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Expanded tandem repeat DNAs are associated with various unusual

chromosomal lesions, despiralizations, multi-branched inter-chromosomal

associations, and fragile sites. Fragile sites cytogenetically manifest as

localized gaps or discontinuities in chromosome structure and are an

important genetic, biological, and health-related phenomena. Common

fragile sites (~230), present in most individuals, are induced by aphidicolin

and can be associated with cancer; of the 27 molecularly-mapped common

sites, none are associated with a particular DNA sequence motif. Rare fragile

sites (≳ 40 known), ≤ 5%of the population (may be as few as a single individual),

can be associated with neurodevelopmental disease. All 10 molecularly-

mapped folate-sensitive fragile sites, the largest category of rare fragile sites,

are caused by gene-specific CGG/CCG tandem repeat expansions that are

aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A,

FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated

rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or

nucleotide analogs. Despiralized lesions and multi-branched inter-

chromosomal associations at the heterochromatic satellite repeats of

chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-

azadeoxycytidine and can spontaneously arise in patients with ICF syndrome

(Immunodeficiency Centromeric instability and Facial anomalies) with

mutations in genes regulating DNA methylation. ICF individuals have

hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats.

Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites,

are associated with chromosome location, fragility, and disease. Telomere

repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin

B12, or drug insults are associated with megaloblastic and/or pernicious

anemia, that display chromosomes with fragile sites. The recent discovery of

many new tandem repeat expansion loci, with varied repeat motifs, wheremotif

lengths can range from mono-nucleotides to megabase units, could be the

molecular cause of new fragile sites, or other chromosomal lesions. This review

focuses on repeat-associated fragility, covering their induction, cytogenetics,

epigenetics, cell type specificity, genetic instability (repeat instability,

micronuclei, deletions/rearrangements, and sister chromatid exchange),

unusual heritability, disease association, and penetrance. Understanding
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tandem repeat-associated chromosomal fragile sites provides insight to

chromosome structure, genome packaging, genetic instability, and disease.
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Introduction

The terms “fragility” and “fragile site,” coined in 1969–70,

refer to unusual secondary constrictions in chromosomes, that

are distinct from the primary constrictions of the centromeres

(Schmid and Vischer, 1969; Magenis et al., 1970). Under

specific conditions of replicative stress, they can also

manifest as chromatin gaps, breaks, or failed chromatin

compaction on metaphase chromosomes. Fragile sites are

found across the genome, such as in the heterochromatic

regions harboring classical satellite repeats on

chromosomes 1, 9, 15, 16, and Y, as well as the common

and rare fragile sites (Figure 1). Fragile sites can also arise at

telomeres, at telomere fusions, and at other specific genetic

loci. Due to their genome-wide prevalence, fragile sites have

been found to be associated with genetic and genomic

instability, and are extensively linked to many disease

phenotypes, including neurological disorders (sections 2.1,

2.2), immunodeficiency–centromeric instability–facial

anomalies (ICF) syndrome (section 2.3), and cancer

progression.

The first fragile site was observed in 1965 (Dekaban, 1965),

followed by the discovery of the first disease-associated fragile site

at the fragile X locus (Lubs, 1969), later demonstrated to be

Martin-Bell syndrome (Richards et al., 1981). This initial

discovery remained largely ignored until it was serendipitously

induced in specific folate-deficient culture conditions, leading to

the renaming of the disease to fragile X syndrome (FXS)

(Sutherland, 1977) (reviewed in (Hecht and Kaiser-McCaw,

1979). Since then, discovery of these sites at specific loci has

broadened.

Fragile site classifications

The current classifications of fragile sites fall into two

categories largely based on frequency of expression and

induction method: common fragile sites (CFSs) and rare

fragile sites (RFSs). The Human Genome Database documents

~90 CFSs and ~30 RFSs that have been cytogenetically observed

and documented in previous studies (reviewed by (Feng and

Chakraborty, 2017).

CFSs are present in a large proportion of the population, and

are induced by aphidicolin, 5-azacytidine, and

bromodeoxyuridine (BrdU) (Glover et al., 1984; Yunis and

Soreng, 1984; Sutherland et al., 1985b). RFSs are observed to a

maximal frequency of 5% in the population (Schmid et al., 1986)

and can be induced by folate deficiency/thymidylate stress,

distamycin A, and BrdU (Sutherland, 1983; Hecht and

Sutherland, 1984; Sutherland et al., 1985a). Detailed protocols

for the detection and analysis of both CFSs and RFSs have been

published recently (Bjerregaard et al., 2018). As CFSs are linked

to regions of chromosomal rearrangements in cancer, this group

of fragile sites has been far more extensively studied than RFSs

(reviewed in (Dillon et al., 2010; Ozeri-Galai et al., 2012; Sarni

and Kerem, 2016; Glover et al., 2017; Irony-Tur Sinai and Kerem,

2019; Kaushal and Freudenreich, 2019). Harnessing knowledge

about CFSs could empower the field of RFSs and provide

important clues as to how fragility contributes to other disease

phenotypes and genetic abnormalities (i.e., repeat instability).

The current distinction between common and rare fragile

sites is problematic, being based both on the conditions that

induce their expression, and the frequency with which they are

present in the population (Hecht, 1986; Mrasek et al., 2010).

There is no clear numerical delineation between the frequency of

“common” and “rare” fragile sites. Some CFSs are rare in their

manifestation, suggesting they are not ubiquitously present in all

individuals or might be observed at lower levels (e.g., FRA2D,

FRA18B, and FRA9D are expressed in <12% of individuals)

(Savelyeva et al., 2006). However, many fragile sites have been

categorized as “common” when they are detected by aphidicolin

induction, but have not been assessed at a population level.

Distinct rare and common fragile sites have also been found

to cluster together, appearing either on the same or on

neighboring metaphase chromosome bands; for example, the

RFS FRA11B and the APH-inducible CFS FRA11G are located at

11q23.3 (Fechter et al., 2007), and the RFS FRAXA and the APH-

inducible CFS FRAXD are located at Xq27.3 and Xq27.2,

respectively (Hecht and Bixenman, 1990; Sutherland and

Baker, 1990) (see Table 1 for complete list of known clustered

fragile sites). Due to this clustering, fragile sites may often be

missed or misclassified, despite being independent fragility

events with their own downstream consequences.

Furthermore, some very common CFSs can be induced by

conditions known to induce RFSs (i.e. folate deficiency)

(Kähkönen et al., 1989; Jenkins et al., 1990; Mrasek et al.,

2010). This finding demonstrates that, although certain sites

may be more sensitive to specific induction methods,

cytogenetic expression at a given site could be achieved with

other drugs, albeit at reduced levels. Our current cytological

screening methods, relying on the presence of observed

metaphase chromatid breaks, may not be sensitive enough to
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FIGURE 1
Repeat Tracts, fragile sites, and disease. (A) Categories of fragile site constrictions observable on human chromosomes. (B) Fragile sites can
occur at the telomere or centromere, observed on chromosomes 1, 2, 9, 10, 15, 16, Y, and X. Telomere ends display “fragile-site like” appearances that
are TRF1-dependant and APH inducible (Sfeir et al., 2009). The centromere of every chromosome is the “primary constriction,” composed of repeats.
(C) Secondary constrictions are present on chromosomes 1, 9, 16, 15, and Y. Cytogeneticists were aware of these gaps prior to FRAXA and
modeled it after the secondary constrictions (Lubs, 1969). These are composed of the classical satellite repeat DNAs, where four types (I-IV) of
satellite DNA are located in the heterochromatic regions of chromosomes 1, 9, 15, 16, and Y, the total amount on these chromosomes and the
proportion of the types being different (Vogt, 1990). Satellite regions of chromosomes 9 and Y, whose composition is the most complicated, and
chromosome 15 is less complex, but like 9 and Y, it comprises all four types of satellite DNA. Chromosome 1 has type II satellite DNA, with the
proportion of the remaining types being less. The C segment of chromosome 16 comprises only type II. The size/length of the secondary
constrictions is highly-polymorphic amongst individuals, and segregates as a heritable state (Chromosomes: Guttenbach and Schmid, 1994). (D) In
Immunodeficiency, Centromeric instability & Facial anomalies (ICF) syndrome, satellites I, II, and III of chromosomes 1, 9, and 16 are hypomethylated
and show secondary constrictions within these regions. ICF syndrome was recently shown to be caused by four mutations in four genes: ICF1/
DNMT3B, ICF2/ZBTB24, ICF3/CDCA7, and ICF4/HELLS (van den Boogaard et al., 2017). Satellite-containing regions on chromosomes 1, 9, and 16 are
hypomethylated in individuals affected by ICF syndrome, and these show a variety of aberrant chromosomes: secondary constrictions,
multibranched chromosome arms, whole arm deletions, duplications, isochromosomes, and centromeric fragility. As with fragile sites, these
involved double-strand DNA breaks (Sawyer et al., 1995; Tuck-Muller et al., 2000). (Chromosomes: Tuck-Muller et al., 2000). (E) Many non-folate
sensitive fragile sites have been mapped at repetitive regions. The interstitial telomeric repeat on chromosome 2, the AT-repeats of FRA10B and
FRA16B, and the GAA repeat of FXN on chromosome 9 has “fragile-like” characteristics. Fragile site at 2q13-14 at an interstitial inverted head-to-head
array of the telomeric repeat (TAGAGGG)54-(CCCTAA)104, a result of an ancient telomeric fusion, not “telomere healing” event (IJdo et al., 1991;
Bosco and de Lange, 2012). Notably, there are other interstitial telomeric sequences (Wells et al., 1990). A “fragile-like” site has been reported at
9q21.1 in the expanded (GAA)N repeat in FXN, which causes Friedreich’s ataxia (Kumari et al., 2015). FRA10B at 10q25.2 is induced by BrdU and
mapped to an expanded ~42 bp AT-rich minisatellite repeat (Sutherland et al., 1980; Hewett et al., 1998) (Chromosomes: Bosco and de Lange, 2012;
Sutherland et al., 1980; Felbor et al., 2003). (F) Various presentations of the FRAXA site in CGG-expanded FXS patient cells (Crippa et al., 1984; Fitchett
and Seabright, 1984; Savage and Fitchett, 1988): chromatid breaks/gaps, isochromatid breaks, isolated double-minutes, deleted X’s, secondary
duplications (double satellite). Satellite association and variations in length of the nucleolar constriction of normal and variant human G
chromosomes. (Chromosomes: Lubs, 1969). (G) Ribosomal DNAs can vary the length of the chromosome by varying lengths of the secondary
constrictions (stalks) of the acrocentrics (Chr 13, 14, 15, 21, and 22) on which they reside (Orye, 1974; Cheung et al., 1989; Heliot et al., 1997).
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reveal less pronounced signs of fragility at many sites. In fact, all

fragile loci may be inherently sensitive to any form of replicative

stress, but the ability to observe cytogenetic fragile site expression

at the macro level may be uniquely influenced by their specific

genomic landscape–i.e., sequence, gene expression, replication

timing, among other factors. As such we propose that each CFS

and RFS should also be classified on the primary induction

conditions used for that locus, which may more accurately

reveal similarities and differences in the characteristics and

mechanisms of fragility.

Common fragile sites

The most common inducer of CFSs (~75 sites) is aphidicolin,

a deoxycytidine analogue and inhibitor of DNA polymerases α, δ,
and ε that affects replication fork progression (Glover et al., 1984;

Cheng and Kuchta, 1993). There are currently 25 molecularly

mapped aphidicolin-inducible CFSs, all characterized by large

AT-rich regions of DNA (reviewed in (Feng and Chakraborty,

2017) and can span a region of hundreds of kilobases to

megabases of a chromosome (Mishmar et al., 1999;

Zlotorynski et al., 2003; Irony-Tur Sinai and Kerem, 2019).

They are frequently associated with hotspots of deletions,

rearrangements, and translocations in cancer. Although the

exact mechanism of aphidicolin-induced fragility is unknown,

it is proposed that the induced replicative stress leads to stalling

and breakage at these CFS regions due to the compounded effects

of late replication, origin scarcity, concurrent transcription, and

structure formation (reviewed in (Glover et al., 2017; Irony-Tur

Sinai and Kerem, 2019; Kaushal and Freudenreich, 2019).

Rare fragile sites

Thymidylate stress, caused by folate deficiency, induces the

appearance of 24 of the 30 known RFSs, hereafter identified as

folate-sensitive fragile sites (FSFS). To date, 10 FSFSs have been

sequence-mapped to gene-specific expanded (CGG)n repeats

with the most well-known site being FRAXA which occurs at

FMR1 and causes FXS. Of the remaining RFSs, three are

inducible by distamycin A and three are inducible by either

distamycin A or BrdU. Two of the distamycin A-inducible RFSs

have been mapped to minisatellite AT-rich repeat sequences

(reviewed in (Debacker and Kooy, 2007; Lukusa and Fryns,

2008). Fragility is proposed to occur when replication

progression is impeded upon the binding of distamycin A

(and related compounds like berenil, netropsin, Hoechst

33248, D287/170, methyl-green, and DAPI) to the minor

groove of these CFS regions (Thys et al., 2015). All the

currently identified RFSs, which have been cytogenetically

defined and mapped and many cloned and sequenced, are

highlighted in Table 2, along with known features and disease

links for each. Numerous attempts to identify internal controls

for diagnostic FXS by FRAXA induction revealed many sites that

presented low-level (<4%) folate-sensitive fragility (reviewed in

(Krawczun et al., 1991). In the proper population (disease or

other) and induction systems, new rare fragile sits may be

discovered. Recent discovery of new tandem repeat expansion

loci could be the molecular cause of new, as yet to be observed

fragile sites or chromosomal lesions (Giannuzzi et al., 2021;

Altemose et al., 2022; Ebler et al., 2022; Gershman et al.,

2022; Hoyt et al., 2022; Nurk et al., 2022; Talbert and

Henikoff, 2022; Vollger et al., 2022; Wang et al., 2022).

Spontaneous fragile site expression

Spontaneous fragile sites occur without the need for

induction at chromosomal locations distinct from either the

common or rare fragile sites. These spontaneous sites can be

expressed at unusually high levels, from 80 to 100% of the

population, compared to the 4–30% for most fragile sites (Dar

et al., 1995; Karadeniz et al., 2003; Zamani et al., 2007). The

nature of the molecular cause (sequence, epigenetic, or other) of

most of these spontaneous fragile sites is not known and warrants

further investigation. Examples include the secondary

constrictions on chromosomes 1, 9, 16, and Y, as well as

FRA1R/1q41 and FRA16B/16q22. It is possible that these

spontaneous sites are due to repetitive sequences, as the

spontaneous FRA16B has been mapped to a 33-base pair (bp)

AT-rich minisatellite repeat (Yu et al., 1997) as well as a 35 bp

repeat (Yamauchi et al., 2000). FRA16B is the most common of

the RFSs, expressed in 5% of the European population (Felbor

et al., 2003). Other spontaneous fragile sites have been localized

to intra-chromosomal telomere tracts (Musio et al., 1996), which

TABLE 1 Clustered fragile sites.

Clustered fragile sites
(induction method)

Chromosomal locations

FRA1M (FS) and FRA1E (APH) 1p21.3 and 1p22.2

FRA8A (FS) and FRA8B (APH) and
FRA8C (APH)

8q22.1 and 8q22.1-18q22.2

FRA9A (FA) and FRA9C (BrdU) 9p21 and 9p21

FRA9B (FA) and FRA9E (APH) 9q32 and 9q32

FRA10B (BrdU) and FRA10E (APH) 10q25.2 and 10q25.2

FRA11A (FS) and FRA11H (APH) 11q13.3 and 11q13

FRA11I (FS) and FRA11C (APH) 11p15.1 and 11p15.1

FRA12D (FS) and FRA12C (BrdU) and
FRA12E (APH)

12q24.13 and 12q24 and 12q24

FRA13B (BrdU) and FRA13C (APH) 13q21 and 13q21.2

FRA16B (FS and FRA16C (APH) 16q21.1 and 16q21.1

FRA16B (D-A) and FRA16C (APH) 16q22.1 and 16q22.1

FRAXD (APH) and FRAXA (FS) and FRAXE
(FS) and FRAXF (FS)

Xq27.2 and Xq27.3 and
Xq28 and Xq28

Induction method for each fragile site indicated in parentheses: Aph, aphidicolin; FS,

folate-sensitive; BrdU, bromodeoxyuridine; DistA, distamycin A.
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TABLE 2 Rare fragile sites (folate, distamycin A, and BrdU).

Fragile site (name
and location),
induction
method, mapped
sequence
(if known) and
allele sizes

Other characteristics Linked diseases and
publications

FRAXA - Xq27.3 • Expression of FMR1 is silenced when expanded and methylated • Fragile X syndrome: inherited ID (Sutherland, 1977)

• Expression of FMR1 is enhanced up to 10-fold for premutation
expansion and no methylation

• Mapping of sequence: (Kremer et al., 1991; Oberlé et al., 1991;
Verkerk et al., 1991; Yu et al., 1991)

Folate deficiency • presence of AGG-anchoring trinucleotides doesn’t affect fragile
site expression (Zhong et al., 1995)

• Deletions and instability at Xq27 observed in Fragile X: (Gedeon
et al., 1992; Wöhrle et al., 1992; Tarleton et al., 1993; Gu et al., 1994;
Trottier et al., 1994; Hirst et al., 1995; Lugenbeel et al., 1995)

(CGG)n-N; FMR1 gene • FS can be detected in pre-mutation expansion cells, as well as in
unaffected females, where expression can vary

• Fragile X Associated Tremor Ataxia (FXTAS) (Hagerman and
Hagerman, 2001)

(CGG)6–52; Non-affected • Adjacent mutation hotspot • Fragile X-associated Primary Ovarian Insufficiency (FXPOI):
(Allingham-Hawkins et al., 1999; Murray, 2000)

(CGG)59–230; Premutation • Unusual chromatin compaction • Autism oFull mutation: (Brown et al., 1982)

(CGG)230–2000; Full-
mutation

• Pre-mutation: (Tassone et al., 2000; Hagerman and Hagerman,
2002; Aziz et al., 2003)

Aberrant CpG methylation • FMR1 locus is linked with hypermutations, deletions, duplications,
CNVs, etc. → all mutation types causing Fragile X syndrome
documented at: http://www.hgmd.cf.ac.uk/ac/gene.php?gene=
FMR1

FRAXE - Xq28 • Expression of FMR2 is silenced when expanded • Observed by: Sutherland and Baker, 1992

Folate deficiency • missense mutations in highly conserved FMR2 sites are linked to
autism

• Mapping: (Knight et al., 1993)

(CGG)n-N; FMR2/AFF2 gene • ~600 kb distal to FRAXA • X-linked ID: (Knight et al., 1993, 1994)

(CGG)4–39; non-affected • FS can be detected in pre-mutation expansion cells, as well as in
unaffected females, where expression can vary

• FMR2 gene identification: (Gecz et al., 1996)

(CGG)31–61; premutation • Deletions, missense mutations and duplications of AFF2 gene
linked to ID and autism: (Gecz et al., 1996; Moore et al., 1999;
Probst et al., 2007; Whibley et al., 2010; Cavani et al., 2011; Stettner
et al., 2011; Mondal et al., 2012)

(CGG)200–900; full mutation

Aberrant CpG methylation

FRAXF - Xq28 • Expansion silences FAM11A expression • Observed by: (Hirst et al., 1993)

Folate deficiency • 5-azadeoxycytidine reactivates FAM11A transcription =
methylation important in silencing

• Mapping: (Parrish et al., 1994; Ritchie et al., 1994)

(CGG)n-N; FAM11A gene • ~600 kb distal to FRAXE • Gene characterization: (Shaw et al., 2002)

(CGG)7–40; non-affected • FS detected in pre-mutation expansion cells and seemingly
unaffected females (expression can vary)

• Ritchie et al., 1994: suggests link to retardation where a male with
developmental delay had 900 methylated repeats

(CGG)306–1008; full
mutation

• Parrish et al., 1994: several related individuals expressing fragile site
but no ID and several probands expressing fragile site with ID,
hence disease link is questionable

Aberrant CpG methylation

FRA1M - 1p21.3 Not mapped • Mentioned in review: (Lukusa and Fryns, 2008)

Folate deficiency

FRA2A - 2q11.2 • silenced AFF3 gene due to expanded hypermethylation of CGG in
conserved, brain-active alternative promoter

• Mapping and link to three families w/wide spectrum of
neurodevelopmental phenotypes; mostly motor and language
delays of varying degrees (Metsu et al., 2014b)

folate deficiency • AFF2/FMR2 is X-linked homolog of AFF3 • FS in schizophrenia cells: (Chen et al., 1998)

(CGG)n-N; AFF3 gene • expanded CGG in AFF3 can form G-quadruplexes • Severe multi-system disorder in patient with de novomicrodeletion
of only AFF3 (Steichen-Gersdorf et al., 2008)

(Continued on following page)
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TABLE 2 (Continued) Rare fragile sites (folate, distamycin A, and BrdU).

Fragile site (name
and location),
induction
method, mapped
sequence
(if known) and
allele sizes

Other characteristics Linked diseases and
publications

(CGG)5–18; non-affected • AFF3 can bind G-quadruplexes, so could autoregulate itself @
promoter

• Phenotype difference between expansion and deletion of AFF3
could be due to the expansion causing gene silencing later in
development or it affecting only the brain-specific promoter,
causing a milder, non-systemic phenotype

(CGG)~100- premutation

(CGG)>300; full mutation

Aberrant CpG methylation

FRA2B - 2q13 Not mapped • Mentioned in review: (Lukusa and Fryns, 2008)

Folate deficiency

FRA2K - 2q22.3 Not mapped • Mentioned in review: (Lukusa and Fryns, 2008)

Folate deficiency

FRA2L - 2p11.2 Not mapped • Mentioned in review: (Lukusa and Fryns, 2008)

Folate deficiency

FRA5G - 5q35 Not mapped • FRA5G FS observed in patient with ID and an unaffected brother
(Howell et al., 1990)Folate deficiency

FRA6A - 6p23 Not mapped • Linkage of 6p23 region to schizophrenia (Olavesen et al., 1995)

Folate deficiency

FRA7A - 7p11.2 • expansion within 5′ intron of ZNF713, a zinc-finger protein and a
regulator of transcription

• Mapping and autism spectrum disorder link: (Metsu et al., 2014a)

Folate deficiency • SEPT14, a nearby gene could also be involved but its expression
was undetectable

(CGG)n-N; ZNF713 gene • Reduced transcription of ZNF713 with expansion

(CGG)5–22; non-affected

(CGG)42–85; premutation

(CGG)>450; full mutation

Aberrant CpG methylation

FRA8A - 8q22.3 Not mapped • Mentioned in review: (Lukusa and Fryns, 2008)

Folate deficiency

FRA8E - 8q24.1 • involved in various chr rearrangements associated w/Langer-
Giedion syndrome but most FRA8E carriers are healthy subjects

• (Bühler and Malik, 1984; Takahashi et al., 1988; Lüdecke et al.,
1991; Hou et al., 1995)

Distamycin A • Cloning of region near EXT1 gene and HPV16 DNA integration
site (Hori et al., 1998)

FRA9A - 9p21 Caused by (GGGGCC)n expansion in C9orf72 gene (Lab of C.E.
Pearson, in preparation)

• Observed by: (Sutherland et al., 1983; Kähkönen, 1988)

Folate deficiency • Most common rare FSFS in Finnish population (Kähkönen, 1988)

• Not observed in Japanese population (Takahashi et al., 1988)

• FS in schizophrenia cells: (Garofalo et al., 1993, 1992)

FRA9B - 9q32 Not mapped • Observed in: (Sutherland, 1982; Petit et al., 1986)

Folate deficiency

FRA10A - 10q23.3 • single, imperfect but polymorphic CGG repeat in CpG island of 5′
UTR of FRA10AC1, a novel ubiquitously expressed nuclear
protein

• Mapping: (Sarafidou et al., 2004)

Folate deficiency

(Continued on following page)

Frontiers in Genetics frontiersin.org06

Mirceta et al. 10.3389/fgene.2022.985975

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.985975


TABLE 2 (Continued) Rare fragile sites (folate, distamycin A, and BrdU).

Fragile site (name
and location),
induction
method, mapped
sequence
(if known) and
allele sizes

Other characteristics Linked diseases and
publications

• transcriptional silencing of 1 allele in expansion carriers (likely
FRA10A FS-expressing allele)

• In heterozygous state: expansion is likely benign; no homozygotes
known

(CGG)n-N; FRA10AC1 gene • most prevalent among the rare autosomal folate-sensitive fragile
sites in human genome

• ID link: (Petit et al., 1986; Mavrou et al., 1991)

(CGG)8–14; non-affected • Highest rate of rearrangements/deletions in prostate tumors occurs
at 10q23-q24: (Lacombe et al., 1996)

(CGG)>200; full mutation • Frequent lung cancer deletions at 10q23-26: (Kim et al., 1998)

Aberrant CpG methylation • (Villa et al., 1997): showed that de novo telomeric repeats occur at
the FRA10A break

FRA10B - 10q25.2 • has varying minisatellite repeats of diff lengths (has 42-bp
consensus sequence)

• no disease link – homozygotes for both FRA10B and FRA16B have
been identified as normal (Sutherland, 1981)

distamycin A or BrdU
induced

• fragile site is present when repeat is > 5 kb • (Scheres and Hustinx, 1980; Sutherland et al., 1980)

AT-rich (91%) expanded
~42-bp repeat unit

• (Hewett et al., 1998; Handt et al., 2000; Schwartz et al., 2006)

FRA11A - 11q13.1 • expansion in 5′ UTR of C11orf80 gene causing fragile site and
transcriptional silencing

• Mapping and ID (in 1 of 5 individuals w/FSFS within same family)
(Debacker et al., 2007)

Folate deficiency • unknown function with no homology to other known genes • Other ID links: (Sutherland, 1979; Sutherland, 1982; Hecht and
Sutherland, 1985; Smeets et al., 1985)

(CGG)n-N; C11orf80 gene

(CGG)6–8; non-affected

(CGG)>500; full mutation

Aberrant CpG methylation

FRA11B - 11q23.3 • located in the 5′ UTR of the CBL2 proto-oncogene • Associated with chromosome deletion characteristic of Jacobsen’s
syndrome (ID/facial abnormalities) where portions of long arm of
chromosome 11 is lost (Voullaire et al., 1987; Jones et al., 1994,
1995; Michaelis et al., 1998)

Folate deficiency • 1st report of a direct link between a fragile site and chromosome
breakage in vivo. Mother had an expansion and fragile site but her
child inherited deletion with the breakpoint in the fragile site
region, stabilized by the de novo addition of a telomere (Jones
et al., 1994)

• Mapping: (Jones et al., 1995, 1994)

CGG)n-N; CBL2 gene • FS typically observed in unaffected parents of non-FS-expressing
Jacobsen syndrome children (11q deletion)

• First observed: (Hecht and Sutherland, 1985)

(CGG)8–14; non-affected

(CGG)85–100; premutation

(CGG)100->1000; full
mutation

Aberrant CpG methylation

FRA11I - 11p15.1 Not mapped • Mentioned in review: (Lukusa and Fryns, 2008)

Distamycin A

FRA12A - 12q13.1 • Methylated repeat expansion in promoter of DIP2B gene • Mapping and ID due to decreased expression (Winnepenninckx
et al., 2007)

Folate deficiency • WT DIP2B is likely involved in DNA methylation processes • (Giraud et al., 1976): identified chromosomal breakage point in
12q13 in male with ID and multiple congenital anomalies

(CGG)n-N; DIP2B gene • premutation carriers: have increased gene expression due to lack
of methylation but still have fragile site expression (reduced)

• Retardation: (Smeets et al., 1985)

(Continued on following page)
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TABLE 2 (Continued) Rare fragile sites (folate, distamycin A, and BrdU).

Fragile site (name
and location),
induction
method, mapped
sequence
(if known) and
allele sizes

Other characteristics Linked diseases and
publications

(CGG)6–23; non-affected • Proband with MR; mother and grandmother unaffected: (Berg
et al., 2000)

(CGG)~130–200;
premutation

(CGG)>900; full mutation

Aberrant CpG methylation

FRA12C - 12q24 • Not mapped • Mentioned in review: (Lukusa and Fryns, 2008)

BrdU induction and folate
deficiency

FRA12D - 12q24.13 Not mapped • segregates in FX families (Amarose et al., 1987; Barletta et al., 1991)

Folate deficiency • Observed in: (Sutherland and Baker, 1993)

FRA16A - 16p12.3 • (Nancarrow et al., 1994): observed 72 repeat CGG unaffected
individual without FS expression

• Mapping: (Nancarrow et al., 1994)

Folate deficiency • expanded repeat is adjacent to a CpG island that is methylated in
fragile site-expressing individuals

• Baratela-Scott Syndrome link: (LaCroix et al., 2019)- linked repeat
to autosomal recessive disease, Baratela-Scott Syndrome -this is an
important paper, as this fragile site was previously identified as not
being associated with disease when inherited as a heterozygous
CGG expansion, but when homozygous displays disease. They also
report deletions and other mutations leading to pathogenic variants
in 1 allele of XYLT1 in these patients with expansions. Other forms
for other fragile sites may arise where either both alleles are
expanded, or one is expanded, and the other allele is mutant
elsewhere in the associated gene

(CGG)n-N; XYLT1 gene • individuals who do not express the fragile site do not have DNA
methylation

(CGG)9–20; non-affected • Transcriptional silencing due to expanded methylated alleles
(LaCroix et al., 2019)

(CGG)300–2500; full
mutation

Aberrant CpG methylation

FRA16B - 16q22.1 • As many as 2000 repeats cause FRA16B expression (7–12 copies
in WT allele)

• First observed with Mendelian inheritance: (Magenis et al., 1970)

distamycin A or BrdU
induced

• first report of mini-satellite repeat expansion • (Sutherland et al., 1984; Yu et al., 1997; Hocking et al., 1999; Hsu
and Wang, 2002)

33-bp AT-rich repeat; or 35-
bp AT-rich repeat;

• strongly excludes nucleosome formation only in presence of
distamycin

• No disease link (homozygous and heterozygous individuals)

• FRA16B has been mapped to a 33-base pair AT-rich minisatellite
repeat (Yu et al., 1997) as well as a 35-base pair repeat (Yamauchi
et al., 2000)

• FRA16B is the most common of the rare fragile sites, expressed in
5% of the European population (Felbor et al., 2003)

FRA16E - 16p12.1 Not mapped • Mentioned in review: (Lukusa and Fryns, 2008)

Distamycin A • many deletions known to occur in this region (ex. 16p21 deletion
syndrome) and be associated w/developmental delay

FRA17A - 17p12 Not mapped • Mentioned in review: (Lukusa and Fryns, 2008)

Distamycin A/BrdU

(Continued on following page)
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are frequent polymorphisms of heterochromatin without known

functional or phenotypic effect. The length of the chromosomal

gaps or despiralized regions can vary widely between individuals,

is considered to be hereditary, and due to the highly variable

lengths of the satellite tracts (Craig-Holmes and Shaw, 1971;

Yunis and Yasmineh, 1971; Craig-Holmes et al., 1975, 1973;

McKenzie and Lubs, 1973; Podugolnikova and Korostelev, 1980).

These spontaneous, heritable fragile sites often map to loci

known to be prone to structural variations including

microdeletions, microduplications, and copy number

variations (CNVs) (Zamani et al., 2007; Szafranski et al., 2010;

Gillentine and Schaaf, 2015). Viral integration can also be a

driving factor for these spontaneous sites (O’Neill and Miles,

1969; Peat and Stanley, 1986) (reviewed in (Fortunato and

Spector, 2003). Interestingly, chromosomal integration of

tandem repeats of foreign DNA can lead to fragile site

expression, further supporting the possibility that repeat tracts

underlie spontaneously expressed fragile sites (Ragland et al.,

2008; Jacome and Fernandez-Capetillo, 2011; Irony-Tur Sinai

et al., 2019).

Mapping fragile sites

As mentioned, many CFSs and RFSs have been observed

cytogenetically; however, only a handful have been molecularly

mapped to specific genomic locations, or specific sequences.

Mapping fragile sites is an investment, as the efforts from initial

cytogenetic observation, to molecular mapping, to gene

identification and epigenetic modifications, can be

considerable and span years (Figure 2). Mapping of fragile

sites dates to the 1980s, where R-banding was performed, and

the general chromosomal site of the observed break was

reported. This technique was utilized to determine the

chromosomal location of the DAPI-inducible CFS FRA1H

(Pelliccia and Rocchi, 1986), providing the basis for further,

more detailed mapping. Using yeast artificial chromosomes

(YACs), bacterial artificial chromosomes (BACs), and cosmid

clones that span the region of the identified cytogenetic

location, physical mapping and fluorescence in situ

hybridization (FISH) experiments allowed for further

characterization of the genomic location of these fragile sites,

albeit still at a low resolution. Some examples of both CFSs and

RFSs that were mapped in such a manner include FRAXA

(Kremer et al., 1991; Verkerk et al., 1991), FRA11B (Jones et al.,

1994), FRA3B (Boldog et al., 1994), FRA16D (Paige et al., 2000),

FRAXB (Arlt et al., 2002), and FRA7B (Bosco et al., 2010).

Clustered fragile sites (touched upon in section 1.1) can require

finer mapping in order to be distinguished. Higher resolution

mapping has been performed with the use of multi-colour

FISH combined with the availability of sequence databases

and programs. With this method, an initial large region

spanning the cytogenetic location of the fragile site is

covered with BAC probes labelled with different colors.

Increasingly finer mapping is conducted with contiguous

multi-colored BAC probes spanning smaller and smaller

lengths across the break point until an exact breakage

boundary can be determined. The specific sequence of this

region along with the encompassing genes are then identified

through programs such as RepeatMasker and through human

genome sequence databases (Hormozian et al., 2007; Zheglo

et al., 2019). The identification of these specific fragile site-

associated genes can initiate further studies on the role of

fragile sites in human genetic diseases and cancer.

As in the case of CFSs, the mechanisms and common

sequence motifs that are shared between these regions are

TABLE 2 (Continued) Rare fragile sites (folate, distamycin A, and BrdU).

Fragile site (name
and location),
induction
method, mapped
sequence
(if known) and
allele sizes

Other characteristics Linked diseases and
publications

FRA19B - 19p13 Not mapped • Mentioned in review: (Lukusa and Fryns, 2008)

Folate deficiency

FRA20A 20p11.23 Not mapped • Mentioned in review: (Lukusa and Fryns, 2008)

Folate deficiency

FRA22A - 22q13 Not mapped • associated with ID (Webb and Thake, 1984)

Folate deficiency

Size ranges of repeats for some of the mapped fragile sites are reported estimates, which in some cases are limited by the small number of affected and reported families. Other fragile sites

that presented low-level (<4%) folate-sensitive fragility have been documented are covered in detail elsewhere (Krawczun et al., 1991).
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merely beginning to be elucidated, having previously been

limited by early cytogenetic methods used to fine map fragile

regions (i.e., physical mapping and FISH). The onset of

bioinformatic methods and databases in recent years provides

the potential to simultaneously identify many regions prone to

fragility, making them strong candidates for further analysis.

Prada and Laissue (2014) used bioinformatic methods to identify

chromosomal rearrangements of the X chromosome in

13 different mammalian species (Prada and Laissue, 2014).

They identified fragile sites previously associated with the

human X chromosome (FRAXA, B, C, D, E, and F), and were

also able to determine fragile sites that are conserved between

mammalian species, implying that these regions could have

functional roles. Their work characterizing the X chromosome

provides exciting new avenues for expansion to the rest of the

genome and in identifying novel important regions of fragility. Ji

et al. (2020) provided a genome-wide mapping of CFSs by using

the previous knowledge that most CFSs undergo mitotic DNA

synthesis (MiDAS); by sequencing the nascent DNA in mitotic

cells treated with aphidicolin, novel aphidicolin-inducible CFSs

were able to be uncovered (Ji et al., 2020). The methods of

mapping the molecular cause of a fragile site are outlined in

Figure 3, and could include CNVs in variable number tandem

repeats, identified by bioinformatic tools such as

ExpansionHunter Denovo (Garg et al., 2020; Trost et al.,

2020). Overall, the current improvements in methodology and

technology allowing for more detailed and quicker discovery of

CFSs and RFSs provides the potential to advance the

understanding of these fragile regions. Further studies on

common genomic features such as sequence, epigenetic

landscapes, and expression profiles would allow for the

development of more accurate automated programs for the

discovery of novel fragile sites. Moreover, revised “gapless”

reference genomes should further facilitate the suspected

association of tandem repeats with fragile sites, speeding the

mapping process (Figure 3).

FIGURE 2
Timeline of discovery for tandem repeat expansions and chromosomal lesions. Increased awareness and improved methods of detection have
fostered the identification of dozens of fragile site in the past two decades, with new bioinformatic techniques poised to launch an new era of fragile
site discoveries.
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FIGURE 3
Strategies to identify and map a fragile site. Yellow segment–Repeat-associated FS breakpoints may be suspected based upon various genetic
and epigenetic landmarks in normal cells. Large genes, changes in CpG methylation patterns on one chromosome, loss of expression (transcript or
protein), a V-shaped replication timing pattern, and the presence of tandem repeat sequences (CGG)n, (GGGGCC)n, and (AT)n are all pre-disposing
factors for FSs. Orange segment–confirmation of a repeat expansion at the suspected FS can first be carried out by bioinformatic analysis of
sequenced reads, followed by validation via Southern blot (gold standard) or repeat-primed PCR. Red segment–The final step of FS localization
requires drug treatment to induce expression of the FS, followed by characterization of metaphase spreads for fragile site hallmarks and FISH-based
mapping of the FS using two or more coloured FISH probes.
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Fragile sites and repeats

A variety of repeat sequences–including telomeric,

centromeric, classical satellite repeats I, II, and III, and

various disease-related repeats–have been mapped as

fragile sites, chromosomal lesions, or chromatin

aberrations (Warburton et al., 1996; Sfeir et al., 2009;

Bosco and de Lange, 2012; Black and Giunta, 2018)

(Figure 2, see also Box 1). Unlike CFSs, which arise at

genomic regions with no clear sequence motif, all mapped

disease-associated RFSs arise at repeat sequence motifs,

including the CGG expansion-associated sites (FRAXA,

FRAXE, FRAXF, et cetera). In the past decade, there has

been a steady discovery of new folate-sensitive disease-

associated fragile sites, including expanded CGG tracts

associated with FRA2A (Metsu et al., 2014b), and FRA7A

(Metsu et al., 2014a). Most recently, the rare autosomal-

recessive Baratela-Scott syndrome was reported to be

associated with the FRA16A CGG expansion in the

homozygous state (LaCroix et al., 2019). This site was

originally reported 25 years ago as benign when

heterozygous (Nancarrow et al., 1994). It should be noted

that some homozygously expressed fragile sites have not been

associated with disease (FRA10B, FRA16B, and FRA17A)

(Berg et al., 1969; Sutherland, 1981; Voiculescu et al.,

1991; Felbor et al., 2003). Thus, the phenotypic impact of

a fragile site must be considered as other genetic variations.

Technological advances are driving the discovery of

additional tandem repeats and disease-linked CGG repeat

expansions (Ishiura et al., 2019, 2018; Sone et al., 2019).

These repeats could be the molecular cause of novel

undiscovered fragile sites and warrant further investigation.

Our recent work identified over 2500 repeat motifs

significantly enriched in the genomes of autistic patients

(Trost et al., 2020). Many of these repeats colocalized to

cytogenetically observed, but not molecularly mapped FSFSs

(Trost et al., 2020). Using epigenetic-based methodologies,

others have also computationally identified abnormally

hypermethylated CpG-rich tandem repeat loci colocalizing to

unmapped FSFSs (Garg et al., 2020). It is not clear whether these

epigenetically mapped TRs actually require aberrant CpG

methylation for expression (Garg et al., 2020), as other

cytogenetically mapped FSFS do not require methylation with

repeat expansion being sufficient for expression (Smeets et al.,

1995; Perroni et al., 1996; Winnepenninckx et al., 2007). Other

repeat sequences could also manifest as fragile sites under the

correct inducing conditions, as the unique conditions necessary

to induce fragility at different repeat sequences may not yet be

understood. Additionally, there are several repeat expansion

disease loci in regions not yet associated with fragile sites but

may show fragility only in currently uncharacterized patient

populations. Figure 4 compares the cytogenetic location of all

known repeat expansions against neighboring common and rare

fragile sites previously identified in the literature. In the next

section we review the various types of repeats, associated disease,

and fragility.

(CGG)n repeat expansions cause folate-
sensitive fragile sites: FRAXA and other loci

Ten FSFSs have been molecularly mapped to gene-specific

expanded (CGG)n repeats. These sites include FRAXA (at FMR1

- causing FXS, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A,

FRA11A, FRA11B, FRA12A, and FRA16A (details and

relevant citations in Table 2). While it is clear that an

expansion is required for fragile site expression, there is only

a mild effect of larger expansions on fragility (Rousseau et al.,

1994), supporting the importance of the presence of a repeat

expansion over its size. Each of these sites shows aberrant CpG

methylation both upstream of and at the repeat, which is

associated with loss of transcription of the expanded allele.

Most of these 10 characterized FSFSs have been associated

with some form of neurological disease, with 16 other FSFSs

remaining uncharacterized with respect to sequence and disease

association. As such, it is possible that some other non-CGG

repeat may be involved with the uncharacterized FSFS.

Moreover, there may be additional undiscovered FSFSs for

which the disease-causing mutation may be a GC-rich repeat

motif.

The most extensively studied fragile site, FRAXA, provides a

complex picture of the mutational and disease heterogeneity that

can arise from a single fragile site. Depending on expansion size,

methylation status, and sex, different diseases manifest within

patients, many of whom have vastly different symptomatic

features (Figure 5) (reviewed in (Nichol Edamura and

Pearson, 2005; Lozano et al., 2014; Hagerman et al., 2018).

Various mutation forms and epimutations at FMR1 were

identified to be the cause of a broad spectrum of clinical

presentations, including FXS, autism, fragile X-associated

ataxia (FXTAS), premature ovarian failure/insufficiency

(FXPOI), attention-deficit disorder, learning disabilities, as

well as psychologic, endocrine, autoimmune, and metabolic

disorders (Hagerman et al., 2018). Interestingly, this

complexity in disease manifestation at the FRAXA locus has

only recently become apparent, some 75 years after the initial

reports of FXS as Martin-Bell syndrome (Martin and Bell, 1943).

Given such a complex etiology at this particular locus, enormous

unrecognized and unexplored complexity may exist at other

fragile sites.

AT-rich repeats at CFSs and RFSs

The sequences of all CFSs mapped thus far exhibit a

strong skew towards AT-rich regions (Zlotorynski et al.,
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FIGURE 4
Karyotypic ideogram of repeat expansions and fragile site locations. Ideogram shows the mapping of all disease and non-disease repeat
expansions (blue; on left side of chromosome) compared to all folate sensitive fragile sites (FSFS) (red and green; right side) and selected rare and
common FS near disease loci (gray; right side).
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FIGURE 5
FMR1/FRAXA numerous mutations, genotypes, and phenotypes. Disease mosaicism reported at the FMR1 (CGG)n repeat locus, influenced by
repeat size (rainbow inverted triangle showing increasing repeat size), DNA methylation of the repeat expansion ( ± CH3), and sex of patient (_ =
male; \ = female). Individuals with <44 repeats, regardless of sex, are neurotypical. Those with repeats between 45 and 200 can have Fragile
X-Associated Tremor/Ataxia Syndrome (FXTAS) or autism if male with unmethylated repeat. If female, these individuals have unmethylated
alleles that are likely neurotypical or have Fragile X primary ovarian insufficiency (FXPOI). With expansions >200 repeats, the disease spectrum
becomes more variable. In females, X-inactivation affects disease outcome. Due to the presence of two X alleles in females and random
X-inactivation, DNA methylation effects can vary substantially between individuals depending on which allele is X-inactive (Xi) compared to active
(Xa). This is also influenced by which tissues are affected and what degree of mosaicism in X-inactivation exists in the patient. If allele is methylated,
females can show FXS or Turner syndrome mosaicism based on which allele is Xi vs. Xa. Males with unmethylated expanded alleles are high
functioning FXS. Methylated individuals can have FXS or FXSwithmosaic Klinefelter syndrome. Many deletions within this FMR1 promoter region have
been reported, causing FMR1 silencing and FXS syndrome.
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2003; Tubbs et al., 2018). Although breakage frequencies

and general sequence characteristics have been described for

these sites, a common causative sequence has yet to be

identified. In most CFSs, several factors associated with

the AT-rich sequence likely contribute to the propensity

to break under replicative stress. Some mapped CFS loci,

such as FRA3B and FRA6E, are coincident with repeat

expansions, which could contribute to the increased

frequency of fragile site expression at these specific loci

under replicative stress. For RFSs, the distamycin-A/

BrdU-inducible sites FRA10B/FRA16B map to

uninterrupted AT-rich repeat motifs spanning several

kilobases (Lukusa and Fryns, 2008). FRA16B has been

mapped to a 33 bp AT-rich minisatellite repeat (Yu et al.,

1997) as well as a 35 bp repeat (Yamauchi et al., 2000).

Differences in repeat motif length or composition between

different FRA10B families indicate multiple independent

expansion events (Hewett et al., 1998). That the expanded

repeats at FRA10B and FRA16B can be of various repeat

motifs with various lengths seen among different

individuals, supports the likelihood that various AT-rich

repeat motifs - when expanded - may become fragile sites.

Currently, these AT-rich expansions have not been

demonstrated as requirements for fragile site expression.

Interestingly, several repeat expansion diseases, such as

SCA10, SCA37, FAME1/BAFME, and SCA31, are all

caused by pentanucleotide AT-rich repeats that reside

within known distamycin rare or aphidicolin CFS regions.

At each of these loci, multiple repeat motifs can arise, but

only certain motifs are associated with disease (Ishiura and

Tsuji, 2020). Additionally, there are also several repeat

expansion disease loci in regions not yet associated with

fragile sites which could show fragility in patient

populations not currently analyzed. We propose that in

the large regions associated with CFS, the repeat

expansions, although not necessary, could further

enhance fragile site expression.

Ribosomal repeats and fragility

The tandem arrays of rDNA have been observed as fragile

sites and other complex macro-structures (Ferraro et al., 1977;

Warmerdam and Wolthuis, 2019; Zhou et al., 2021). Fragility

induction at rDNA arrays by aphidicolin and actinomycin-D

was recently demonstrated (Zhou et al., 2021). The multiple

clusters of tandem ribosomal DNA (rDNA) repeat arrays

reside in the short arms of five of the 10 human

acrocentric chromosomes, 13, 14, 15, 21, and 22 (Boisvert

et al., 2007; McStay, 2016). Acrocentrics have the centromere

very near the end of the chromosome, have a long q-arm, a

centromere (primary constriction), a stalk (secondary

constriction), and a satellited arm (Figure 1G). The stalks

and satellites are variably sized heterochromatin structures

(Orye, 1974; Cheung et al., 1989; Heliot et al., 1997). The stalks

contain the genes for 18S, 5.8S, and 28S ribosomal RNA,

which occur as tandem copies, with varying lengths. It is the

variation in these lengths that is thought to modulate the

length of the chromosome, as this is due predominantly to

length variations of the stalk (Orye, 1974; Cheung et al., 1989;

Heliot et al., 1997). Each acrocentric has short satellited arms

containing three bands: p11, p12, and p13. Bands p11 and

p13 are composed of the heterochromatic satellite III and β-
satellite repeats. Band p12 contains ~400 copies of the 43-kb

rDNA repeat unit tandemly arrayed. Each unit contains the

28S, 5.8S, and 18S rRNAs (45S rRNA) and a non-coding

intergenic spacer. The size of the rDNA arrays varies

between individuals and decreases with ageing and displays

increased length variation in cancers (Stults et al., 2009; Xu

et al., 2017; Salim and Gerton, 2019; Valori et al., 2020). The

tandem arrays of rDNA are in nucleolar organizer regions

(NORs) which are within nucleoli. The exact sequence of the

rDNA arrays have long been elusive, but are now able to be

known (Hori et al., 2021; Nurk et al., 2022). The chromatin

compaction of the rDNA arrays is altered between active and

inactive states. In Xenopus Laevis the transcriptionally active

rDNA arrays are densely compacted in nuclease resistant

chromatin (Spadafora et al., 1979; Spadafora and Crippa,

1984; Spadafora and Riccardi, 1985). NORs on metaphase

chromosomes present as achromatic gaps known as secondary

constrictions of undercondensed rDNA repeats within active

NORs (Heliot et al., 1997). The lengths of the rDNA arrays

have long been known to contract over aging, especially in the

brain (Johnson and Strehler, 1972). The rDNA arrays are

particularly unstable in cancers (Stults et al., 2009; Xu et al.,

2017; Salim and Gerton, 2019; Valori et al., 2020), and

sensitive to DNA damage (van Sluis and McStay, 2019,

2017; Salim et al., 2017). Recent advances on understanding

the mechanisms of rDNA fragility have been made, revealing

an involvement of transcription across the arrays and R-loop

formation (Zhou et al., 2021). The D4Z4 repeat constitutes a

family of subtelomeric repeats present on human

chromosomes 10q26, 1p12, and the p arm of all five

acrocentric chromosomes (Lyle et al., 1995; Stout et al.,

1999). Telomeres avoid the nuclear periphery and tend to

reside within the internal, euchromatic compartment.

Exceptions to this are the telomeric q-arm 4q35 (Tam

et al., 2004) and the short p-arms of the acrocentric

chromosomes, 13, 14, 15, 21, and 22 (Boisvert et al., 2007;

McStay, 2016). Interestingly, each of these harbors a

D4Z4 repeat (Lyle et al., 1995; Stout et al., 1999). FSHD

patient cells with a mutant contracted D4Z4 repeat tract

(typically 11–100 repeats, down to <11 units) still

colocalized to the nuclear periphery, arguing that a critical

number of D4Z4 repeats is not required for localizing 4q35

(Tam et al., 2004).
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Multi-branched and despiralized
chromosomes: Satellites I-III, α-satellite
repeats, and ICF syndrome

Human centromeres are composed primarily of repeating

~171 bp units known as α-satellite DNA repeats (Warburton

et al., 1996). Centromeric regions are the primary

constrictions of chromosomes and exhibit a high degree of

heterogeneity in repeat sequence composition among

individuals (Fowler et al., 1987; Altemose et al., 2014;

Aldrup-MacDonald et al., 2016). Unlike many fragile sites

and repeat expansion diseases, these variations are considered

benign. Flanking the centromeres are pericentromeric

regions, which are composed of α-satellites and other

repetitive elements such as LINES, SINES, and satellites II

and III (reviewed in (Plohl et al., 2014). The pericentromeric

regions of chromosomes 1, 9, and 16 have large constitutive

heterochromatin stretches of repetitive DNAs (see Box 1).

These regions give rise to the secondary constrictions or

stretched heterochromatic sites, that often appear as long

over-stretched despiralized regions (Jeanpierre et al., 1993;

Guttenbach and Schmid, 1994). These are constitutively seen

in patients with ICF syndrome, a rare autosomal recessive

disease characterized by immunodeficiency (Fryns et al., 1981;

Turleau et al., 1989; Tuck-Muller et al., 2000). Like common

and rare fragile sites, these chromosomal regions are prone to

breakage, mis-segregation, aneuploidy, and micronuclei

formation. Multi-branched inter-chromosomal associations,

much like satellite chromosome associations are often

observed in ICF chromosomes (see Box 1). ICF syndrome

is caused predominantly by mutations in DNMT3b (the gene

encoding the human de novoDNAmethyltransferase) but also

by mutations in the HELLS, CDCA7, and ZBTB24 genes, each

involved in DNA methylation regulation (reviewed in

(Wijmenga et al., 2000). ICF individuals show severe

immunodeficiency, abnormal facial features, and cognitive

disabilities. All ICF patients assessed to date have

hypomethylation of the juxtacentromeric satellite II repeats,

leading to the hypothesis that the chromosome fragility and

disease symptoms are directly linked to DNA

hypomethylation (Maraschio et al., 1988; Jeanpierre et al.,

1993). Juxtacentromeric heterochromatin, unlike

pericentromeric regions, does not include the centromeric

heterochromatin. The cytogenetic observation of despiralized

lesions, cytogenetically similar to fragile sites within these

specific heterochromatic regions, highlights the importance of

methylation in relation to fragility at various loci. This

connection is supported by the observation that exposure

of non-ICF cells to demethylating agents such as 5-

azadeoxycytidine, leads to the induction of the same fragile

sites as those endogenously expressed in ICF patient cells

(Sutherland et al., 1985b). Furthermore, under replicative

stress, such as in tumorigenesis, centromeric DNA

rearrangements and mutations are commonly observed, just

like at CFS regions. Whether the mechanisms of maintaining

chromatin integrity at these various repetitive regions share

common pathways has yet to be elucidated. It is notable that

other inter-chromosomal associations have been reported by

molecular means (Maass et al., 2019; Agelopoulos et al., 2021),

however, these have not been reported to be detectable

cytogenetically.

Telomere repeat lesions

The telomeric ends of chromosomes are another site of

constitutive, repetitive heterochromatin within the genome.

In an attempt to identify internal controls for diagnostic FXS

by FRAXA induction, telomeric fragile sites were observed

(Steinbach et al., 1982). These folate-sensitive telomere fragile

Box 1 Satellite terminology
Acrocentric or satellited chromosomes, where the “satellited” chromosomal arm is telomeric to a secondary constriction -the centromere

(Ferguson-Smith and Handmaker, 1961). The compact heterochromatic region, known as the stalk, between the centromere and the satellite arm is
repetitive satellites and rDNA clusters. Satellited chromosomes were observed to form inter-chromosomal satellite associations (Ferguson-Smith
and Handmaker, 1961). Similar to themulti-branched chromosomes in ICF syndrome (see section 2.3), satellite associations are genetically inherited
(Ferguson-Smith and Handmaker, 1961). The term “satellite DNA” was first named where density separation (isopycnic gradients on CsCl or Ag+-
Cs2S04) of genomic DNAs were found to resolve as multiple distinct bands; a major band and numerous “satellite DNA” bands (Kit, 1961). The density
difference between bands was subsequently found to be due to the limited and tandem repetitive nature of the DNA sequences in the bands (Jones
and Corneo, 1971; Jones et al., 1973; Jones et al., 1974; Gosden et al., 1975; Frommer et al., 1982; Prosser et al., 1986), and hence their being termed
“satellite repeats” (with units of 5–171 bp), microsatellites (with motifs of 1–4 bp), minisatellites (with motifs of 5–64 bp), megasatellites/
macrosatellites (motifs of up to several hundred kb), and tandem gene amplifications. Human DNA contains at least four defined isopycnic
density bands: satellite I (1.687 g/ml), satellite II (1.693 g/ml), satellite III (1.696 g/ml), and satellite IV (1.700 g/ml) (Corneo et al., 1968; Corneo et al.,
1970; Corneo et al., 1972). These constitute respectively ~0.5, ~2.0, ~1.5, and ~2.0% of the total genomic DNA. Interestingly, the DNA
constituting the secondary constriction of some satellited chromosomes, turns out to be due to repeat expansions, as in FRAXA, ICF, etc.
New sequencing and bioinformatic tools are only beginning to harness a full appreciation of these tandem repeats and their relationship to
chromosome structure (Cechova, 2020; Liehr, 2021; Suzuki and Morishita, 2021; Thakur et al., 2021; Altemose, 2022; Altemose et al., 2022;
Cechova and Miga, 2022; Gall-Duncan et al., 2022; Hoyt et al., 2022; Nurk et al., 2022). This nomenclature, while not comprehensive, lacks
clear boundaries. It was recently suggested so as to avoid confusion, especially with the ever-increasing number of TRs with units of almost
any length, to use the term “tandem repeat (TR), with a motif of X nucleotides” (Gall-Duncan et al., 2022).
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sites occurred more often at 4p, than on other chromosomes

(Jenkins et al., 1986a). The cause of this telomeric fragility was

not mapped at the sequence level, but their variable expression

might be due to chromosome arm specific sub-telomeric

sequences (Flint et al., 1997). Telomere repeat tracts

(TTAGGG)n are typically bound and protected by the

shelterin protein complex, have also been identified as

aphidicolin inducible fragile sites (Sfeir et al., 2009; Bosco

and de Lange, 2012). The repetitive nature of these long

sequences challenges the fidelity of the replication

machinery. Deletions of TRF1, a key protein of the

shelterin complex, is sufficient to cause telomeric fragile

sites similar in appearance to traditional fragile sites

induced in replicative stress conditions (Sfeir et al., 2009).

This effect can be further exacerbated in aphidicolin or ATR-

knock-down replicative stress conditions (Sfeir et al., 2009).

The fragile nature of this repetitive sequence is further

validated by the presence of fragility at the interstitial

telomeric repeat on chromosome 2q14 (Bosco and de

Lange, 2012), where two stretches of TTAGGG repeats

exist as remnants of telomere-telomere fusions from

ancestral ape chromosomes (IJdo et al., 1991). Telomere

fragility may be regulated by progerin and dNTP pools

(Kychygina et al., 2021). These data argue that the telomere

repeat sequence itself is prone to fragility and may share many

characteristics with other fragile sites, likely due to its

replicative stress response.

Virally-induced fragile sites at repetitive
tracts

Viral integration into the genome has been associated in

two ways with fragile sites. First, the integration of foreign

DNA, including viruses and plasmids, occurs preferentially at

known CFSs (Wilke et al., 1996). This selectivity has

previously been harnessed to map the locations of fragile

sites (Chen et al., 1976; De Ambrosis et al., 1992; Smith

et al., 1992; Wilke et al., 1996; Mishmar et al., 1998).

Secondly, several herpes viruses (HSV-1 and HSV-2),

papilloma virus (HPV18) (Popescu and DiPaolo, 1989;

Zimonjic et al., 1994), cytomegalovirus (Fortunato and

Spector, 2003; Siew et al., 2009), and the oncogenic

adenoviruses (Ad5 and Ad12) have been reported to induce

fragile sites following integration at locations which do not

normally express fragile sites (reviewed in (Fortunato and

Spector, 2003). Similarly, the integration of foreign DNA into

the genome can induce novel fragile sites (Matzner et al.,

2003). Virally-induced fragile sites occur without chemical

induction, although they can be enhanced following viral

integration (Caporossi et al., 1991). The best studied of

these virally-induced fragile sites are those induced by

adenoviruses. Adenovirus serotype 12 induces fragile sites

at four specific genomic locations where viral integration

occurs at tandem repeating units. These repeats need to be

actively transcribed for fragility to arise (Gargano et al., 1995;

Li et al., 1998). One of the earliest studies to observe and map

the location of a virally-induced fragile site was through HSV-

1 and -2 induced fragile sites at the secondary constrictions of

chromosomes 1, 9, and 16, each composed of satellites I-III

(Fortunato and Spector, 2003). The HSV infections ultimately

lead to random chromosome pulverization/fragmentation

(Fortunato and Spector, 2003). It is noteworthy that many

of the fragile sites that are claimed to be virally-induced often

appear to express fragile sites naturally, but can be induced by

exposure to demethylating agents, or in cells from an ICF-

affected individual who is genetically deficient in the de novo

methyltransferase, DNMT3B (see section 2.3). In this

situation, it is difficult to know if cells expressing some of

these fragile sites have a history of exposure to these viruses.

Folate metabolism and fragility

Fragile site expression due to thymidylate stress can be

achieved through numerous induction methods that perturb

the folate metabolism pathway: 1) folic acid deficient growth

medium; 2) addition of methotrexate, an inhibitor of

dihydrofolate reductase (DHFR); 3) addition of

fluorodeoxyuridine (FUdR), an inhibitor of thymidylate

synthase; 4) excess thymidine, which inhibits the ability of

ribonucleotide reductase to convert cytidine diphosphate to

deoxycytidine diphosphate, and inhibiting dCTP production

(Jacky et al., 1991). Curiously, excess BrdU (a thymidine

analog), which also decreases dCTP levels, prohibits FSFS

expression (Sutherland et al., 1985b), likely due to its ability to

base pair with guanosine in its enol form (Freese, 1959). This

pairing allows DNA synthesis to proceed, unlike the excess

thymidine treatment that leaves many guanosine molecules

unpaired due to dCTP depletion (Sutherland et al., 1985a).

Additionally, imbalances in dNTP pools compromise the

fidelity of DNA polymerases (Das et al., 1985), increasing

mutagenic products in cellulo (Mattano et al., 1990; Kunz and

Kohalmi, 1991), a pre-disposing factor for fragile site

expression.

Folate and DNA methylation

The folate pathway is tightly linked with the DNA

methylation pathway (Figure 6), suggesting a possible

association between folate-sensitive DNA sites and the ICF-

linked fragile sites covered in Section 2.3. Folic acid is a

cofactor necessary in the methylation of uridine

monophosphate (dUMP) to thymidine monophosphate

(TMP). Through this conversion of uracil, folate prevents
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the toxic incorporation of uracil into genomic DNA. The

folate metabolism pathway and the various folate stressors

are schematized in Figure 6. Experimental evidence suggests

that incorporation of uracil into the DNA gives rise to single-

and double-stranded breaks, chromosomal breakage, and

micronuclei formation (Blount and Ames, 1995; Blount

et al., 1997; Duthie and McMillan, 1997; Duthie and

Hawdon, 1998). Folic acid also has critical roles in the

production of methionine and S-adenosyl methionine

(SAM), a methyl donor necessary for many methylation

reactions, including the maintenance of DNA methylation

(Zingg and Jones, 1997). That four of the eight known human

glycosylases exist specifically to remove uracil (UNG, TDG,

hSMUG1, MBD4) highlights the toxicity of uracil within the

genome (Lindahl and Wood, 1999).

In vivo effects of folate upon DNA methylation have been

documented in human and animal model studies, where low

levels of either dietary or serum folate are significantly correlated

with global DNA hypomethylation (Bekdash, 2021). Folic acid

supplementation of a low folate diet over a few weeks increased

genome DNA methylation (Jacob et al., 1998). Mild folate

depletion caused various chromosomal rearrangements in

cultured rodent prostate cells, a cell type sensitive to folate

deficiency due to its high dependence on SAM for polyamine

biosynthesis (Bistulfi et al., 2010). Overall, although it is difficult

to observe the in vivo effects of folate deprivation, several studies

on various cell types suggest genomic instability as a key feature.

(CGG) repeats and folate depletion

CGG repeats show preferential sensitivity to fragility

following folate depletion. While the nature of this sensitivity

remains an enigma, one hypothesis focuses on the incorporation

of uracil into DNA due to increased dUTP levels. Methotrexate

treatment in culture causes a large increase in the dUTP/dTTP

ratio, leading to a highly increased incorporation of uracil in

DNA (Goulian et al., 1980). This uracil incorporation occurs

more frequently in late than in early replicating genes in S.

cerevisiae (Bryan et al., 2014) and coincidentally, most fragile

sites tend to be late replicating (Webb, 1992; Hansen et al., 1993;

Subramanian et al., 1996). Therefore, these FSFSs could be stuck

in a recurring DNA repair cycle, attempting to excise and replace

the uracil base but lacking sufficient levels of the correct dNTP

(Reidy, 1987). This cycle is likely exacerbated by cytosine

deamination, a naturally occurring process that increases the

uracil content at CGG repeats (Feng and Chakraborty, 2017).

Alternatively, certain DNA glycosylases function more efficiently

FIGURE 6
The folate metabolism pathway affecting folate-sensitive fragile site expression. Common fragile site inducers methotrexate (MTX), 5′-
fluorodeoyuridine (FUdR), deoxythymidine triphosphate (dTTP), and hydroxyurea are indicated (in red) as to what enzymes they inhibit. Abbreviations
of other enzymes or substrates in the pathway are given in the bottom right corner.
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at sites of DNA damage when the template contains kinks,

bubbles, or gaps that are typical of secondary structures

(Hedglin et al., 2015). Therefore, the higher propensity of

CGG repeats to form secondary structure could allow uracil

DNA glycosylase to more readily recognize misincorporated

uracil, thereby setting off or exacerbating a futile DNA repair

cycle (Feng and Chakraborty, 2017).

At the time of the earliest predictions of a repeat expansion

(see Box 2), in 1985–86 (Sutherland et al., 1985b; Nussbaum et al.,

1986; Sutherland and Baker, 1986), it was known that

perturbation of one nucleotide precursor affected the levels of

other nucleotides (Kunkel et al., 1982; Kunz, 1982; Meuth, 1984).

Moreover, it was known that nucleotide pool perturbations can

lead to altered mutation rates, another phenomenon that is better

understood now (Kunz, 1988; Mathews, 2015, 2014, 2006;

Mannava et al., 2013). Even damage to the nucleotide

precursors themselves alters mutation rates, a phenomenon

that may affect repeat instability itself (De Luca et al., 2008;

Cilli et al., 2016; Mathews, 2017). However, even today, an

appreciation of the precise levels of nucleotides in a cell, their

effect upon each another and sub-cellular localization is poorly

understood (Leeds et al., 1985; Andersson et al., 1988). This

knowledge gap also extends to nucleotide activity-based

localization (Mathews and Ji, 1992) and tissue- or

development-specific nucleotide pool regulation (Mathews,

2019, 1975; Brachet, 1977). The role of folate in maintaining

uracil levels, outlined above, likely plays a role in some of these

cellular processes, a connection that will be revealed as

researchers seek to better understand the connection between

nucleotide levels, repeats, and fragility.

Martin-Bell syndrome/FXS

Martin-Bell syndrome, first described in 1943, was the first

reported example of X-linked intellectual disability (ID) (Martin

and Bell, 1943). The authors noted the unusual transmission by

what appeared to be unaffected fathers and mothers. Notably,

Julia Bell, a pioneer geneticist and statistician, had previously

studied the unusual transmission of both myotonic dystrophy

and Huntington’s disease, termed then as “antedating,” now

more commonly referred to as anticipation (Bell, 1941). Later,

upon examining another multi-generation family with X-linked

ID, Lubs identified the first disease-linked fragile site, mapping to

Xq27 (Lubs, 1969). This observation eventually led to the name

“fragile X syndrome” (FXS). Sutherland revealed in 1977 that

fragile site expression occurred in specific culture conditions

(Sutherland, 1977), and subsequently several families of X-linked

intellectually impaired families were reported to express the same

fragile site (Harvey et al., 1977; Turner et al., 1980b, 1980a; Jacobs

et al., 1980). The linkage between Martin-Bell syndrome and FXS

was definitively made in 1981 when fragile X expression was

demonstrated in the same family described by Martin and Bell

(Richards et al., 1981). This rapidly lead to harnessing this

cytogenetic observation as a diagnostic tool (Webb et al., 1981).

In the decade following 1981’s exciting discoveries, was the

race to discover the molecular cause of the FRAXA fragile site

and our understanding of FXS and its curious genetics. Based

upon the biology of FRAXA induction, perturbation of

nucleotide pools, led to the hypotheses that long amplified

DNA repeat tracts were the cause of the FRAXA fragile site

(Sutherland et al., 1985a; Nussbaum et al., 1986; Sutherland and

Baker, 1986; Warren et al., 1987; Hori et al., 1988). Through

exceptional and creative molecular and cellular experimentation

by multiple groups, in the span of a few months in 1991, a series

of papers collectively captured the involvement of an expanding

tandem repeat tract with CGG sequence motif, whose expression

was affected by aberrant repeat tract methylation, and in females,

X-inactivation ratio. The timelines of these discoveries is

expanded upon in Box 2, and are detailed further in

(Depienne and Mandel, 2021; Gall-Duncan et al., 2022). See

also Figure 3.

Currently, independent repeat expansion detection

methods have confirmed the suspicion that most rare FSFSs

are amplified CGG tracts (Garg et al., 2020; Trost et al., 2020).

Recent genomic/bioinformatic and epigenetic approaches

have colocalized CGG expansions to regions that have

previously presented by cytogenetics as fragile sites,

although none were validated by cytogenetic FISH mapping

(Garg et al., 2020; Trost et al., 2020). That most appear to be

CGG repeats does not exclude the possible involvement of

other GC-rich motifs. Chromosomal confirmation and

association of FSFS with disease phenotypes seems to have

revived interest in these repeats.

Megaloblastic anemia, fragile sites, and
folate or B12 deficiencies

Dietary compounds, environmental mutagen exposure,

and chemotherapy are strongly correlated with increased FS

expression within aphidicolin-treated peripheral

lymphocytes (Kao-Shan et al., 1987; Sbrana and Musio,

1995; Musio and Sbrana, 1997; Richards, 2001; Stein et al.,

2002; Francés et al., 2016). The list of potential

environmental mutagen exposures is extensive and

includes cigarette smoke, caffeine, ethanol, lysergic acid

diethylamide (LSD), dilantin, pesticides, oil spills, dietary

changes, and radiation (therapeutic and atomic bombs).

While aphidicolin is still necessary for FS expression in

this system, the current knowledge of how such exposures

can lead to specific mutation signatures (Poon et al., 2014)

may reveal trends related to fragility susceptibility. The

increased scientific focus on environmental and dietary

exposures may yield additional information on their

association with chromosomal fragility.
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Folate metabolism depends upon dietary folates (mostly

tetrahydrofolate), folic acid as supplements, and vitamins

B6 and B12. Humans are not capable of de novo

production of folate, but the commensal microbiome can

support production of this micronutrient. Deficiencies of

vitamin B12 and/or folate, due to malnourishment or

genetic defects in folate absorption/metabolism, lead to

striking chromosomal aberrations in both direct marrow

peripheral blood preparations, observations dating back to

the 1950s (Cingam et al., 2017; Green and Datta Mitra, 2017).

Chromosomal lesions include fragile sites (gaps and breaks),

centromere spreading, and chromosome elongation/

contraction (Heath, 1966; Jensen and Friis-Moller, 1967;

Das et al., 2005, 1986). Numerical (ploidy) was unaltered.

Upon proper nourishment or vitamin supplementation, the

chromosomal aberrations were rescued, and hence reversible.

Moreover, there is extensive knowledge of how certain drugs

can lead to megaloblastic anemia where many of the drugs

perturb folate, purine, or pyrimidine metabolism, with some

overlap with RFSFS-inducers (Stebbins et al., 1973; Stebbins

and Bertino, 1976; Hesdorffer and Longo, 2016, 2015; Ben

Salem et al., 2016). Aside from the centromere, it is unknown

if these chromosomal lesions arise at random or preferred

chromosomal locations. The in vivo association with folate-

deficiencies and the overlap of some drug inducers of

chromosomal aberrations in megaloblastic anemia with

FSFSs in cultured cells begs the question as to whether

there may be molecular similarity to the sequences at the

lesions. It is tempting to speculate that tracts of certain

expanded repeats may be particularly sensitive fragile site

induction upon perturbation of folate metabolism, drawing

a direct parallel of disease-associated CGG expanded fragile

sites and fragility in megaloblastic anemia. It is notable to

some reports of localized mosaic chromosomal

rearrangements, where the same rearrangement was

observed in multiple metaphases [del(7q), del(3p), del(18p),

del(20q)], and in malnourished individuals (Goh, 1981;

Chintagumpala et al., 1996; Wollman et al., 1996;

Parmentier et al., 2012; Cingam et al., 2017). And in each

case the rearrangement was “reversible” upon

treatment–indicating that the rearrangement was a folate-

sensitive de novo event, that did not occur in the presence

of folate. A similar link of low blood folate levels and a

del(10)(q23), breaking at 10q23, a known folate-sensitive

CGG FS FRA10A (Sarafidou et al., 2004), has been

reported to be decreased upon vitamin supplementation

(Maltby and Higgins, 1987; Ozisik et al., 1994; De Leon-

Luis et al., 2005; Morel et al., 2005). It would be of interest

to map the locations of the fragile sites in megaloblastic

anemias.

Characteristics of fragile sites

Common characteristics identified amongst the various types

of fragile sites provide critical clues as to why and how fragility

occurs at these specific loci throughout the genome. Several of the

proposed mechanisms of fragile site formation and resolution are

Box 2 Extended history of FXS
Based upon the knowledge that FRAXA and other folate-sensitive sites could be induced by perturbing nucleotide pools in the

folate pathway (see Figure 6), Grant Sutherland’s group hypothesized in 1985 – 6 years prior to molecular proof–that the genetic
cause of fragile sites would be an amplified repeat sequence (G. Sutherland, Baker, et al., 1985a; G. R. Sutherland and Baker, 1986). The
repeat motif was suggested to be, but not necessarily limited to, amplified alternating polypurine/polypyrimidine sequence, (AG)n•
(CT)n at the fragile site. In 1986, Nussbaum and others further extended this amplified repeat-centric hypothesis to the genetics of FXS (Nussbaum
et al., 1986). Specifically, they suggested that carrier females inheriting the amplificationwould have a level of clinical expression that depended upon
the proportion of active X versus inactive X chromosomes harboring the repeat amplification (Nussbaum et al., 1986). This suggestion was consistent
with the intermediate “premutation” state originally proposed in an effort to explain the puzzling genetic transmission of the disease. The puzzle
originated as the cytogenetic fragile site was present in seemingly unaffected males, who would give rise to a definitive mutation only upon
transmission to their heterozygous daughters, who themselves were rarely intellectually affected, but went on to have sons with both the fragile site
expressed and the disease phenotype with near unity in incidence (Pembrey et al., 1985).

It would be 5 years before landmark back-to-back papers revealed the first evidence that genetic instability was in fact the cause of FRAXA and
FXS, demonstrating the increasing size of the disease-causing DNA fragment through transmissions (Oberlé et al., 1991; S. Yu et al., 1991). Both
papers suggested the involvement of an expanding repeat tract, and Oberlé specifically suggested the involvement of the CGG tract. These papers
were quickly followed by those from Verkerk and others 1991) and Kremer and others 1991) showing a CGG tract was expanding (Kremer et al., 1991;
Verkerk et al., 1991). Verkerk identified the novel FMR1 gene in which the repeat expansion resided. These early papers presented evidence for the
mutation mechanism in FXS being an unstable DNA, with somatic instability of the DNA, and proposed the involvement of the GC-rich repeat and
unusual DNA structures in themutation process. Thus, the suspicion of an unstable repeat hypothesized by earlier papers (G. Sutherland, Baker, et al.,
1985a; G. R. Sutherland et al., 1986b; Nussbaum et al., 1986) was confirmed in a flurry of papers published withinmonths of each other, revealing that
the expansion of theCGG repeatwas the cause (Fu et al., 1991; Kremer et al., 1991; Verkerk et al., 1991). The unusual genetics of FXSwas subsequently
shown to be caused by the size of CGG expansions (Fu et al., 1991; Heitz et al., 1992) as well as the proportion ofmutant chromosomes with aberrant
methylation being present on the active X of females (Rousseau et al., 1991a). The mode of instability was revealed to be due to somatic repeat
instability during early development (Devys et al., 1992). The observed aberrant CpG methylation of the mutant locus (Bell et al., 1991; Oberlé et al.,
1991; Vincent et al., 1991) was soon after revealed to be associated with loss of FMR1 transcription (Pieretti et al., 1991). The identification of the CGG
expansion had immediate implications on direct molecular diagnostic methods (Rousseau et al., 1991b; Shapiro, 1991; G. R. Sutherland et al., 1991),
improving upon the cytogenetic diagnosis of the previous decade (Veenema et al., 1988; Shapiro, 1991; Shapiro et al., 1991). Thus, a strong sense of
biology and genetics can lead to likely hypotheses, yet strong molecular genetics are needed to prove them. See also Figures 2, 3.
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supported by evidence provided by these common characteristics

(see Figure 7).

Formation of secondary DNA/RNA
structures

All fragile sites have a propensity to form higher order

secondary structures more than non-fragile regions of the

genome. CFSs, which are typically AT-rich, possess high DNA

torsional flexibility (Chen et al., 1985), which influences

formation of secondary structures and can perturb DNA

replication (Zlotorynski et al., 2003; Dillon et al., 2013). In S.

cerevisiae AT-rich regions cause fork stalling and breakage

(Zhang and Freudenreich, 2007). Work by Burrow and others

(2010) shows that only 14 copies of the 33 bp AT-rich

minisatellite repeat of FRA16B is enough to cause replication

fork stalling, regression, and polymerase skipping in vitro

(Burrow et al., 2010). Additionally, there is a significant effect

on replication due to the orientation and distance of this

sequence from the replication origin with electron microscopy

revealing spontaneous regression of stalled forks at these

sequences (Burrow et al., 2010). While the AT-rich flexible

motifs exist within or near deletion breakpoints at fragile sites

(Finnis et al., 2005; Burrow et al., 2009), deletion of these motifs

within FRA16D (Finnis et al., 2005) or FRA3B (Corbin et al.,

2002; Durkin et al., 2008) does not block fragile site expression.

This disparity suggests that higher order structures cause by AT-

rich motifs at these regions cannot solely explain their fragility.

FSFSs, on the other hand, are comprised of expanded CGG

repeats that are capable of forming hairpins, slipped strand

structures, G-quadruplexes, and i-motif structures that can

hinder replication fork progression both in vitro and in vivo

(Fry and Loeb, 1994; Kang et al., 1995; Usdin and Woodford,

FIGURE 7
Fragile site expression is caused by several factors, such as 1) sequence features, 2) replication dynamics, and 3) replicative stress conditions.
There are several inducers that act on several fragile sites, like FRA3B which can be induced by FUdR and aphidicolin (Kähkönen et al., 1989; Jenkins
et al., 1990; Kuwano et al., 1990). There are many consequences both in cellulo and in vivo that are linked to fragile site expression. In cellulo,
replication fork stalling and collapse leads to activation of the DNA damage response, mitotic DNA synthesis (MiDAS), ultrafine anaphase bridges
(UFBs), and ultimately the appearance of de-chromatinization and under-replication if the site is not repaired in time. This can be observed in vivo
through mutational events such as copy number variants, translocations, deletions, and duplications.
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1995; Samadashwily et al., 1997; Zamiri et al., 2018, 2015). Both

rare and common fragile sites form secondary structures, albeit

through very different repeat composition, with RFSs having a

high predisposition to expand to greater repeat sizes (Schwartz

et al., 2006).

CpG methylation

DNA methylation status has been primarily explored in

relation to RFSs, primarily FSFSs, which undergo CpG

methylation at the expanded CGG repeats. Generally, folate

deficiency decreases methylation levels of the DNA, because

without folate, S-adenosylmethionine (the principle methyl

donor) is not produced, leading to a reduction of cytosine

methylation in the DNA (Giovannucci et al., 1993). All

10 mapped FSFSs are predisposed to aberrant CpG

methylation which is also linked with silencing of the

associated gene and development of disease phenotype. For

some loci, expansions without methylation can lead to

different phenotypes all together (see Section 4.4).

Additionally, the FRAXA, FRAXE, and FRA12A fragile sites

have been cytogenetically observed in individuals with

unmethylated expanded alleles (Smeets et al., 1995; Perroni

et al., 1996; Winnepenninckx et al., 2007), suggesting that

methylation is not an absolute requirement for fragile site

expression. However, a larger study of high-functioning males

with full CGG expansions and considerably reduced aberrant

CpG methylation, reveals that fragile site expression does

correlate with methylation levels (Hagerman et al., 1994;

Rousseau et al., 1994; Lesca et al., 2003). Thus, while DNA

methylation is not required for fragile site expression, it can

enhance fragility.

It is likely that CFSs are also sensitive to altered methylation

status, which could give rise to DNA conformational changes or

altered DNA-protein interactions that contribute to fragile site

expression (Thys et al., 2015). Interestingly, cytogenetically,

fragile sites appear similar to the chromosome constrictions

that endogenously arise in cells of individuals with ICF, most

of whom are genetically deficient in the de novo DNA

methyltransferase (DNMT3B) (Figure 1). Therefore,

methylation likely plays an important role in secondary

structure and stability of certain DNA regions, including both

FSFSs and at satellite I-III repeat sequences associated with CFS.

Perturbation of methylation status at these loci likely increases

the propensity for fragile site formation.

The demethylating agents, 5-azacytidine and its analog, 5-

deoxyazacytidine, are able to induce CFSs. Currently, five have

been found, and are predominantly at methylated

heterochromatin regions (Sutherland et al., 1985b). These

drugs cause widespread demethylation of DNA through

both inhibition of DNMT1 and their incorporation into the

genome (Christman, 2002). Additionally, since 5-azacytidine

results in hypomethylation of heterochromatic satellite repeat

regions, it is likely that these regions are also rich in CpG

islands. Another CFS-inducing compound that can

incorporate into DNA is bromodeoxyuridine (BrdU), a

thymidine analog. There are currently seven CFSs and four

RFSs found to be inducible by BrdU (Sutherland et al., 1985b,

1980). Neither 5-azacytidine nor BrdU CFSs have been

molecularly mapped to a particular repeat motif; however,

these regions are proposed to be low complexity, AT-rich

repetitive sequences with a high propensity to form secondary

structures (Dillon et al., 2013; Thys et al., 2015).

Unusual heritability/segregation and
karyotypic anomalies

All fragile sites are heritable polymorphic sequence

variations (Hecht, 1986), which can be inherited on one or

both chromosomes (Sutherland, 1981; Izakovic, 1984;

Voiculescu et al., 1991; Martínez et al., 2005) and segregate

in families (Sutherland, 1982; Smeets et al., 1985; Romain

et al., 1986; Sherman and Sutherland, 1986; Müller et al., 1992;

Samadder et al., 1993; Hamel et al., 1994). Fragile sites display

unusual patterns of segregation that depend upon the

transmitting parent. In a meta-analysis, paternal

transmission of the rare autosomal folate-sensitive fragile

sites (2q11, 2q13, 6p23, 7p11, 8q22, 9p21, 9q31, 9q32,

10q13, 10q23, 11q13, 11q23, 12q13, 16p12, 19p13, 20p11,

and 22q13) significantly deviated from the expected 50%

Mendelian inheritance ratio, which is reduced by more

than five-fold (Sutherland, 1982; Sherman and Sutherland,

1986; Samadder et al., 1993). However, maternal transmission

of these same sites did not significantly deviate from the

expected 50% ratio (Samadder et al., 1993). Maternal

transmission was also observed for FRA16B (16q22), which

is induced by distamycin A/berenil and maps to an expanded

AT-rich repeat of approximately 33 bp (Müller et al., 1992).

The unusual maternally-biased segregation of the X-linked

FRAXA, FRAXE, and FRAXF sites, can in part be explained by

maternal CGG expansion bias, ratios of X-inactivation, or a

predisposition for CGG contractions in the male germline (Fu

et al., 1991; Hamel et al., 1994; Malter et al., 1997). The

reduced paternal transmissions of the autosomal fragile

sites could be due to maternal genomic imprinting,

selection against male gametes carrying the fragile site, or

selection against paternally-derived zygotes. We note that

many of these transmission reports are sparse, with limited

independent confirmation. However, we include these reports

here, as it is known that such rare observations can have

genetic and clinical impact, as highlighted by the historical

situation of FXS.

Karyotypic variations involving mosaic gains or losses of the

fragile X chromosome have been observed (Figure 5). Several
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reports observe these mosaics at higher than expected levels and

are likely under-reported owing to the absence of associated

cytogenetic studies (Fryns and Van den Berghe, 1988; Santos

et al., 2003; Dobkin et al., 2009). Both germline and somatic

karyotypic anomalies arise in individuals with CGG-expanded

FMR1 X-chromosomes. These anomalies include mosaic cells

from a given individual with 46,FRAXA,Y/47,FRAXA, FRAXA,Y

(male FXS-Klinefelter syndrome mosaic with an extra fragile

chromosome) or 45,X/46,FRAXA,X (female FXS-Turner

syndrome mosaic, where the full-mutation fragile X is lost

during somatic cell division) (Banes et al., 2003; Dobkin et al.,

2009; Froster-Iskenius et al., 1982, p.; Fryns et al., 1983; Milunsky

et al., 1993; Seemanová et al., 1985; Shapiro et al., 1994; Tejada

et al., 1994). Non-mosaic instances of such anomalies have also

been reported, with cells having only 47,FRAXA, FRAXA,Y;

46,FRAXA,X (Filippi et al., 1988; Kupke et al., 1991), or

47,FRAXA,X,X (Fuster et al., 1988; Tejada et al., 1994; Dobkin

et al., 2009). These cases can arise via either maternal or paternal

X-chromosome non-disjunction of the CGG-expanded fragile X

chromosome (Santos et al., 2003; Dobkin et al., 2009). Mosaicism

occurs when the non-disjunction arises post-zygotically, whereas

non-disjunction during meiosis will give rise to homogeneous

cell populations. Age-dependent increases of aneuploidy

involving the expanded X also occur in most FMR1 CGG

expansion carriers, where the mutant X-chromosome is either

lost or retained in an ongoing manner (Nielsen, 1986). FRAXA

chromosome aneuploidy is observed in both young and older

individuals suggesting that the fragile expanded X chromosome

is prone to missegregation (loss or gains), possibly through

aberrant packaging, DNA breakage, and/or arrested

replication (Kerem et al., 1988; Dobkin et al., 2009; Yudkin

et al., 2014). Mosaicism for the ploidy loss or gain of the

FRAXA chromosome might suggest meiotic and mitotic

predisposed non-disjunction of the mutant chromosome

(Milunsky et al., 1993). Such cases can pose diagnostic and

counselling challenges (Pandelache et al., 2021). Like mosaics,

chromosome number anomalies in cells expressing fragile sites

may also be underestimated and overlooked, as chromosome

counting has been historically poorly appreciated (Martin, 2004).

Karyotypic variations can also arise with other FSFSs. For

example, the FRA1E (1p11) and FRA1D (1p22) fragile sites have

been associated with the presentation of monosomy, trisomy,

and chromosome rearrangements and multiple congenital

anomalies (Neu et al., 1988). In this case mosaicism was

evident in multiple tissues including 45,XY,-1/46,XY/

47,XY,+1 mosaicism in lymphocytic culture, a 45,XY,-1/46,XY

mosaicism in skin fibroblasts, and fra(1p) sites in 2% of the

metaphases from lymphocyte, fibroblast, and bone marrow

cultures. Given the lack of appreciation for chromosome

counting and cytogenetics in an increasingly focused “-omics”

world, it is highly likely that other instances of unusual

heritability, segregation, and karyotypic anomalies associated

with fragile sites remain to be uncovered.

Disease-association of fragile sites,
chromosomal deletions/rearrangements,
penetrance, and diversity

The overwhelming association of fragile sites with multiple

diseases has fueled their molecular characterization. In particular,

CFSs are frequently sites of CNVs and chromosomal

rearrangements–deletions or translocations commonly seen in

many cancers (Popescu, 1994; Mimori et al., 1999; Krummel

et al., 2000; Mangelsdorf et al., 2000; Arlt et al., 2006, 2002;

Burrow et al., 2009; Bignell et al., 2010). Many fragile sites also

overlap with tumor suppressor genes (Iliopoulos et al., 2006),

with rearrangements possibly driving oncogenesis and affect

genes that are likely to further accelerate genomic instability

(reviewed in (Karras et al., 2016). In addition, oncogenic

activation often, due to unchecked cellular growth, causes

dNTP imbalances, promoting instability at CFS regions

(Bester et al., 2011). Fragile sites are also frequent integration

sites of oncogenic viruses (see section 2.5), which have been used

to facilitate their precise mapping (Smith et al., 1992; Wilke et al.,

1996; Mishmar et al., 1998). Finally, fragile site regions are

strongly correlated with chromosomal rearrangements that

have contributed to the development of the vertebrate lineage,

suggesting a link between fragile sites and genome reorganization

through evolution (Miró et al., 1987; Ruiz-Herrera et al., 2006,

2005, 2002). These factors suggest a strong connection between

fragile sites and both advantageous and deleterious chromosomal

processes.

Fragile sites are associated with a number of neurological,

neuropsychiatric disorders, and neurodevelopmental diseases

such as autosomal recessive juvenile parkinsonism (FRA6E)

(Denison et al., 2003), idiopathic autism (FRA13A) (Savelyeva

et al., 2006), and schizophrenia (Demirhan et al., 2006). In

particular, 28 CFSs contain genes associated with

schizophrenia (reviewed in (Smith et al., 2010). There are also

claims of fragility linked to bipolar disease, schizophrenia, and

Rett syndrome (Archidiacono et al., 1985; Gillberg et al., 1985;

Simonic et al., 1997; Fischer, 1998; Demirhan et al., 2009, 2006;

Smith et al., 2010; Kharrat et al., 2017). However, despite the

historical connection between fragile sites and disease, the

reproducibility or genetic mapping of these types of sites has

not been sufficiently followed-up.

Genomic instability at RFSs presents predominantly as

expansions of the repeat motif. However, deletions of the

FRAXA and FRAXE region do occur (reviewed in (Hammond

et al., 1997; Nichol Edamura and Pearson, 2005; Coffee et al., 2008;

Mondal et al., 2012)) and have been covered extensively for FRAXA

(http://www.hgmd.cf.ac.uk/ac/gene.php?gene=FMR1). Most of the

FMR1 deletions/rearrangements are covered in Figures 8A–D (see

citations therein). Breakpoints that frequently occur at RFSs,

particularly under replicative stress, tend to map to regions

surrounding the expanded repeat motif, such as at FRAXA

(Warren et al., 1987; Oberlé et al., 1991; Dobkin et al., 2009;
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FIGURE 8
(Continued).
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Verdyck et al., 2015) and FRA11B (Michaelis et al., 1998; Tunnacliffe

et al., 1999). Translocations, deletions, and rearrangements at the

fragile X chromosome as well as chromosome 3 were induced under

replicative stress using aphidicolin or FUdR, respectively, in somatic

cell hybrids (Glover and Stein, 1988). CGG expansion-associated

chromosomal deletions can arise somatically and are present at

barely detectable mosaic levels, suggesting that the true extent of

these deletions may be underappreciated (Jiraanont et al., 2017).

Atypical symptoms also arise with mosaic deletions of

FMR1 and contiguous genes, FMR1 duplications, and

chromosome rearrangements. These rearrangements can be

relatively small or large, often bridging fragile site to fragile

site. Depending upon the region duplicated or deleted

additional symptoms can include hemophilia, Hunter

syndrome, myotubular myopathy, overgrowth, macrocephaly,

seizures, and others (Figures 8A–D) (Coffee et al., 2008). While

FRAXA/FMR1 is heavily studied, numerous instances of

chromosomal instability with common and rare fragile sites

supports this as a common attribute of FS.

Evidence that the FRAXA site is truly fragile and prone to DNA

breakage arises from the many patients that have incurred loss of

FMR1 function through deletions of the (CGG)n tract and part of, or

all of the FMR1 gene, and often contiguous genes (Figures 8A–D).

Cytogenetically, FRAXA canmanifest as a truncated X chromosome

with loss of the distal long arm band, Xq28 (Fitchett and Seabright,

1984; Verdyck et al., 2015). Fragile sites are mutation and

FIGURE 8
(Continued). Numerous deletions and duplications around the FMR1 locus. (A) The literature reports numerous large deletions on the X
chromosome in the region surrounding the FMR1 locus, and additionally (B) many small deletions that occur within the FMR1 locus itself. Large (C)
and small (D) duplications (including transversions and inversions) are reported to occur around the FMR1 fragile X locus, with many of the large
duplications also occurring in tandem with large deletions (see related citations).
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epimutation hotspots. Specifically, the (CGG)n-expanded FMR1

gene incurs ongoing somatic expansions of the (CGG)-tract

(Lokanga et al., 2013), variations of CpG methylation,

microdeletions, duplications, and point mutations proximal to or

encompassing the FMR1 (CGG)n repeat, intra- and inter-

chromosomal rearrangements, as well as germline and somatic

aneuploidy (gains and losses of the whole mutant

X-chromosome). These various mutations and epimutations,

which can arise somatically, can lead to the broad spectrum of

phenotypes associated with FMR1 and its proximal genes (Figures

8A–D). Thus, FSFSs are genetically unstable loci, where the

instability can have disease implications.

All of the 10 mapped CGG FSFSs have been linked in some

manner to ID or autism spectrum disorders (ASDs) (previously

reviewed in (Debacker and Kooy, 2007) (Table 2). Additionally

many unmapped fragile sites are proposed to be associated with

neurological and neuropsychiatric disorders, including

schizophrenia (Debacker and Kooy, 2007). Many of these

neurological disorders are complex, polygenic conditions that

are heavily influenced by environmental and genetic components

(reviewed in (Miles, 2011; Kerner, 2014); therefore, the effect of

chromosome fragility on particular genes could cascade to other

genes (Feng and Chakraborty, 2017). It is interesting that many

of the mapped CGG-repeat expanded FSFSs are from genes that

are highly expressed in the brain (AFF3, ZNF713, FAM10AC1,

FMR1, FMR2) which are likely to have many downstream

interactions that can affect global gene or protein expression

contributing to disease pathogenesis (Feng and Chakraborty,

2017). Molecular mapping of additional fragile site sequences

will likely unveil some of the same complexities of disease

etiology for their associated diseases.

Jacobsen syndrome occurs due to deletions in the distal end of

the q arm of chromosome 11, that is associated with the FRA11B

fragile site (Jacobsen et al., 1973; Schinzel, 1977). The clinical

presentation is highly variable and can include malformations of

the heart, kidney, gastrointestinal tract, genitalia, and central nervous

system; cognitive impairment, and skeletal, ocular, hearing,

immunological, and hormonal problems. The varying size and

locations of the deletions likely account for the variable clinical

presentation (Jacobsen et al., 1973; Tootleman et al., 2019). The

molecular basis of the deletions is the fragile site FRA11B (CGG)n

repeat expansion, which upon transmission can result in

breakpoints of the chromosome (Voullaire et al., 1987; Jones

et al., 1995). These breakpoints frequently occur within the

vicinity of RFS but can also occur up to 10 Mb away from the

(CGG)n repeat (Michaelis et al., 1998; Tunnacliffe et al., 1999). This

fragile site was the first established as causing in vivo breakage and

disease manifestation, demonstrating the clinical importance of

fragile sites. This connection between in vivo breakage and

disease is further supported by evidence of FRAXA chromosomal

breakage and rearrangement in early embryos containing the repeat

expansion (Verdyck et al., 2015). Additionally, expression of the

FRA10B fragile site in mothers was correlated with 10qter deletions

originating from the FRA10B locus that were identified through

non-invasive prenatal screening. Furthermore, the FRA18CCFSwas

discovered in the parent of an offspring with a chromosomal

deletion truncation originating from this site (Debacker et al.,

2007). Taken together these data strongly support that fragility is

associated with in vivo chromosomal breakage and disease

manifestation. Some evidence suggests that telomere healing can

arise at broken fragile sites, leading to interstitial telomeric sequences

(Bosco and de Lange, 2012; Bouffler et al., 1993; Boutouil et al., 1996;

Glousker and Lingner, 2021; Gozaly-Chianea et al., 2022, p.; Musio

andMariani, 1999; Petit, 1997; Villa et al., 1997).While there is often

proximity of a fragile site to these interstitial telomeric repeats,

interstitial telomeric repeats do not necessarily cause fragility (IJdo

et al., 1992).

Most rare FSFSs diseases show partial penetrance of clinical

symptoms while still expressing the fragile site, a connection that

depends upon the presence of a CGG expansion. With the

exception of FRAXA/FXS, analysis of penetrance of the other

CGG fragile sites has not been possible, as many sites have been

observed in too few families to account for either age effects,

expansion size, or degrees of aberrant CpG methylation

(Debacker and Kooy, 2007). Delayed onset or incomplete

penetrance is typical of diseases that display genetic

anticipation (earlier manifestation or greater severity through

family generations). The FRA16A (CGG)n repeat expansion,

initially reported as a benign variation when heterozygous

(Nancarrow et al., 1994), is the causative mutation of

Baratela-Scott syndrome when found in the homozygous state

(LaCroix et al., 2019). Other FSFSs may in fact be found to cause

disease when in the inherited in the homozygous state but have

yet to be identified due to lack of appropriate patient or patient-

derived samples.

Chromosomal fragility has not been observed in other

known repeat expansion disease loci outside of (CGG)n

expansions. For example, the expanded (CTG)n repeats

associated with myotonic dystrophy (DM1) or Huntington’s

disease (HD) do not express fragile sites in a variety of

induction methods (Beverstock et al., 1985; Jalal et al., 1993;

Wenger et al., 1996; Barbé and Finkbeiner, 2022). The

DM1 studies used multiple patient-derived cells with long

DMPK CTG/CAG repeat expansions, and multiple known

fragile site induction conditions, including folate-deficient

media, high thymidine media, and FUdR (three folate-

sensitive rare fragile site conditions), BrdU (rare and common

fragile sites), aphidicolin (common fragile sites), and 5-

azacytidine (common fragile sites). The HD studies also used

multiple HD lines and folate-deficiency, FUdR, and BrdU. Thus,

the expansion of any repeat cannot automatically be assumed to

lead to fragility. While other chemicals known to induce fragile

sites, like the AT-specific Hoechst 33258 and netropsin could be

tried, other chemicals, not previously assessed for fragile site

induction could also be tried. For example actinomycin D, which

has been shown to have loose binding preference to CAG/CTG
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repeats (Jacky and Dill, 1983) may be considered. Altered protein

regulation could be considered. For example, in the presence of

an ATM protein inhibitor, the expanded GAA repeat tract at the

FRDA locus associated with Friedreich’s ataxia, exhibits

enhancements in a kind of fragility as assessed through

rearrangements and chromosome abnormalities (Kumari

et al., 2015). While the association between repeat expansions

and fragility has not been a universal association, it is entirely

plausible that the unique conditions or agents necessary to

induce fragility across different repeat sequences have not yet

been elucidated.

Tissue-/cell-type specific fragile site
expression

Fragile site expression has only been demonstrated in a limited

number of tissues. Expression of fragile sites is specific to certain cell

types, suggesting that epigenetic or other trans-factors could be

contributing to the sensitivity of the site to replication stress. For

example, although fibroblast cells of fragile X patients can be treated

to induce the FRAXA site (Tommerup et al., 1981), the frequency of

expression is often not comparable to that seen in the lymphocytes

or lymphoblasts of the same patient (Mattei et al., 1981; Schmidt and

Passarge, 1986). Differential fragile site expression has additionally

been observed between chorionic villus (placental tissue), fetal blood,

and amniocytes via prenatal fragile X screening (Jenkins et al.,

1986b; McKinley et al., 1988). FRAXA expression between a broad

range of tissues has yet to be assessed. The specificity of fragile site

expression has also been documented for certain CFSs, revealing

CFS loci differences across several cell types (Kuwano et al., 1990; Le

Tallec et al., 2013, 2011). Letessier and others (2011) demonstrated

that cell type specificity (lymphoblastoid versus fibroblasts) was

linked to the density of replication origins surrounding a

particular fragile site region (Letessier et al., 2011). The FRA3B

site, the most common CFS site in lymphocytes, has a paucity of

replication origins within the core of the region (Palakodeti et al.,

2010), yet this disparity does not exist in fibroblasts, where the

density of initiation events is comparable to that of the rest of the

genome (Letessier et al., 2011). In line with this model, fibroblasts,

but not lymphocytes, lack origin sites at the core regions of FRA1L

and FRA3L, which are highly expressed in fibroblasts but not

lymphocytes (Le Tallec et al., 2011). While cell type specificity

has been suggested to be influenced by transcription levels of the

particular locus (Helmrich et al., 2011), a later study did not find a

correlation with transcription levels, instead suggesting that

chromatin architecture and organization play a key role in cell

type specificity (Le Tallec et al., 2013). Overall, these findings

suggests that although sequence composition is a contributing

factor to fragility, there are other undefined aspects influencing

the propensity of these sites to experience chromosomal instability.

Elucidating these contributing factors could present novel

approaches to targeting genomic instability at these problematic loci.

Micronuclei formation

The increased formation of micronuclei under fragile site

inducing conditions has been observed for both rare and

common fragile sites (Chan et al., 2009; Bjerregaard et al.,

2018). The expression of micronuclei is a proxy for genomic

instability, as these events form only after faulty chromosomal

segregation in anaphase leads to either an entire chromosome or

a chromosome fragment becoming dissociated from the

remaining nuclear content (Fenech, 2007). In the absence of

drug treatments or external stressors, increased micronuclei

appear in cell culture for many neurodegenerative diseases,

such as Huntington’s disease (Sathasivam et al., 2001),

Alzheimer’s disease (Migliore et al., 1997), ataxia telangiectasia

(Rosin and Ochs, 1986), and both Werner and Cockayne

syndromes (Weirich-Schwaiger et al., 1994) (reviewed in

(Migliore et al., 2011). Micronuclei formation, gene

amplification, and chromosome damage (such as double-

stranded breaks) appear in conditions of folate deficiency

(Jacky et al., 1983; Duncan, 1986; Blount et al., 1997; Melnyk

et al., 1999; Fenech, 2001; Fenech and Crott, 2002; Beetstra et al.,

2005, p. 200). In conditions of folate deficiency, FXS cells show

increased mis-segregation of the FRAXA allele, with a higher

prevalence in micronuclei and at anaphase bridges (Bjerregaard

et al., 2018). This finding expanded initial reports of increased

levels of micronuclei in FRAXA carriers compared to controls

(Jacky et al., 1983; Duncan, 1986). Taken together these in cellulo

reports support a close connection between fragility and

micronuclei formation.

The in cellulo effect of elevated micronuclei with folate

deprivation translates to mouse models and humans. Mice

treated with methotrexate, an inhibitor of dihydrofolate

reductase (DHFR), exhibit increased micronuclei and

chromosomal aberrations in a dose-dependent manner

(Kasahara et al., 1992). Additionally, there is a significant

correlation between increased micronuclei and folate

deficiency in the leukocytes, reticulocytes and erythrocytes

of human subjects; supplementation with folate significantly

reduced the frequency of micronuclei (Everson et al., 1988;

Blount and Ames, 1995; Blount et al., 1997). Recent advances

in understanding the biology of micronuclei, including their

involvement in DNA damage, aneuploidy, DNA repair and

segregation, can be harnessed to further understand the

association of micronuclei with fragile sites.

Sister chromatid exchange and ultrafine
anaphase bridges

Sister chromatid exchange (SCE) is a natural phenomenon

that occurs following DNA replication and causes recombination

of genetic material between chromatids, typically in an error-free

manner. Although SCE occurs naturally, an increase in frequency
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is indicative of genotoxic stress and instability. Advances in

understanding the formation and resolution of SCEs, the

factors involved, their involvement in genome instability, and

under-replicated regions (as observed at FRAXA (Kerem et al.,

1988)), all will improve our understanding of the association of

SCEs with fragile sites (Baxter, 2015; Broderick and Niedzwiedz,

2015; Uchiyama and Fukui, 2015). CFSs are sites of preferential

SCE, regardless of whether a visible gap exists concurrently with

the SCE (Glover and Stein, 1987; Schmid et al., 1987; Feichtinger

and Schmid, 1989; Hirsch, 1991; Lukusa et al., 1991; Tsuji et al.,

1991).

The formation of ultrafine anaphase bridges and the presence

of MiDAS (mitotic replicative-stress DNA synthesis, see section

5.4) occurring at CFSs has led to great excitement concerning the

processing and resolution of SCEs at these sites (Chan et al., 2009;

Naim et al., 2013; Ying et al., 2013; Minocherhomji and Hickson,

2014; Bhowmick et al., 2016). Under aphidicolin-induced

replicative stress, sister chromatid bridging leads to inefficient

resolution and genotoxicity (Chan et al., 2009). These stressed

cells have a higher incidence of ultrafine anaphase bridges,

indicative of unresolved sister chromatids during anaphase

separation (Chan et al., 2007). The FRAXA locus has an

increased propensity for DNA anaphase bridges and lagging

chromosomes in folate stress conditions (Bjerregaard et al.,

2018). These anaphase bridges associate with the FRAXA

allele and differ from CFS-associated bridges in that the

majority are RPA protein positive and PICH protein negative.

FANCD2 also does not colocalize to these bridges, suggesting

that FSFSs are processed differently than CFSs (Bjerregaard et al.,

2018). This response is outlined in the mechanism of DNA repair

section below (section 5.4). Increased sister telomere associations

in conditions inducing telomere fragility, suggests a similar

pathway at these fragile sites (Sfeir et al., 2009).

The relation between RFSs and SCEs is less clearly

delineated, although most studies support an increase in

SCEs at RFSs. Carriers of the distamycin A-inducible sites

have elevated SCEs, with FRA16B observed in both induced

and uninduced conditions (Schmid et al., 1987; Lukusa et al.,

1991; Seki et al., 1992), whereas FRA16E is only observed in

induced conditions (Tsuji et al., 1991). A problematic aspect

in studying SCEs and rare FSFSs is that the BrdU

treatment–necessary for SCE visualization–counteracts the

toxic effects of folate deprivation by base-pairing with

guanine (Freese, 1959). This pairing bypasses the DNA

synthesis block normally observed in folate-deprived

conditions, where dTTP and dCTP levels are diminished.

Reports of a global increase in SCE events in folate-deficient

conditions in FXS patient and control cells (Branda et al.,

1984), have been countered by others arguing that SCEs are

only increased locally at the Xq27 FRAXA expanded locus

(Wenger et al., 1987; Tommerup, 1989, p. 1989) and global

SCEs are the same between these cells. In yeast, thymidylate

depletion leads to unequal SCEs and other forms of

intrachromosomal rearrangements (Kunz et al., 1986).

Further investigation of the relationship between RFSs

and SCEs is required to better understand the connection

between these two important molecular processes.

The high coincidence of SCEs and fragile sites likely occurs

because fragile sites are usually late-replicating, and likely under-

replicated, making them susceptible to initiation of homologous

recombination to replicate the remaining DNA. If replication is

not completed, there will be colocalization of a fragile site with an

SCE site. Alternatively, a fragile site could still occur if replication

has taken place, but it was too late for proper chromatin

condensation. Considering that both rare and common fragile

sites are prone to deletions, expansions and rearrangements, the

process of unequal or error-prone exchange at SCEs may also

contribute to instability.

Fragile sites in (non-human) animals

Fragile sites have been observed in many non-human species,

using induction methods typical of rare or common fragile sites.

Aphidicolin-induced fragile sites have been observed in many

animals and different cell types. These include, but are not

limited to, peripheral lymphocytes from mouse (Rozier et al.,

2004), cat (Stone et al., 1993; Stone and Stephens, 1993), and dog

(Stone et al., 1991), fibroblasts from mouse (Sanz et al., 1986),

Persian vole (Djalali et al., 1985), Chinese hamster (Coquelle

et al., 1998), racoon, dogs (Wurster-Hill et al., 1988), and

splenocytes from mouse (Krummel et al., 2002) and rat

(Robinson and Elder, 1987). Fragile sites are induced by folate

deficiency, either through FUdR induction or growth in folate

deficient media. These FSFS have been observed in lymphocytes

from mouse (Elder and Robinson, 1989), rat (Elder and

Robinson, 1989), river buffalo (Pires et al., 1998), Indian mole

rat (Tewari et al., 1987), Persian vole (Djalali et al., 1985), goats

(Lopez Corrales and Arruga, 1996), cattle (Uchida et al., 1986),

and domestic pig (Yang and Long, 1993). Drugs such as

trimethoprim, methotrexate, 5-azacytidine, 5-aza-

2′deoxycytidine, amethopterin, and BrdU have been used to

induce fragile site in non-human animals as well, including in

cats (Stone et al., 1993), dogs (Stone et al., 1991), Persian vole

(Djalali et al., 1985), gorilla (Schmid et al., 1985), chimpanzee

(Schmid et al., 1985), goats (Lopez Corrales and Arruga, 1996),

river buffalo (Pires et al., 1998), Chinese hamster (Coquelle et al.,

1998), and rabbit (Poulsen and Rønne, 1991). Furthermore,

spontaneous (un-induced) fragile sites have been observed in

cells from horse and pigs (Riggs and Rønne, 2009).

Evidence suggests that fragile sites and their associated genes

are evolutionarily conserved, supporting a functional role,

possibly in genome packaging (Berthelot et al., 2015). Many

of the human disease-associated genes are evolutionarily

conserved and many retain a repeat tract. For example,

FMR1, for which an expanded CGG tract is the cause of
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FRAXA, is evolutionarily conserved. Moreover, the CGG repeat

is also conserved, but is typically shorter in non-human species.

An observation of a naturally-occurring CGG-expanded Fmr1

gene in a non-human species has not been reported but could

theoretically exist. A repeat expansion in the dog Nhlrc1

gene, the cause of its Lafora disease (Lohi et al., 2005), does

not appear to be present in humans, albeit non-repeat

mutations in the same gene cause the same Lafora disease

in humans (Chan et al., 2003). Human fragile sites have also

been conserved within animal species, such as FRA16D, a

common AT-rich repeat fragile site mapped to the gene

WWOX (Lee et al., 2021). In the mouse, the Wwox gene

and fragile site are highly conserved in the mouse genome,

appearing as mouse fragile site Fra8E1 (Krummel et al.,

2002). Similarly, a CFS induced by 5-azadeoxycytidine on

human chromosome 1q42 was also induced on the

homologous locus in chimpanzee and gorilla, indicating

that it is also conserved (Schmid et al., 1985). The folate-

sensitive FRAXA fragile site at Xq27 was observed in human-

hamster and human-mouse hybrid cells, in which a human

Xq24-qter from a male fragile X patient was transferred to

rodent cells (Nussbaum et al., 1983, p. 983; Warren and

Davidson, 1984; Warren et al., 1987). These hybrids were

used to clone the FRAXA CGG repeat (Warren and

Davidson, 1984; Warren et al., 1987).

Proposed mechanisms for fragile site
formation and processing

The molecular mechanism of fragile site expression remains

to be elucidated. Well-established link between fragile sites and

cancer etiology has facilitated headway in the field of CFSs,

unravelling many mechanistic aspects of their cause and the

processing of DNA at these unique sites. In contrast, the field of

RFSs lags behind CFS studies and could benefit from ideas

gleaned from CFSs to renew progress and discovery. Several

theories exist, supported by ample evidence, for the mechanisms

of fragile site formation and involve 1) replication timing and

origin paucity, 2) chromatin compaction, 3) replication-

transcription collisions, and 4) DNA damage and repair

machinery. These pathways are not mutually exclusive, and

any combination could cause specific fragile sites, but not

necessarily all fragile sites. Some of these causative factors and

consequences are briefly summarized in Figure 7 and briefly

discussed in the following sections.

Issues with replication timing and origin
paucity

Many common and rare fragile site loci are late

replicating regions and often lack nearby replication

origins (Le Beau et al., 1998; Wang et al., 1999; Handt

et al., 2000; Hellman et al., 2000; Palakodeti et al., 2004;

Pelliccia et al., 2008). However, these characteristics are not

universal, as some fragile sites are in mid-replicating regions

(Handt et al., 2000; El Achkar et al., 2005) and others at early

replicating regions (Barlow et al., 2013). FRA3B and FRA16D,

the most active CFSs in lymphoblastoid cells, are late

replicating with decreased sites of replicative origin within

their core regions. As such, more distant replication forks are

required to traverse longer distances to eventually complete

replication in these regions (Letessier et al., 2011). The same

situation applies for FRA6E (Palumbo et al., 2010) and

FRA7H, which have allelic asynchrony in replication

(Hellman et al., 2000). These regions become particularly

vulnerable when stressed with aphidicolin, since the

resulting reduction of fork speed has a greater effect on

longer-travelling than on shorter-travelling forks (Letessier

et al., 2011). In fibroblast cell lines, the FRA3B site does not

lack replication origins at this locus, hence the FRA3B fragile

site is not expressed in these cells (Letessier et al., 2011). This

disparity between lymphoblasts and fibroblasts provides a

potential explanation as to the origin of cell-type specificity

observed for most fragile sites.

The folate sensitive FRAXA (Xq27.3) and FRAXE (Xq28)

regions are both in very late replicating regions in genomes

that do not contain the fragile site-causing (CGG)n repeat

expansion (Subramanian et al., 1996; Hansen et al., 1997). A

CGG expansion at FRAXA obstructs firing from an adjacent

replication origin frequently utilized by the wild-type allele.

Thus, replication stress at this locus is generated from the

need to rely upon more distal origins for replication (Yudkin

et al., 2014). The presence of an expansion and additional

thymidylate stress delays replication into G2 phase, yielding

a large under-replicated region of 1 Mb for FRAXA and

300 kb for FRAXE (Subramanian et al., 1996; Hansen et al.,

1997). For these FSFS, the expansion plays a critical role in

influencing replication timing and related stress.

Understanding the factors at play during replication will

provide clues to the association between fragile sites and

replication. The origin replication complex (ORC), which is

responsible for directing DNA replication throughout the

genome, is assembled at specific loci through an unknown

mechanism (reviewed in (Fragkos et al., 2015). Mapping of

these complexes using the constituent ORC2 protein in

ChIP-seq experiments demonstrated a strong association

between regions of CFSs and ORC2 paucity, with 73% of

all CFSs upholding this relationship (Miotto et al., 2016).

Increased ORC2 correlates with regions of active chromatin,

demarcated by higher levels of active transcription and

histone marks (Miotto et al., 2016). What determines

whether an ORC will fire is a topic of much debate but is

predominantly believed to be a stochastic event influenced

by factors such as chromatin architecture. A higher density

Frontiers in Genetics frontiersin.org29

Mirceta et al. 10.3389/fgene.2022.985975

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.985975


of ORCs likely indicates an early replicating region (Rhind,

2006; Bechhoefer and Rhind, 2012; Gindin et al., 2014; Das

et al., 2015), such that the aforementioned ORC2 paucity

would be in line with general late replication of fragile sites.

Determining the unique characteristics of the chromatin

architecture within fragile sites could provide valuable

insight into what elements and factors contribute to late

replication initiation.

Chromatin compaction variations

What does the apparent gap, constriction, or break of a

fragile site represent at the chromatin level? Some data suggest

an uncompacted nucleosome-free DNA (Hsu and Wang,

2002), but can also represent a true physical break within

the DNA, or an as-of-yet defined epigenetic factor could be

influencing these problematic regions.

Generally, CFSs are hypoacetylated compared to the rest of

the genome, indicating that they exist in a compact chromatin

form (Koch et al., 2007; Savelyeva and Brueckner, 2014). To

probe this nuclear chromatin compaction, a widely utilized endo-

exonuclease named micrococcal nuclease (MNase) is employed.

MNase preferentially cleaves linker DNA between nucleosomes

(Rivera and Ren, 2013; Tsompana and Buck, 2014). FRA3B is

more resistant to MNase treatment when compared to

non-fragile sequences at or nearby the locus, and

demethylating agents trichostatin A or 5-azadeoxycytidine

cause a reduction in chromosome breakage at this site (Jiang

et al., 2009). Early evidence from the characterization of

repetitive satellite DNA sequences from various species

demonstrated that these regions are MNase resistant (Bostock

et al., 1976; Bowen, 1981).

The FSFS FRAXA displays similar characteristics: in cellulo,

the FRAXA locus exists as an inaccessible region, resistant to

restriction enzyme digestion when compared to the

unexpanded allele (Luo et al., 1993; Eberhart and Warren,

1996). This resistance is likely due to the array of repressive

histone post-translational modifications that are typically

associated with expanded (CGG)n repeats and the in cellulo

heterochromatin-like state (Coffee et al., 2002, 1999). Fragile

site expression is blocked with sodium butyrate and acetyl-

carnitine, drugs which inhibits histone deacetylation,

encouraging the accumulation of acetylated open chromatin

(Pomponi and Neri, 1994). Curiously, in vitro, these (CGG)n

expanded repeats strongly exclude nucleosome assembly, which

is further exacerbated by CpG methylation (Godde et al., 1996;

Wang et al., 1996; Wang and Griffith, 1996). Given the

challenges in assessing fragile sites at expanded repeats, it is

possible that other aberrantly bound DNA-binding proteins or

changes in chromatin topology associated with these sites have

yet to be elucidated and could be contributing to this

inaccessibility.

The FSFS FRA2L in 2p11.2 (Lukusa and Fryns, 2008) was

recently reported as the source of the unusual bending of

chromosome 2 in metaphase spreads (Garribba et al., 2021).

Interestingly, no fragility at 2p11.2 was identified in these

experiments, performed in one FXS cell line. Chromosomal

bends at this CGG-rich region were observed in the absence

of any cellular treatment, together with bending of other

chromosomes (chr. 1 and 3), and increased significantly under

folate deficient conditions. Folate deficiency also induced

chromosome 2 aneuploidy (Garribba et al., 2021). A link

between this cytological phenomenon and sister chromatid

missegregation is far from being identified, however the role

of folate on the stability of CGG-rich regions is confirmed. It

appears to be related to differential chromatin compaction and

altered DNA replication (effect exacerbated by folate deficiency),

which delays the condensation of mitotic chromosomes,

allowing for missegregation. Such observations are not new

as bending of metaphase chromosomes was first described in

1984 as a change in the direction of the longitudinal axis of the

chromosome (45° fold) involving both chromatids (Flejter et al.,

1984), and it was further analyzed as a possible indicator of the

inactive chromosome X (Van Dyke et al., 1987, 1986).

X-chromosome bending was proposed to represent a

remnant of the Barr body packaging from the previous

interphase or, alternatively, a structural feature that helps to

provide continuity to the Barr body from one interphase to the

next (Van Dyke et al., 1987, 1986; Munn et al., 1991; Walker

et al., 1991; Dietzel et al., 1998). Non-random bends in

autosomes have also been described, with higher incidence

with increasing length of the chromosomes, and thought to

be associated with chromatin compaction as residue of a folded

chromosome state in the interphase nucleus (Flejter et al., 1984;

Plaja et al., 2004, 2001). More observations on different cell

lines are necessary to obtain robust evidence that support a

biological role of chromosomal bending and its dependance

upon chromatin compaction and accessibility.

Thus, unusual DNA structure formation, in addition to

epigenetic factors, can affect fragile site stability. Mechanistically,

these secondary structures perturb the elongation of DNA

replication in vitro and in vivo (reviewed in (Kaushal and

Freudenreich, 2019) and likely contribute to fragility in this

manner. Additionally, proteins important for resolving secondary

structures, such as helicases and topoisomerases, play a role in the

stability of CFSs (Pirzio et al., 2008; Tuduri et al., 2009; Arlt and

Glover, 2010; Shah et al., 2010; Murfuni et al., 2012). Aphidicolin-

induced replication stress results in uncoupling of the helicase and

polymerase activity, leaving up to several kilobases of separated

DNA strands that may be prone to forming DNA secondary

structures (Dröge et al., 1985; Lönn and Lönn, 1988).

Camptothecin, a topoisomerase I inhibitor, reduces breakage at

CFSs and in ATR-deficient cells, highlighting a potential role for

topoisomerase I in expression of fragile sites (Arlt andGlover, 2010).

Furthermore, instability at CFSs was increased upon depletion of the
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Rev3 subunit of polζ, polη, and possibly polκ (Bergoglio et al., 2013;
Bhat et al., 2013), which are DNA polymerases specialized for

synthesis through non-canonical DNA structures (Boyer et al.,

2013).

The contribution of key epigenetic and DNA structural

alterations to fragile site expression have yet to be fully

understood. Such cis elements are known to influence the

susceptibility of these DNA regions to fragility and could

ultimately be harnessed to reduce instability. This possibility is

particularly relevant for the rare FSFSs, which often exhibit

somatic instability and expand in disease contexts. Increased

knowledge of fragility leading to improved understanding and

application to disease biology is a recurring theme for RFSs and

highlights the importance of continued research into this often-

overlooked cytogenetic phenomenon.

Replication-transcription collision

Typically, replication and transcriptional activities are

temporally coordinated within mammalian cells to avoid

problematic collisions. However, many long genes (>800 kb)
initiate transcription within G2 and only complete it by late

G1/early S phase increasing the chance for collision (Helmrich

et al., 2011). More than 80% of human CFSs contain genes larger

than 300 kb, which is in striking contrast to the median gene

length of ~20 kb (Le Tallec et al., 2013). Many CFSs harbor

exceptionally long genes, which take more than a complete cell

cycle to be transcribed, such as the FHIT gene (1.5 Mb) at FRA3B

(Helmrich et al., 2011). This situation leads to the increased

likelihood of collisions between replication and transcriptional

machinery, leading to replication fork stalling or collapse and

resultant instability (Prado and Aguilera, 2005; Azvolinsky et al.,

2009; Merrikh et al., 2011). Supporting this connection is the

observation that CFS breaks occur when the implicated genes are

transcribed, but not when they are transcriptionally silent

(Helmrich et al., 2011). This finding highlights the important

role for transcriptional activity in chromosomal fragility.

The conflict between these two metabolic processes is further

exacerbated by the propensity of nascent RNA to form RNA:DNA

hybrids (R-loops) during transcription (reviewed in (Freudenreich,

2018), particularly in GC-rich regions, which all FSFSs are. (CGG)n

expanded loci have been demonstrated to have increased R-loop

formation (Reddy et al., 2014, 2011; Groh et al., 2014) and the link

between R-loop formation and genomic instability has been a topic

of intense study (reviewed in (Freudenreich, 2018; Groh et al., 2014;

Santos-Pereira and Aguilera, 2015, p.). Further, knockdown or

overexpression of RNase H1 (the primary enzyme responsible for

resolving R-loops formed with nascent transcripts), results in

increased or decreased expression of fragile sites, respectively

(Helmrich et al., 2011). R-loop formation at the FRA16D locus

impedes replication and causes replication fork stalling, which is a

key aspect of CFS instability (Madireddy et al., 2016). R-loops can

also promote the formation of repressive chromatin by altering the

local epigenetic landscape (Groh et al., 2014), which also contributes

to fragility. The majority of genes present in fragile site regions

possess a high propensity for R-loop formation when

computationally compared to the rest of the genome (Feng and

Chakraborty, 2017). It is important to note that most large genes

within the genome remain stable, even if they are able to form

R-loops; therefore, gene size per se is not sufficient to induce fragility

(Le Tallec et al., 2013). A growing awareness of R-loop formations

and its connections to genomic instability may yield clues to the

relationship between replication, transcription, and fragile sites.

DNA damage and repair

The contribution of the DNA damage pathway to fragile

sites is more extensively studied in relation to CFSs and

remains largely unexplored in the field of RFSs. Most

notably, the role of the DNA damage response protein

kinases ATR (ataxia telangiectasia and Rad3-related), and

to a lesser extent ATM (ataxia telangiectasia mutated) have

been embedded at the core of the DNA lesion checkpoint

response pathways in both common (Casper et al., 2002;

Ozeri-Galai et al., 2008), and rare (Kumari et al., 2009)

fragile sites. ATR-deficiency causes Seckle syndrome, and

cells from these individuals have an increased spontaneous

expression of fragile sites (Casper et al., 2004). The Fanconi

anemia (FA) repair pathway, which responds to interstrand

crosslink (ICL) DNA lesions amongst other functions, plays

an integral role in fragile site stability. Cells from FA

patients exhibit breakpoints at CFS loci at least 50% of

the time (Schoder et al., 2010; Filipović et al., 2016)

supporting a connection between DNA repair pathways

and fragile sites.

Many other repair proteins are implicated in CFS expression,

where their inhibition or knockdown enhances aphidicolin-induced

fragility (refer to (Glover et al., 2017) for comprehensive review).

Furthermore, proteomic studies of the FRA16D CFS locus revealed

that under aphidicolin stress, several repair proteins, such as MSH3,

MSH2, XRCC1, WRN, XRCC6, XPC, and CENT2 interact

specifically with the locus (Beresova et al., 2016). The complex

pathways and overlapping proteins involved in DNA repair of

these DNA lesions suggests that other metabolic proteins may be

involved in fragile site expression and remain to be identified.

Extensive work by Ian Hickson’s group and others has

elucidated a key aspect of the DNA repair pathway involved

in processing at CFSs during aphidicolin replicative stress

(Chan et al., 2009; Naim et al., 2013; Ying et al., 2013;

Minocherhomji and Hickson, 2014; Minocherhomji et al.,
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2015; Bhowmick et al., 2016): mitotic replicative-stress DNA

synthesis, a process known as MiDAS, occurs following the

onset of mitosis as a salvage pathway to complete replication

of under-replicated loci (Minocherhomji et al., 2015).

FANCD2, a member of the FA repair pathway and

previously shown to localize to CFS loci (Chan et al.,

2009), also colocalizes with >80% of newly replicated

DNA foci (Minocherhomji et al., 2015). Furthermore, like

fragile sites, this mitotic DNA synthesis occurs at DAPI-

negative regions of chromosomes, suggesting that these

fragile sites are under-replicated DNA regions, rather

than distinct DNA breaks (Minocherhomji et al., 2015).

Recent work demonstrated that MiDAS also occurs at the

FSFS FRAXA locus (Garribba et al., 2020). While MiDAS

processing at CFSs and FRAXA both involve SLX1/4 and

POLD3, FRAXA differs in its requirement for RAD51 (but

not RAD52 or MUS81-EME1) (Garribba et al., 2020).

Generally, DNA damage and repair at FSFSs remains

understudied. ATR, ATM, and Chk1 influence fragile site

expression at the FRAXA locus (Kumari et al., 2009), but no

other folate-sensitive (CGG)n locus has been examined in

regard to the mechanisms related to DNA repair. The

depletion of ATR increases fragile site expression in

fragile X patient cells, with and without FUdR treatment.

ATM inhibition decreases fragile site expression upon FUdR

treatment yet, without FUdR treatment, ATM inhibition can

increase fragile site expression in fragile X cells (Kumari

et al., 2009). Significant headway in the repair-related

mechanisms of CFSs could guide studies at RFSs to reveal

commonalities and differences in the mechanism of fragile

site processing.

Conclusion

Many key questions remain to be answered in

understanding fragility. The recent development of new

methods to identify expanded repeats that colocalize with

cytogenetically observed, but not molecularly mapped FSFS,

has offered tremendous new insight into fragile sites, genome

stability, and human disease (Garg et al., 2020; Trost et al.,

2020). The convergence of any combination of factors

described here could underlie expression of fragile sites at a

particular locus, highlighting the complexity of this process.

Further, what parameters are required to induce various types

of fragile sites, and what commonalities and differences exist

in the cellular response to each stressor have yet to be

elucidated. Understanding the expression of fragility and

the sensitivity of certain loci to replicative stress will be

valuable to understanding the mechanisms of genomic

instability and countering its effects. Many disease-causing,

gene-specific repeat expansions exist at fragile site loci,

hinting that mechanisms related to fragility expression

could also be contributing factors to DNA expansions at

these loci. Understanding the proteins and pathways that

contribute to the causes and consequences of these fragile

sites could provide useful targets towards therapeutic

intervention to stabilize loci and prevent instability at

problematic regions linked to a variety of diseases. Prior to

the implementation of practical therapeutic steps aimed at

improving human health and overcoming disease, it is

important to lay down the foundational research to

understand the fundamentals of fragile site expression and

repeat expansion.
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