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Background: To decipher mutational signatures and their associations with

biological implications in cutaneous melanomas (CMs), including those with a

low ultraviolet (UV) signature.

Materials and Methods: We applied non-negative matrix factorization (NMF) and

unsupervised clustering to the 96-class mutational context of The Cancer Genome

Atlas (TCGA) cohort (N=466) aswell as other publicly available datasets (N=527). To

explore the feasibility of mutational signature-based classification using panel

sequencing data, independent panel sequencing data were analyzed.

Results: NMF decomposition of the TCGA cohort and other publicly available

datasets consistently found two mutational signatures: UV (SBS7a/7b dominant)

and non-UV (SBS1/5 dominant) signatures. Based on mutational signatures, TCGA

CMs were classified into two clusters: UV-high and UV-low. CMs belonging to the

UV-lowcluster showed significantly worse overall survival and landmark survival at 1-

year than those in the UV-high cluster; low or high UV signature remained the most

significant prognostic factor in multivariate analysis. The UV-low cluster showed

distinct genomic and functional characteristic patterns: low mutation counts,

increased proportion of triple wild-type and KIT mutations, high burden of copy

number alteration, expression of genes related to keratinocyte differentiation, and

low activation of tumor immunity. We verified that UV-high andUV-low clusters can

be distinguished by panel sequencing.

Conclusion: Our study revealed two mutational signatures of CMs that divide

CMs into two clusters with distinct clinico-genomic characteristics. Our results

will be helpful for the clinical application of mutational signature-based

classification of CMs.
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Introduction

Cancers can arise as a result of somatic mutations caused by

mutational processes of both exogenous and endogenous origins.

These mutations are imprinted in cancer genomes and

characterized by mutational signatures (Stratton et al., 2009;

Alexandrov et al., 2020). To date, 60 single base substitution-

based mutational signatures have been defined in the Catalogue

Of Somatic Mutations In Cancer (COSMIC) database (Tate et al.,

2018). However, some signatures that are rare or geographically

restricted, those conferring limited mutation burdens, and those

representing therapeutic mutagenic exposure still require

clarification (Alexandrov et al., 2020). Recent studies have

revealed that mutational signature analysis can provide not

only footprints for exposure to environmental factors and

infidelity of DNA replication and repair pathways, but also

therapeutic implications of specific drug responses; thus,

mutational signature analysis can be a promising tool for

molecular cancer diagnosis, treatment choice, and prognostic

prediction (Kim et al., 2016; Wang et al., 2018; Gulhan et al.,

2019; Staaf et al., 2019; Färkkilä et al., 2020; Abbasi and

Alexandrov, 2021; Chong et al., 2021).

Cutaneous melanoma (CM) has the highest mutational

burden among common cancers (Cancer Genome Atlas

Network, 2015). CM mutational signatures are mainly caused

by ultraviolet (UV) radiation, which induces DNA damage,

including predominant C-to-T nucleotide transitions at

dipyrimidine sites, and microenvironmental alterations (Craig

et al., 2018). Predominant UV signatures and a minor proportion

of age-related signatures have been reported in CM (Alexandrov

et al., 2020). Previous studies have shown that clinico-genomic

characteristics, such as age at diagnosis, mutational burden, and

frequency of driver mutations, are different between chronically

sun-damaged skin and unaffected areas (Craig et al., 2018; Shain

et al., 2018; Ghiasvand et al., 2019). Acral and mucosal

melanomas are known to harbor low UV signatures and

distinct clinico-genomic features (Hayward et al., 2017; Rabbie

et al., 2019; Newell et al., 2020). Recent genomic studies have

revealed that CMs with a high UV signature typically display

better prognosis (Trucco et al., 2019; Vicente et al., 2022) and

immunotherapeutic outcomes (Pham et al., 2020; Dousset et al.,

2021). Recently, a multi-omics study revealed that CMs with a

low UV signature harbored distinct epigenetic profiles in

regulatory regions and immunological pathways resembling

acral melanoma (Vicente et al., 2022). However, the

mutational signatures and clinico-genomic characteristics of

CMs with low UV signatures have not been fully

characterized yet.

The purpose of our study was to decipher mutational

signatures in CM and investigate their clinical associations.

Using The Cancer Genome Atlas (TCGA) and other publicly

available datasets of CM, we identified two clusters of CM with

distinct clinico-genomic characteristics. We also explored

whether the classification of CM based on the mutational

signature is feasible using panel sequencing.

Materials and methods

Study dataset

We used TCGA whole-exome sequencing (WES) and

other publicly available datasets (Supplementary Table S1).

For TCGA dataset (N = 466) (2015), clinical information and

curated somatic mutation data (public MAF file generated

from MuTect2) were downloaded (https://portal.gdc.cancer.

gov/). For the International Cancer Genome Consortium

(ICGC) dataset (N = 235), the clinical information and

curated somatic mutations of two CM cohorts (Hayward

et al., 2017; Campbell, 2020) were downloaded (https://dcc.

icgc.org/). Raw sequence reads from seven independent

studies (Krauthammer et al., 2012; Snyder et al., 2014;

Hugo et al., 2016; Liang et al., 2017; Riaz et al., 2017; Roh

et al., 2017; Shain et al., 2018) were downloaded and processed

for the Sequence Read Archive (SRA) dataset (N = 292).

Patients with fewer than five single nucleotide variants

were excluded from the analysis. Details are available in the

Supplementary Methods.

De novo mutational signature extraction
and unsupervised clustering

We used the ‘sigprofilerextractor’ function in the

‘SigProfilerExtractor’ R package to define the most

appropriate number of mutational signatures active in CM

(Islam et al., 2022). Based on the metrics of average sample

cosine distance and average silhouette width plotted across a

range of ranks (2 to 8) calculated by the tool, the proper rank

of signature decomposition was considered to be two

(Supplementary Figure S1). De novo mutational signatures

were extracted from a 96-class mutational context using the

‘nmf’ function in the non-negative matrix factorization

(NMF) R package (Gaujoux and Seoighe, 2010), using the

following parameters: “rank = 2, nrun = 1,000, method =

‘brunet’”. The NMF decomposition of the 96-mutational

class was performed to determine the two mutational

signatures and the weight of each signature. Unsupervised

k-means clustering of the coefficient matrix from NMF was

performed.

Signature refitting analysis

Mutational signatures were analyzed by linear

decomposition using the DeconstrucSigs package
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(Rosenthal et al., 2016). The relative contributions of

mutational signatures were calculated by refitting the linear

combinations of COSMIC v3 signatures identified in the WES

studies of CM (Alexandrov et al., 2020) (details are available in

Supplementary Methods) or NMF-extracted signatures (SigA

and SigB). Cosine similarity was calculated as described

previously (Gulhan et al., 2019) and used to evaluate the

similarity between mutational signatures as well as the

accuracy of signature decomposition.

Survival analysis

The survival data of the patients in the TCGA and ICGC

datasets were analyzed using various tests. A Kaplan–Meier

survival analysis and two-tailed log-rank test were performed

using the ‘survminer’ and ‘survival’ packages. For multivariate

survival analysis of variables affecting overall survival, Cox

proportional hazards model and regression analyses were

performed based on the proportional hazard assumption

that the relative hazard remains constant over time with

different covariate levels (Kuitunen et al., 2021). We also

performed landmark survival analysis at 1-year, as

described previously (McNamara et al., 2020). The

association between variables and overall survival was

evaluated using Cox regression. The variables used for

signature-based clustering (UV-low vs UV-high), age

(continuous), sex (male vs female), stage (I/II vs III/IV),

and mutation class (BRAF hotspot vs non-BRAF) were used

to adjust the estimates for the multivariate Cox proportional

hazards regression model. The Cox regression results were

reported in terms of unadjusted and adjusted hazard ratios

(HRs), 95% confidence intervals (CIs) and p-values. Details

are available in the Supplementary Methods.

Somatic mutation analysis

Mutational profiles of known driver genes of CM (Cancer

Genome Atlas Network, 2015; Hayward et al., 2017) were

analyzed and visualized using the Maftools package

(Mayakonda et al., 2018). Each sample was classified into

BRAF hotspot, RAS hotspot, NF1, and triple wild-type (Triple-

WT; CMs without BRAF hotspots, RAS hotspots, and NF1

mutations), as described elsewhere (Cancer Genome Atlas

Network, 2015).

Copy number alteration analysis

Somatic copy number alterations (CNAs) were analyzed

using raw sequence reads (BAM files). The CNAs of each

sample were defined using the ngCGH module and SNPRank

segmentation statistical algorithm in Nexus Copy Number

10.0 (BioDiscovery, El Segundo, CA). Segments were classified

as copy number gains and losses when the log2 ratio

was >0.2 and < -0.2, respectively. Genome-wide frequencies

of CNA were visualized using the Copynumber package

(Nilsen et al., 2012). CNA regions with statistical

differences between the two groups (Chi-square test, p <
0.001) were analyzed using the CNVruler software (Kim

et al., 2012). Details are provided in the Supplementary

Methods.

Differentially expressed gene and gene set
enrichment analysis

RNA sequencing data were downloaded (http://

firebrowse.org) and used for differentially expressed gene

(DEG) analysis. DEG analysis was performed using

“glmQLFit” and “glmQLFTest” in the edgeR package

(Robinson et al., 2010). DEGs were defined using a cutoff

of log fold change >2 and a q-value less than 0.01. Gene set

enrichment analysis was performed using normalized

expression data, and gene sets with p < 0.01 were

considered significantly enriched pathways.

Tumor purity and immunoprofiling

Curated data of tumor purity, tumor immunity-related

features including leukocyte cell fraction, richness of T cell

receptors (TCR), and fractions of tumor-infiltrating

lymphocytes from TCGA cohort were obtained (Aran et al.,

2015; Saltz et al., 2018; Thorsson et al., 2018). The CYT score

representing the activity of immune cytolytic effectors was

calculated as the geometric mean of normalized RSEM

expression of GZMA and PRF1, as previously described

(Rooney et al., 2015). The absolute abundance of

22 immune cell types was inferred from the normalized

RNA expression using the CIBERSORTx package (Newman

et al., 2019).

Independent panel sequencing cohort
analysis and in silico panel simulation

Independent panel sequencing data (“MSK cohort,” cases

sequenced using a 468-gene panel covering a 1.2 Mb capture

region [MSK-IMPACT468], N = 245) were obtained and

analyzed from The AACR GENIE project (AACR Project

GENIE Consortium, 2017). In silico panel simulation was

generated from TCGA data using the same region of the

panel used in the MSK cohort. Details are provided in the

Supplementary Methods.
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Other statistical analyses

Statistical analysis was performed by two-sided

Mann–Whitney U test for continuous variables and two-

sided Chi-square test for categorical variables, and p <
0.05 was considered to be statistically significant. All

statistical analyses were performed using R software

(version 4.1.1). The Mann–Whitney U and Chi-square tests

were performed using the ‘wilcox.test’ and ‘chisq.test’

functions from the ‘stats’ R package, respectively.

Results

De novo mutational signature extraction
and unsupervised clustering

From the TCGA CM WES dataset (N = 466), we performed

de novo mutational signature extraction using NMF and found

two mutational signatures, “SigA” and “SigB” (Figure 1A;

Supplementary Figure S1). SigA showed the highest weight of

C > T in the ApCpG and GpCpG contexts and also displayed

FIGURE 1
De novo mutational signature extraction and unsupervised clustering in TCGA CM dataset. (A) De novo mutational signature extraction using
NMF identified two mutational signatures: “SigA” and “SigB.” The upper and lower bar plots represent the mutational context of SigA and SigB,
respectively. (B) Pie charts represent signature refitting analysis of SigA and SigB signatures. (C) Weight of SigA and SigB, mutational counts, and
mutational contexts of TCGA dataset are shown for each sample (X-axis). Unsupervised k-means clustering of melanoma samples yielded two
clusters: UV-low (N = 75) and UV-high (N = 391). Samples (column) are arranged by the weight of SigB, and column bar indicates clusters.
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high similarity to the COSMIC SBS1 (cosine similarity 0.75) and

SBS5 (0.73) signatures. SigB showed the highest weight in the

TpCpC context and exhibited very high similarity to SBS7a (0.96)

and SBS7b (0.91), suggesting a UV signature. As an alternative

way to interpret the extracted signatures, signature refitting by

known COSMIC signatures of CM revealed SBS1/3/5/38 in SigA

and SBS7a/7b/5 in SigB (Figure 1B).

Unsupervised clustering of the TCGA CM dataset by

weight of extracted signatures revealed two clusters: a “UV-

low” cluster with a dominant SigA signature (N = 75), and a

“UV-high” cluster with a dominant SigB signature (N = 391)

(Figure 1C). The UV-high and UV-low clusters showed

distinct mutational counts and contexts: a low mutational

burden and diffuse distribution of all contexts in the UV-low

cluster; in contrast, a high mutational burden and dominant

C > T context were observed in the UV-high cluster

(Figure 1C). The average mutational context in the UV-low

and UV-high clusters showed a high similarity to SigA (cosine

similarity 0.88) and SigB (1.00), respectively (Supplementary

Figure S2). The two clusters were not affected by the variant

calling method, average read depth, history of neoadjuvant

chemotherapy, or primary tumor diagnosis (Supplementary

Figures S3 and S4).

Validation of mutational signatures in
independent datasets

To validate the mutational signatures extracted from the

TCGA data, we performed the same de novo mutational

signature extraction from two independent datasets. The first

dataset included two studies from the ICGC consortium (ICGC

dataset, N = 235) (Hayward et al., 2017; Campbell, 2020) and the

second dataset included seven studies from the SRA database

(SRA dataset, N = 292) (Krauthammer et al., 2012; Snyder et al.,

2014; Hugo et al., 2016; Liang et al., 2017; Riaz et al., 2017; Roh

et al., 2017; Shain et al., 2018) (Supplementary Table S1).

Mutational signatures extracted from the ICGC and SRA

datasets showed high similarity to those from the TCGA

cohort: cosine similarity with SigA (ICGC, 0.96; SRA, 0.91)

and SigB (ICGC, 1.00; SRA, 0.99) (Supplementary Figure S5;

Supplementary Table S2). Consistent with the results obtained

FIGURE 2
Signature refitting analysis. (A) Signature refitting analysis of the TCGA cohort by known COSMIC signatures (top) and extracted signatures
(bottom). Samples (column) are arranged by the weight of SigB, and column bar indicates clusters (Same order as Figure 1B). (B) Boxplot for age
between clusters. (C) Density plot showing age distribution for clusters in TCGA cohort (blue, UV-low; red, UV-high).
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from TCGA cohort, two clusters with distinct mutational counts

and contexts were drawn by unsupervised clustering in both

datasets (Supplementary Figure S5). Mutational counts were

significantly higher in the UV-high cluster than in the UV-

low cluster in all three datasets (p < 2.2e-16) (Supplementary

Figure S6). Principal component analysis of the mutational

context consistently revealed segregated distributions of UV-

low and UV-high clusters in all three datasets (Supplementary

Figure S7). In addition, according to a whole-genome sequencing

dataset (MELA-AU study in the ICGC dataset), a comparison of

mutational contexts using all variants and variants in the exonic

region (in silico downsampled) showed high similarity (median

cosine similarity 0.977), which ensured the reliability of

mutational signatures extracted from WES datasets

(Supplementary Figure S8).

Signature refitting analysis

To compare signature decomposition with known signatures,

signature refitting analysis was performed using known

mutational signatures of CM in the COSMIC database

(Alexandrov et al., 2020) and the extracted signatures (SigA/

SigB). Of the known COSMIC signatures, the UV-low cluster

displayed a higher weight of age-related signatures (SBS1 and 5),

whereas the UV-high cluster exhibited a higher weight of UV

signatures (SBS7a and 7b) (Figure 2A). Accordingly, the median

age of patients in the UV-low cluster was higher than that of the

UV-high cluster, although the difference was not statistically

significant (p = 0.098) (Figure 2B), and the proportion of patients

aged >40 years was higher in the UV-low cluster (94.6%) than in

the UV-high cluster (85.4%) (p = 0.051) (Figure 2C). As expected,

FIGURE 3
Prognostic implications of mutational signatures. (A) Kaplan–Meier curves for overall survival of UV-low (blue) and UV-high (red) clusters in the
TCGA dataset (N = 451). (B) Kaplan–Meier curves for overall survival of UV-low (blue) and UV-high (red) clusters in the ICGC dataset (N = 234). (C)
Kaplan–Meier curves for landmark survival at 1-year of UV-low (blue) and UV-high (red) clusters in the TCGA dataset (N = 395). (D) Kaplan–Meier
curves for landmark survival at 1-year of UV-low (blue) and UV-high (red) clusters in the ICGC dataset (N= 190). The shaded areas correspond to
95%CIs. p-valuewas calculated using a two-tailed log-rank test. The numbers beneath each chart indicate the number of patients at risk at each time
point.
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the UV-low and UV-high clusters showed high SigA and SigB

weights, respectively (Figure 2A). Consistent with the above

findings, the signature refitting analysis of the ICGC and SRA

datasets showed results similar to those of TCGA dataset

(Supplementary Figure S9).

Clinical implications of mutational
signatures

Here, we investigated the prognostic implications of

mutational signature-based clustering. When we compared the

overall survival between the two clusters in the TCGA cohort

(N = 451), the UV-low cluster showed significantly worse overall

survival than the UV-high cluster (HR = 2.19, 95% CI 1.56–3.05,

p < 0.001) (Figure 3A). A poorer prognosis of the UV-low cluster

was consistently observed in the ICGC dataset (N = 234), but the

difference was not statistically significant (HR = 1.42, 95% CI

0.94–2.14, p = 0.096) (Figure 3B). The UV-low cluster showed

significantly worse landmark survival at 1-year than the UV-high

cluster, in both the TCGA cohort (HR = 2.21, 95% CI 1.54–3.17,

p < 0.001) (Figure 3C) and the ICGC dataset (HR = 1.68, 95% CI

1.07–2.62, p = 0.023) (Figure 3D). Age, stage III/IV, and non-

BRAF mutations were also found to be significant factors for

worse overall survival and landmark survival at 1-year in the

univariate analysis (Table 1). In multivariate analysis adjusted for

age, sex, stage, and mutation class in the TCGA cohort, the UV-

low cluster remained the most significant prognostic factor for

overall survival (HR = 2.14, 95% CI 1.47–3.11, p < 0.001)

(Table 1). UV-low cluster also remained the most significant

prognostic factor for landmark survival at 1-year (HR = 2.07,

95% CI 1.37–3.11, p < 0.001) (Table 1). Age and advanced stage

(III/IV) remained significant prognostic factors in the

multivariate analysis. In the subgroup analysis, the UV-low

cluster correlated with significantly poorer overall survival

than the UV-high cluster in all subgroups except BRAF

hotspot mutation status: stage I/II (p < 0.001), stage III/IV

(p = 0.011), age >40 (p < 0.001), and non-BRAF hotspot (p =

0.001) (Supplementary Figure S10). Even in the BRAF hotspot

mutation subgroup, the UV-low cluster displayed a trend of

poorer overall survival (p = 0.059). The proportions of advanced

stage (stage III/IV) (p = 0.024), and greater invasion depth (Clark

IV/V) (p = 0.001), ulceration (p = 0.002) were also significantly

higher in the UV-low cluster (Supplementary Figure S10).

Genomic and functional characteristics

We further compared the genomic and functional

characteristics of the UV-low and UV-high clusters. Non-

silent mutations in known driver genes were lower in the UV-

low cluster than in the UV-high cluster (Figure 4A). In the

context of CM mutational class (Cancer Genome Atlas

Network, 2015), the UV-low cluster showed a significantly

lower proportion of BRAF and RAS hotpot mutations, and,

correspondingly, a higher proportion of triple-wild-type

TABLE 1 Multivariate survival analysis and landmark survival at 1-year of cutaneous melanomas in TCGA.

Variables Overall survival unadjusted HR
(95% CI; p-value)

Overall survival adjusted HR
(95% CI; p-valuea)

Landmark survival
(1-year) unadjusted HR
(95% CI; p-value)

Landmark survival
(1-year) adjusted HR
(95% CI; p-valuea)

Cluster

UV-high Reference Reference Reference Reference

UV-low 2.19 (1.56–3.05; p < 0.001) 2.14 (1.47–3.11; p < 0.001) 2.21 (1.54–3.17; p < 0.001) 2.07 (1.37–3.11; p < 0.001)

Age

(Continuous) 1.02 (1.02–1.03; p < 0.001) 1.02 (1.01–1.03; p < 0.001) 1.03 (1.02–1.04; p < 0.001) 1.02 (1.01–1.04; p < 0.001)

Sex

Female Reference Reference Reference Reference

Male 1.14 (0.86–1.51; p = 0.370) 1.10 (0.81–1.48; p = 0.547) 1.11 (0.82–1.50; p = 0.492) 1.03 (0.75–1.42; p = 0.863)

Clinical stage

Stage I/II Reference Reference Reference Reference

Stage III/IV 1.70 (1.28–2.27; p < 0.001) 1.65 (1.23–2.21; p < 0.001) 1.54 (1.13–2.10; p = 0.006) 1.51 (1.10–2.06; p = 0.010)

Mutation type

BRAF hotspot Reference Reference Reference Reference

Non-BRAF 1.44 (1.09–1.90; p = 0.010) 0.97 (0.71–1.32; p = 0.837) 1.57 (1.17–2.11; p = 0.003) 1.04 (0.74–1.45; p = 0.840)

HR, hazard ratio; CI, confidence interval. p-values were calculated using two-sided log-rank tests.
aMultivariate analysis was performed using an adjusted multivariate Cox proportional hazards regression model including cluster (UV-low vs. UV-high), age (continuous), sex (male vs.

female), stage (I/II vs. III/IV), and mutation class (BRAF hotspot vs. non-BRAF).

Frontiers in Genetics frontiersin.org07

Kim et al. 10.3389/fgene.2022.987205

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.987205


(triple-WT) than the UV-high cluster (Figure 4B). Among the

other driver alterations, only KIT non-silent mutations

showed a significantly higher proportion in the UV-low

cluster. In contrast to the higher mutation burden in the

UV-high cluster, the CNA burden (percentage of genome

with CNA) of the UV-low cluster was significantly higher

than that of the UV-high cluster (p = 0.009) (Figure 4C). Of

the CNAs, 3q loss, 4p gain (KIT), 5p gain (TERT), 5p loss, 8q

gain (MYC), 15q loss (B2M), and 9q loss (NOTCH1) were

significantly different between the two clusters (p < 0.001)

(Figure 4D; Supplementary Table S5).

DEG analysis revealed 64 significant DEGs between the UV-

low and UV-high clusters (q-value < 0.01) (Supplementary Table

S6). A number of keratinocyte differentiation-related genes

(CNFN, FGFR2/3, KRT17, PI3, PTCH2, and SFN) were

significantly overexpressed, whereas PRH1 was downregulated

in the UV-low cluster (Figure 4E). Pathway analysis showed that

keratinocyte differentiation-related pathways were significantly

FIGURE 4
Genomic and functional characterization. (A)Mutational landscape of known driver genes of melanoma. Samples (column) are arranged by the
weight of SigB (Same as Figure 1B). (B) Proportion of mutational class (BRAF hotspot, RAS hotspot, NF1, triple wild type (WT)) and KIT non-silent
mutations. p-value was calculated using a two-sided chi-square test. (C) Boxplot showing the proportion of genomes with copy number alteration
(CNA). p-value was calculated using a two-sided Mann-Whitney U test. (D) Genome-wide CNA plot of each cluster. CNA regions with
statistically significant enrichment (chi-square test p < 0.001) are marked with asterisks on putative driver genes. (E) Volcano plot with x-axis (log fold
change) and y-axis (- log false discovery rate (FDR)), in which genes are colored by significance (FDR <0.01) (red, significant; black, non-significant).
Representative differentially expressed genes are marked with gene names. (F) Boxplot of tumor purity and representative parameters of tumor
immunity. p-value was calculated using a two-sided Mann-Whitney U test.
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upregulated in the UV-low cluster, whereas immune-related

pathways were upregulated in the UV-high cluster

(Supplementary Table S7). Notably, tumor purity was

significantly higher in the UV-low cluster (p = 0.001), whereas

cancer immunity-related characteristics, such as leukocyte

fraction (p = 0.004), proportion of tumor-infiltrating

leukocytes (p = 0.001), CYT score (Rooney et al., 2015) (p =

0.001), and T cell receptor (TCR) richness (p = 0.002) were

significantly lower in the UV-low cluster (Figure 4F).

Accordingly, in silico immunoprofiling analysis revealed that

the UV-low cluster had a lower fraction of immune cells (p =

0.007). In addition, the fractions of immune cell subtypes related

FIGURE 5
Independent panel sequencing cohort analysis and in silico panel simulation of TCGA cohort. (A) Average mutational context in independent
panel sequencing cohort (MSK cohort), in which samples are classified by dominant signatures. (B) Average mutational context of UV-low and UV-
high clusters from in silico panel simulation of TCGA cohort. Samples with less than five single nucleotide variants of simulated data were excluded.
(C) Signature decomposition analysis of MSK cohort by extracted signatures (top) and known COSMIC signatures (bottom). Samples (column)
were arranged by theweight of SigB, and columnbar indicates clusters. (D)Box plots showingmutation counts and SBS7 signatures (SBS7a/7b/7c/7d)
for each cluster in MSK cohort. p-value was calculated using a two-sided Mann-Whitney U test.
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to tumor immunity, including M1 macrophages, CD4+ memory

activated T cells, regulatory T cells, and CD8+ T cells, were

significantly higher in the UV-high cluster (Supplementary

Figure S11).

We also compared our signature-based clustering with

known subtypes from TCGA study (UV, mutation, RNA,

miRNA, methylation, and protein subtypes). As expected, the

UV-low and UV-high clusters displayed an almost exclusive ratio

of “Not UV” and “UV” (UV subtypes), respectively.

Furthermore, while the UV-low cluster exhibited a

significantly higher proportion of triple-WT and “Keratin”

expression subtypes, the UV-high cluster comprised

significantly higher proportion of BRAF and RAS subtypes

(mutation) (Supplementary Figure S12). The UV-high cluster

also exhibited a significantly higher proportion of “Immune”

expression and hypo-methylated subtypes (p < 0.01)

(Supplementary Figure S12).

Independent panel sequencing cohort
analysis and in silico panel simulation

To investigate the feasibility of mutational signature-based

classification of panel sequencing data, we analyzed independent

panel sequencing cohort data (“MSK cohort”, N = 245) (AACR

Project GENIE Consortium, 2017). Each sample was divided into

UV-high (SigB weight >0.5) and UV-low (SigB weight <0.5)
clusters by signature refitting analysis. The UV-high and UV-low

clusters in the MSK cohort showed distinct average mutational

contexts (Figure 5A). In addition, we performed in silico panel

simulation of the TCGA dataset using the same target region of

the MSK cohort and compared the results before and after panel

simulation. Although mutation counts were reduced to a median

of 2.96% of those from WES, the mutational context was largely

coherent with a median cosine similarity of 0.81 before and after

panel simulation (Supplementary Figure S13). UV-low and UV-

high clusters from the panel simulation of TCGA cohort showed

distinct average mutational contexts (Figure 5B), which closely

resembled the MSK cohort. According to the signature refitting

analysis of the MSK cohort, most samples in the UV-high cluster

showed known UV signatures (SBS7a/b/c/d) with high cosine

similarity (Figure 5C). The UV-high cluster showed significantly

higher mutational counts than the UV-low cluster did (p < 0.001)

(Figure 5D). The UV-high cluster showed a significantly higher

weight of UV signatures (SBS7a/b/c/d) (p < 0.001) (Figure 5E)

and dominant C > T mutational contexts (Supplementary

Figure S14).

Discussion

The mutational characteristics and clinico-genomic features

of CMs with high UV signatures, including high mutational

burden, predominant UV signatures, and favorable survival, have

been adequately described (Hayward et al., 2017; Trucco et al.,

2019). However, the nature of these features in CMs with low UV

signatures is still largely unknown. In this study, we investigated

the mutational signatures of CMs from TCGA dataset and their

clinico-genomic associations. Based on the mutational

signatures, CMs were grouped into two clusters with distinct

clinico-genomic and functional characteristics: UV-high and

UV-low clusters. CMs belonging to the UV-low cluster were

associated with a low mutational burden, a mutational signature

with high similarity to SBS1/5 signatures, and worse overall

survival than the UV-high cluster. We further revealed that

UV-high and UV-low clusters can be distinguished using

panel sequencing data, which are commonly generated in

routine clinical practice.

From TCGA CM dataset, two distinct mutational signatures

(SigA and SigB) were identified in this study. Themajor signature

SigB showed a predominant C > T in the TpCpC context and

very high similarity to the COSMIC SBS7a and SBS7b signatures,

suggesting that this is a typical UV signature (Alexandrov et al.,

2020). In contrast to SigB, SigA showed a high weight of C > T in

the ApCpG and GpCpG contexts, and a high similarity to the

COSMIC SBS1/5 signatures. These two distinct signatures were

consistently defined in two independent datasets (ICGC and

SRA), indicating the reliability of the two signatures identified in

this study. As the evidence of homologous recombination

deficiency in CMs is scarce (Nguyen et al., 2020), the

SBS3 component in Sig A is likely due to the difficulty of

distinguishing between the SBS3 and SBS5 signatures (Koh

et al., 2021). Sig A also displayed a minor proportion of the

SBS38 signature, which is associated with a proposed etiology of

indirect damage from UV (Alexandrov et al., 2020). Mutational

signature-based unsupervised clustering of CMs in the three

datasets revealed two CM clusters. The major cluster (79%)

harbored an almost exclusive UV signature (SigB), whereas

the other cluster (21%) showed little or no UV signature

(SigA). Therefore, we named the major cluster the “UV-high

cluster” and the minor cluster the “UV-low cluster”.

Interestingly, CMs belonging to the UV-low cluster showed

significantly worse overall survival than those belonging to the

UV-high cluster. This finding was consistently observed in the

ICGC dataset, suggesting reasonable validity. In addition, the

UV-low cluster remained an independent prognostic factor in

multivariate analysis, together with traditional prognostic

factors, such as age, tumor stage, and mutational type (BRAF

hotspot or not). Among these factors, the UV-low cluster was the

most significant, suggesting that the UV signature may play a

fundamental role in the prognosis of CM. There are only a few

known clinico-genomic factors predicting prognosis in CM

(Gerami et al., 2015; Cancer Genome Atlas Network, 2015;

Garg et al., 2021). Our data are consistent with those of

previous studies that demonstrated the prognostic implication

of the UV signature (Trucco et al., 2019; Pham et al., 2020;
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Vicente et al., 2022). One of the characteristics of the UV-low

cluster is lower mutational and higher CNA burdens, which is

similar to the genomic profiles of acral melanoma, a rare subtype

of melanoma that has a poorer prognosis than CM (Liang et al.,

2017; Rabbie et al., 2019; Newell et al., 2020). Interestingly, the

key genomic alterations of acral melanomas described in a

previous study (Newell et al., 2020) (such as the highest

proportion of triple-WT tumors, common KIT alterations,

and lower frequencies of BRAF/RAS hotspot mutations) are

consistent with the characteristics of the UV-low cluster in

this study. In line with our findings, another recent study

reported results from epigenomic mapping which also suggest

that UV-low CMs more closely resemble acral melanomas rather

than UV-high CMs (Vicente et al., 2022).

In terms of the repertoire of mutational signatures, CM is

known to be much simpler than other solid cancers (Kim et al.,

2016; Letouzé et al., 2017; Gulhan et al., 2019; Alexandrov et al.,

2020). Accordingly, in this study, CMs in the UV-high cluster

showed little heterogeneity in terms of mutational context;

however, CMs in the UV-low cluster showed a more

heterogeneous mutational context, suggesting that the

tumorigenesis of CMs in UV-low clusters is diverse. Based on

the age distribution and age-related signatures (SBS1/5) of the

UV-low cluster, we presumed that aging is one of the major

factors involved in the tumorigenesis of CMs in UV-low clusters

(Alexandrov et al., 2020). Signature refitting analysis also

revealed consistent components in both signatures across the

three databases. These data support the two distinct natures of

the mutational signatures in CM and also suggest that the effect

of other signatures on CM is minimal.

In this study, the UV-low cluster showed a significantly lower

leukocyte fraction, proportion of tumor-infiltrating leukocytes,

CYT score, and TCR richness than the UV-high cluster. It has

been established that low immune cell infiltration is associated

with poor clinical outcome (Barnes and Amir, 2017; Thorsson

et al., 2018; Li et al., 2021). Therefore, the poorer survival in the

UV-low cluster may be explained by lower activation of

antitumor immunity. Additionally, the UV-low cluster showed

significantly higher expression of genes related to keratinocyte

differentiation. These results are consistent with the significantly

higher proportion of “Keratin” subtypes and significantly lower

proportion of “Immune” subtypes found in the UV-low cluster

(Cancer Genome Atlas Network, 2015). In our study, the “Hypo-

methylated” subtype comprised a significantly higher proportion

of the UV-high cluster compared to the UV-low cluster,

indicating the possibility of distinct DNA methylation profiles.

A previous study suggested that distinct DNA methylation

profiles between UV-high and UV-low CMs may play a role

in immunomodulation and alteration of immune cell

composition (Vicente et al., 2022).

Despite its prognostic implications, mutational signature

analysis has not been widely adopted in the clinical

management of CMs owing to the difficulty of acquiring

reliable signatures in routine clinical settings using panel

sequencing (Abbasi and Alexandrov, 2021). Considering this

situation, we explored whether panel sequencing data could be

used to obtain proper mutational signatures. Using both real-

world panel sequencing data and a simulation of panel

sequencing from the WES dataset, we revealed that UV-high

and UV-low clusters of CMs could be distinguished from panel

sequencing data. Recent studies have revealed that the detection

of mutational signatures from panel sequencing data is available

in patients with breast, ovarian, and lung cancer as well as

melanoma, to determine their response to PARP and PD-L1

inhibitors (Gulhan et al., 2019; Färkkilä et al., 2020; Chong et al.,

2021). Together with previous studies, our results support the

feasibility of mutational signature-based classification using

panel sequencing data, which may have potential clinical

implications. Further studies are required to verify the

sensitivity and specificity of mutational signature-based

classification and its clinical implications, such as treatment

response and prognostic prediction.

This study had several limitations. First, most of the datasets

used in this study were WES datasets. Although WES is less

accurate than whole-genome sequencing for obtaining reliable

mutational signatures, WES can be broadly applied using many

more samples and can recapitulate whole-genome sequencing-

based mutational signatures. Second, although we observed

consistent mutational contexts from the panel sequencing

cohort data, this finding was not validated by an independent

panel sequencing dataset due to the lack of a proper dataset for

this purpose. Compared to WES data, panel sequencing data

usually harbors relatively higher sequencing depth, which can

result in varied mutation results due to differential sensitivity in

mutation detection. Further studies are required to verify the

applicability of panel sequencing data. Third, mutational

signatures extracted in silico need additional validation to

prove their biological implications and whether they are

independent of known signatures.

Conclusion

Our study revealed the mutational signatures of CMs and

the mutational signature-based clustering of CM into two

clusters with distinct clinico-genomic characteristics. Our

results support the clinical application of mutational

signatures in the classification of CMs for management and

prognosis prediction.
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