which limits the scope and

timeliness of that information and necessitates time-consuming

efforts to verify each connection, while SNPMap’s automation

process allows for a more comprehensive collection of concepts

FIGURE 3
Graph containing 654 SNPMap keywords (nodes) and their internal connections (edges). Keywords with less ten total counts or 50 connections
are excluded. Sizes of nodes represent the total counts of keywords. Colors of nodes represent the numbers of connections to keywords.
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FIGURE 4
The difference of keywords between SNPMap and ClinVar of 100 random selected SNPs. (A)Numbers of keywordsmentioned only in SNPMap,
only in ClinVar, or in both. (B) Numbers of keywords mentioned in SNPMap, ClinVar. (C) Numbers of keywords mentioned in only one, or both
platforms. The Venn diagram is generated with jvenn (Bardou et al., 2014).

TABLE 2 Some selected SNPs and comparisons of their concepts under SNPMap and ClinVar.

SNPMap (diseases) ClinVar

rs146632606 Gitelman syndrome, Monogenic urinary stone disease, hyperoxaluria,
atherosclerosis, hypertension, hypotension, hypocalciuria, secondary
hyperaldosteronism

Gitelman syndrome

rs7482144 Breast/ovarian cancer, cutaneous melanoma, melanoma Breast/ovarian cancer, hereditary cancer-predisposing syndrome

rs80358086 Breast cancer, cancer Breast cancer, cancer, hereditary cancer-predisposing syndrome, Hereditary
breast and ovarian cancer syndrome, ovarian cancer

rs137853334 Diabetes mellitus, hepatocellular carcinoma, Congenital hyperinsulinism,
hyperinsulinaemic hypoglycaemia, hyperglycemia, hypoglycaemia

Diabetes mellitus

rs199498900 Walker-warburg syndrome, limb girdle muscular dystrophy, congenital
muscular dystrophy, brain anomaly, ocular abnomality

Walker-warburg syndrome, limb girdle muscular dystrophy, congenital
muscular dystrophy

rs111656822 Epilepsy, carnitine deficiency, idiopathic generalized epilepsy Epilepsy, Epilepsy with grand mal seizures on awakening,
Leukoencephalopathy with ataxia
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FIGURE 5
Comparing SNPMap with LitVar. (A) rs10993994 in SNPMap. (B) rs10993994 in LitVar.
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from the latest literatures without human factors. Secondly,

SNPMap contains and calculates keywords from biomedical

literature related to each SNP, which may include keywords

that are trivially mentioned in the literature, resulting in the

inflated numbers of keyword mentions in some cases. In

conclusion, the comparison of two services has confirmed the

ability of SNPMap to cover significant concepts mentioned by the

human-managed peer services while extending intomore concepts

that include the latest developments and related symptoms.

Because both LitVar and SNPMap’s data get their data from

PubTator, there are some similarities between LitVar and

SNPMap’s main keywords. When comparing SNPMap results

to LitVar, the advantage of SNPMap’s intuitive visualization

could be established. As shown in Table 3, LitVar keywords

are more concise and precise, while SNPMap’s keywords are

often expanded and supplemented based on the most important

keywords. While some keywords related to disease, chemicals,

and variants are displayed on the sidebar of the web page, the

location made the keywords less intuitive and precise, while

missing out on some important concepts (e.g., prostate-specific

antigen (PSA) for rs10993994, since it is previously reported

association of the SNP (Wiklund et al., 2009; Wang et al., 2021)).

The graph on SNPMap provides additional information that is not

represented on LitVar that includes keyword connections that have

strong connections among concepts of “prostate cancer”, and

“MSMB” (the gene where the SNP is located), “prostate-related

antigen” (closely related to prostate cancer).

In addition, SNPMap offers a reverse search—using concepts

as keywords to find SNPs and other concepts that are prevalent in

related biomedical literature, a feature that is not available in

dbSNP, LitVar, or any other tools. Using the concept “breast

cancer” as an example (http://snp.nbscn.org/word/breast%

20cancer), related SNPs are highlighted by SNPMap with

many of them having high beta and p values in previous

GWAS studies related to breast cancer. It allows users to

quickly navigate to the page that corresponds to the

corresponding keyword.

While SNPMap has been a comprehensive tool for providing

variants and concepts with background information, the

information it delivers should be considered under the

condition that maximum information sources come from

biomedical literature. Thus, the results should be interpreted

as a general representation of the variant or concept in

biomedical literature. The standard of different biomedical

literature varies, and the quality and quantity of related

biomedical literature will impact the contents of the results.

While relations mentioned in more literature are more likely

to be valid, no relation could be considered 100% certain. Besides,

any possible relations that are not mentioned in previous

biomedical literature will not be displayed, so the results

displayed should be viewed as retrospective, and even though

novel connection discoveries could be promptly added to the

SNPMap database, the tool is questionable to be used for finding

brand new relations.

Another drawback of SNPMap is its limited scale. The study

only calculated 598,219 SNPs included in ClinVar, against more

than a billion SNPs on dbSNP. The limited scale of SNPs that

include enough biomedical literature information to render a

TABLE 3 Some selected SNPs and comparisons of their concepts under LitVar and SNPMap.

SNPMap (Top keywords) LitVar (Top keywords)

rs10993994 Diseases: Prostatic Neoplasms (93), Neoplasms (29), Mental Disorders (15),
Breast Neoplasms (9), Colorectal Neoplasms (5)

Prostate cancer (228), Cancer (89), MSMB (43), PCA (35), Prostate-specific
antigen (29), Tumor (28), PSA (25), KLK3 (16), Mortality (16), Androgen
receptor, (15) etcChemicals: Igsf5 protein, rat (9), Androgens (6), Calcium (4), SS-B antigen (3),

Carbon (3)

rs334 Diseases: Sickle Cell Anemia (81), Systemic carnitine deficiency (48), Malaria
(43), Anemia (40), Thalassemia (16), Genetic Diseases, Inborn (13)

Malaria (93), Sickle cell disease (91), HBB (53), Anemia (45), SCD (44),
Thalassemia (36), Stroke (27), Mortality (26), Hydroxyurea (21), Infection,
(21) etcChemicals: Glutamic Acid (13), Valine (10), Valine-Valine-Saquinavir (9),

Oxytocin, Glu (4)- (8), Adenine (5)

rs7903146 Diseases: Diabetes Mellitus (507), Type 2 Diabetes Mellitus (237), Obesity
(130), Glucose Intolerance (40), Stroke (35)

Diabetes (692), TCF7L2 (556), Type 2 Diabetes (382), Glucose (303), Insulin
(251), Transcription factor 7-like 2 (206), Obesity (154), Diabetic (134),
Diabetes mellitus (127), Type 2 Diabetes Mellitus, (92) etcChemicals: Glucose (195), Cholesterol (41), Triglycerides (40), Metformin (27),

Carbohydrates (22)

rs112445441 Diseases: Colorectal Neoplasms (510), Neoplasms (451), Adenomatous
Polyposis (59), Carcinoma, Non-Small-Cell (47), Melanoma (44)

KRAS (1198), Cancer (1084), Tumor (1030), Colorectal cancer (1018), EGFR
(490), BRAF (466), CRC (386), NRAS (266), PIK3CA (240), Epidermal
Growth Factor Receptor, (237) etcChemicals: AT 61 (53), Cetuximab (52), Guanosine Triphosphate (41), Glycine

(32), irinotecan (25)

rs121913500 Diseases: Glioma (774), Neoplasms (678), Glioblastoma (340), Astrocytoma
(291), Oligodendroglioma (228)

Glioma (1328), Tumor (1307), Glioblastoma (890), Cancer (842), IDH1
(578), IDH (504), GBM (290), Brain tumor (246), Astrocytoma (242), IDH1/
2, (184) etcChemicals: Alpha-hydroxyglutarate (144), Isocitrates (144), Arginine

Vasopressin (72), Activated-Leukocyte Cell AdhesionMolecule (67), Histidine-
pyridine-histidine-3 (55)
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keyword graph further cut the size to 46,747 SNPs that could

reach the threshold we installed to generate graphs, although less

biomedical literature reflects that less research has been

performed on the SNPs, implying that researchers are less

likely to have the interest to request information into those

SNPs. To compensate for the disadvantages brought by the

limited scale of the database, we calculate immediate SNP

data demands made by our users, which composed of are

SNPs that are not yet stored inside our database, in real-time.

Users will be notified that the calculation will be completed from

a few seconds to a few minutes and will be able to read the data

instantly after completion of the calculation.

As SNPMap currently stands, the web application has

become a useful tool with vast potentials for researchers and

clinical practitioners alike. For researchers, SNPMap could be

useful in obtaining a thorough picture about how a variant was

researched in the past, leading the directions of future research

topics on the variant. With the additional resources of concept

connections, researchers would also be able to identify significant

variants related to diseases, organs, cells etc., thus finding variants

for their own research projects. SNPMap could even potentially

help researchers dig out new information between SNPs and

concepts that were buried in large amounts of biomedical

literatures. For practitioners, the tool could be helpful in

facilitating quick interpretation and filtration of huge variant

datasets, helping practitioners to distinguish variants with

significance efficiently, and saving precious time in preparing

clinical genetic reports.

Conclusion

A user-friendly, visualized and automatically curated SNP

interpretation tool called SNPMap was proposed and developed

in this study which has applications in several scenarios,

including interpretation of clinical testing results and scientific

research outcomes, especially under disease-variant research

environments. For researchers, it would be a valuable tool in

acquiring information on past variant studies, exploring

potential variants for further research, and for clinical

practitioners, it could be extremely useful in interpreting and

reporting genetic testing results with large amounts of variant

information. The database will be regularly updated with new

SNP/variant information since new biomedical literature works

are being published incessantly.
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