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Background: Non-obstructive azoospermia (NOA) is the most severe form of

male infertility. Currently, the molecular mechanisms underlying NOA

pathology have not yet been elucidated. Hence, elucidation of the

mechanisms of NOA and exploration of potential biomarkers are essential

for accurate diagnosis and treatment of this disease. In the present study,

we aimed to screen for biomarkers and pathways involved in NOA and reveal

their potential molecular mechanisms using integrated bioinformatics.

Methods: We downloaded two gene expression datasets from the Gene

Expression Omnibus (GEO) database. Differentially expressed genes (DEGs)

in NOA and matched the control group tissues were identified using the limma

package in R software. Subsequently, Gene ontology (GO), Kyoto Encyclopedia

of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), protein-

protein interaction (PPI) network, gene-microRNAs network, and transcription

factor (TF)-hub genes regulatory network analyses were performed to identify

hub genes and associated pathways. Finally, we conducted immune infiltration

analysis using CIBERSORT to evaluate the relationship between the hub genes

and the NOA immune infiltration levels.

Results:We identified 698 commonDEGs, including 87 commonly upregulated

and 611 commonly downregulated genes in the two datasets. GO analysis

indicated that the most significantly enriched gene was protein polyglycylation,

and KEGG pathway analysis revealed that the DEGs were most significantly

enriched in taste transduction and pancreatic secretion signaling pathways.

GSEA showed that DEGs affected the biological functions of the ribosome,

focaladhesion, and protein_expor. We further identified the top 31 hub genes

from the PPI network, and friends analysis of hub genes in the PPI network

showed that NR4A2 had the highest score. In addition, immune infiltration

analysis found that CD8+ T cells and plasma cells were significantly correlated

with ODF3 expression, whereas naive B cells, plasma cells, monocytes,

M2 macrophages, and resting mast cells showed significant variation in the

NR4A2 gene expression group, and there were differences in T cell regulatory

immune cell infiltration in the FOS gene expression groups.
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Conclusion: The present study successfully constructed a regulatory network

of DEGs between NOA and normal controls and screened three hub genes

using integrative bioinformatics analysis. In addition, our results suggest that

functional changes in several immune cells in the immune microenvironment

may play an important role in spermatogenesis. Our results provide a novel

understanding of the molecular mechanisms of NOA and offer potential

biomarkers for its diagnosis and treatment.

KEYWORDS
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bioinformatics, biomarker

1 Introduction

Over the past few decades, the incidence of infertility has rapidly

increased every year. Infertility affects approximately 15% of couples

of childbearing age. Azoospermia is the most severe phenotype of

male infertility, with approximately 10–15% of infertile men seeking

medical attention (Lotti et al., 2014; Tournaye et al., 2017). Some

congenital or acquired causes can be found in the vast majority of

cases of obstructive azoospermia (OA) (Krausz, 2011; Pan et al.,

2018). Non-obstructive azoospermia (NOA), the most severe form

of male factor infertility, is characterized by the lack of sperm in the

ejaculate and affects about 5–10% of infertile men (Jarow et al., 1989;

Lotti et al., 2014; Tournaye et al., 2017). OA is typically characterized

by normal spermatogenesis, whereas NOA represents a

heterogeneous condition in which spermatogenesis is impaired,

including insufficient spermatogenesis and maturation arrest in

Sertoli cell-only syndrome (Krausz, 2011; Lotti et al., 2014;

Tournaye et al., 2017). Klinefelter syndrome and Y chromosome

microdeletions are the most common congenital causes of NOA

(Forti et al., 2010; Krausz, 2011; Corona et al., 2017). The etiology of

acquired NOA includes torsion, mumps, orchitis, cryptorchidism,

and iatrogenic problems (Krausz, 2011; Lotti et al., 2014; Tournaye

et al., 2017). For nearly half of the patients with NOA, the etiology

remains unknown (Poongothai et al., 2009). Previously, NOA was

considered an untreatable condition that required fertilization with

donor sperm. With the advent of microdissection testicular sperm

extraction (mTESE) and intracytoplasmic sperm injection (ICSI),

these techniques have become the first-line treatments for NOA

patients (Krausz, 2011; Lotti et al., 2014; Tournaye et al., 2017).

Unfortunately, the probability of retrieving sperm is only about 50%

in men with NOA owing to partial and heterogeneous preserved

focal spermatogenesis (Krausz, 2011; Lotti et al., 2014; Tournaye

et al., 2017). Currently, the molecular mechanisms underlying NOA

pathology remain unclear. However, this remains an important

challenge to solve. Therefore, the identification of genetic

abnormalities in patients with NOA is critical.

Several studies have identified potential biomarkers involved in

NOA using microarray analysis, weighted gene co-expression

network analysis (WGCNA), whole-exome sequencing, and

single-cell transcriptome sequencing (scRNA-seq) (Wang et al.,

2018; Zheng et al., 2019; Chen et al., 2020; Zhao et al., 2020).

However, only a few of these biomarkers are currently used for the

diagnosis of NOA. In addition, these studies did not integrate

immune infiltration analysis, and the immune system plays an

important role in testicular dysfunction and male infertility.

Immune infiltration analysis can be used to study the infiltrated

immune cells in the testes, to infer and discover the role of immune

cells in NOA, and to develop diagnostic and therapeutic targets for

the disease. This omission laid the foundation for the present study.

In the present study, we identified differentially expressed

genes (DEGs) for NOA by analyzing two mRNA expression

profiles downloaded from the Gene Expression Omnibus

database (GEO, http://www.ncbi.nlm.nih.gov/geo/). Our

results provide a novel understanding of the molecular

mechanisms of NOA and offer potential biomarkers for its

diagnosis and treatment.

2 Materials and methods

2.1 Microarray data

Two gene expression datasets (GSE45885 and GSE45887) (Zhao

et al., 2021) related to male NOA were derived from GEO

(GPL6244 [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST

Array [transcript (gene) version]) (Chicco, 2022) using the R

package GEOquery (Hunt et al., 2022) of R software program.

The data type was expression profiling by array, and the species

was Homo sapiens. Twenty-seven NOA and four normal control

samples were obtained from GSE45885, and GSE45887 contained

16 NOA and four normal control samples. The characteristics of

GSE45885 and GSE45887 patients can be seen in Supplementary

Tables S1, S2. The raw data from the GSE45885 and

GSE45887 datasets were normalized using the limma package

(Liu et al., 2021). The data analysis process can be seen in Figure 1.

2.2 Identification of differentially
expressed genes (DEGs)

DEGs with the threshold criterion of |log2FC| >1 and p <
0.05 from NOA and normal control samples in GSE45885 and
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GSE45887 datasets were screened with the limma package

(Walker, 2009). Subsequently, heatmaps and volcano plots of

DEGs from each dataset were plotted using the pheatmap

package (Ning et al., 2022) and ggplot2 package (Gustavsson

et al., 2022) in the R analysis platform.

2.3 Gene ontology (GO) and kyoto
encyclopedia of genes and genomes
(KEGG) enrichment analyses of DEGs

GO analysis is a common method for annotating and analyzing

the biological processes of genes, including biological processes

(BPs), molecular functions (MFs), and cellular components (CCs)

(Ge et al., 2020). KEGG is a widely used database that stores

information on genomes, biological pathways, diseases, and drugs

(Kanehisa et al., 2021). We performed biological analyses using

clusterProiler (Wu et al., 2021) in the R software statistical analysis

platform (significant at p < 0.05) to visualize the GO terms and

KEGG pathway enrichment analysis of DEGs from NOA and

normal control samples.

2.4 Gene set enrichment analysis (GSEA)

GSEA determines whether a set of predefined genes shows

statistically significant, concordant differences between related

phenotypes to screen for significant differential biological

functions (Nguyen et al., 2021). We obtained the “C2. kegg.v7.4.

symbols” gene set fromMSigDB (Liberzon et al., 2015) for GSEA of

the two datasets. Furthermore, GSEA was automatically completed

and visualized using clusterProiler (Wu et al., 2021) in R software,

and statistical significance was set at p < 0.05.

2.5 Construction of protein-protein
interaction (PPI) network

PPI (Das and Mitra, 2021) networks are composed of

individual proteins that interact with each other, and are

involved in various aspects of biological signal transmission,

gene expression regulation, energy and substance metabolism,

and cell cycle regulation. Systematic analysis of functional

interactions between proteins is of great significance for

comprehending the principle of proteins in biological systems,

the reaction mechanism of biological signals, and the

mechanisms of generation or development of diseases under

special physiological states, as well as the functional relationships

between proteins.

The STRING (Szklarczyk et al., 2021) database currently

covers 9.6 million proteins and 13.8 million protein-protein

interactions from 5,090 organisms and contains known and

predicted protein-protein interactions. The results of the

STRING database were derived from experimental data,

PubMed abstract texts, other database data, and

bioinformatics methods. In this study, a PPI network of DEGs

of NOA was constructed using the STRING database and

visualized using the Cytoscape (Puig et al., 2020) software.

2.6 Construction of miRNA-hub gene and
transcription factor-hub gene regulatory
networks

Hub genes were identified using GOSemSim (Kamran and

Naveed, 2022) in R software. In addition, the functional

similarity between proteins was evaluated using the geometric

mean of semantic acquaintance in CCs and MF using

GOSemSim in R software. We also analyzed hub genes using

the NetworkAnalyst database (https://www.networkanalyst.ca/

NetworkAnalyst/home.xhtml) and constructed miRNA-hub

gene interaction and transcription factor-hub gene networks.

2.7 Immune infiltration analysis by
CIBERSORT

CIBERSORT (Le et al., 2021) is a deconvolution algorithm

for the expressionmatrix of immune cell subtypes based on linear

support vector regression to estimate the abundance of immune

cell infiltration in a mixed-cell population using RNA-seq data.

We analyzed immune cell infiltration and the proportion of NOA

tissue using CIBERSORT and conducted a correlation analysis of

related immune cells by obtaining the hub gene to evaluate the

relationship between the hub gene and NOA immune infiltration

levels.

2.8 Statistical analysis

R version 4.0.2 software (https://cran.r-project.org/) was used

to conduct the statistical analyses. For the comparison of the two

groups of continuous variables, the statistical significance of the

normally distributed variables was estimated using the

independent Student’s t-test, and the differences between the

non-normally distributed variables were analyzed using the

Mann-Whitney U test. All statistical p-values were bilateral,

and a p-value of <0.05 was considered statistically significant.

3 Results

3.1 Identification of DEGs in NOA

First, we obtained the corresponding data using the R

package GEOquery package and standardized the original
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datasets using the limma package (Figures 2A–D). In order to

further judge whether the data set samples have

obvious overall differences in expression profiles, we

performed PCA analysis and found that the disease group

and control group samples had obvious overall differences

(Figures 3A,B).

FIGURE 1
Analysis flow chart. GO/KEGG: Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG); GSEA: gene set enrichment
analysis.

FIGURE 2
Box plots of gene expression data before and after normalization. (A) GSE45885 before correction, (B) GSE45885 after correction, (C)
GSE45887 before correction, (D)GSE45887 after correction. The x-axis label represents the sample symbol and the y-axis label represents the gene
expression values. The orange bar represents the data of normal control samples and the blue bar represents the data of NOA samples.
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Next, we used the limma package to perform differential

analysis, and the results are as follows: the combined GEO dataset

(Combined Datasets) has a total of 698 differentially expressed

genes (DEGs) that satisfy the threshold of |logFC| > 0 and adj.p <
0.05, under this threshold, 70 up-regulated genes (logFC >0 and
adj. p < 0.05) and 507 down-regulated genes (logFC <0 and adj.

p < 0.05) in the GSE45885 dataset (Figure 4A), and utilized the

top 40 differentially expressed genes A classification heat map

was drawn (Figure 4B); there were 17 up-regulated genes

(logFC >0 and adj. p < 0.05) and 104 down-regulated genes

(logFC <0 and adj. p < 0.05) in the GSE45887 dataset. The

40 differentially expressed genes were classified as heatmaps

(Figure 4D). The top 40 differential genes obtained are:

PRM1, PRM2, GTSF1L, TNP1, FSCN3, C19orf62, ACTL7A,

AKAP4, ABHD1, GAPDHS, LELP1, FNDC8, BANF2,

FAM205A, ACSBG2, ODF1, BPIFA3, GSG1, UBQLN3,

SMCP, RN7SL648P, MGC24103, RN7SL751P, MIR145,

MIR30E, MIR27B, MIR99A, MIR32, MIRLET7G,

MIRLET7A2, MIR199A2, MT-TT, MT-TW, MT-TD,

MIR509-1, RNU1-59P, MT-TK, MT-TL2, MT -TS2, MT-TH

(Figures 4C,D).

3.2 PPI network construction and hub
gene identification

We intersected the differentially expressed genes from

the analysis of the two datasets and visualized them using a

Venn diagram, resulting in 119 differentially expressed genes

(Figure 5A). Then, we conducted PPI (Protein-Protein

Interaction Networks, PPI) analysis on 119 differential

genes through the STRING database, and imported the

protein interaction results into Cytoscape for visualization

and drawing, and found that 31 genes have strong

similarities of biological functions (Figure 5B), are:

TEKT4, ODF3, ACTN3, DOT1L, MUC1, CCDC116,

RSPH4A, ELL, GLT6D1, HSF1, SPATA31E1, NSUN4,

TBL3, FAM187B, NR4A2, DUS1L, CCDC96, SNX2,

FER1L5, DOC2A, FER1L6, STAC3, CLPB, FAM163A,

SLFNL1, FOS, PLCD4, DUSP1, INPP1, CATSPER4,

DNAH1.

Then, the networkAnalyst database was used to analyze these

119 genes, and jointly used the JASPAR database (Zheng et al.,

2019) and miRTarBase v8.0 (Chen et al., 2020) to analyze the

transcription factors of differential genes and their possible

binding miRNAs. The results of the analysis were then

imported into Cytoscape for visualization, displaying the

transcription factor-differential gene network (Figure 5C) and

the differential gene-miRNA network (Figure 5D). Figure 5E

shows the friends analysis results of the hub gene. The top 8 genes

with scores are NR4A2, FOS, COF3, MUC1, ELL, DUSP1,

STAC3, TEKT4, among which NR4A2 has the highest score,

which may play an important role in the occurrence of NOA

effect.

3.3 KEGG and GO enrichment analyses

To investigate the relationship between the DEGs of NOA

and BCs, MFs, CCs, biological pathways, and diseases, functional

and pathway enrichment analyses were performed. Regarding

BPs of GO analysis, DEGs of NOA were significantly enriched in

protein polyglycylation, negative regulation of cytokine-

mediated signaling pathways, and negative regulation of

FIGURE 3
Principal component analyses (PCA) of gene expression between the NOA group and control group in GSE45885 and GSE45887. (A) 3D-PCA
data distribution of GSE45885, (B) 3D-PCA data distribution of GSE45887. The orange point represents the data of normal control samples and the
blue point represents the data of NOA samples.
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response to cytokine stimulus. For CCs, DEGs of NOA were

significantly enriched in sperm flagellum, 9 + 2 motile cilium,

axoneme, ciliary plasm, and motile cilium. Changes in MFs of

hub genes were mainly enriched in RNA binding involved in

posttranscriptional gene silencing, mRNA binding involved in

posttranscriptional gene silencing, protein-glycine ligase activity,

and protein-glycine ligase activity. Additionally, using the logFC

value of genes, we visualized the changes in gene expression and

the relationship between functions using GOplot software

(Figure 6B). KEGG pathway enrichment demonstrates that

the DEGs of NOA were primarily enriched in the taste

transduction and pancreatic secretion signaling pathway

Supplementary Table S3, and the most significant enrichment

signaling pathway, hSA04742: Taste transduction, is shown in

Figure 6C.

3.4 GSEA and gene set variation analysis
(GSVA)

GSEA was performed to determine the effect of gene

expression on NOA, and the results show that the DEGs

affected the biological functions of the ribosome,

focaladhesion, and protein_expor (Figures 7A,B). To

evaluate the enrichment of different metabolic pathways in

different samples, we analyzed the expression levels of genes

FIGURE 4
Volcano plots and heatmap of DEGs. (A) Volcano plots of GSE45885, (B) volcano plots of GSE45887. The x-axis label represents
log2FoldChange and the y-axis label represents–log10 (adjusted p-value). Data points in red represent upregulated, and green represent
downregulated genes. No significantly changed genes are marked as gray points. Heatmap of the top 40 DEGs screened by limma package in R
software. (C) Heatmap of GSE45885, (D) heatmap of GSE45887. Red areas represent highly expressed genes and blue areas represent lowly
expressed genes in NOA. Darker color indicates the higher multiple of DEGs. DEGs: differentially expressed genes; NOA: non-obstructive
azoospermia.
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in different samples that converted them into gene sets in

different samples using GSVA, and the enrichment was

visualized using the pheatmap package (Figure 7C). We

found that sample grouping could distinguish the results of

the GSEA.

3.5 Immune infiltration analysis

To assess the level of immune infiltration in male non-

obstructive azoospermia tissue, we used the CIBERSORT

algorithm to calculate the degree of infiltration of 22 types of

immune cells in the tissue.

Using the wilcox.test algorithm to analyze and filter out

immune cells with low expression abundance, a total of

15 immune cells were included, including B cells naive, B cells

memory, Plasma cells, T cells CD8, T cells CD4 memory resting,

T cells follicular helper, T cells regulatory (Tregs), NK cells

resting, NK cells activated, Monocytes, Macrophages M0,

Macrophages M2, Dendritic cells activated, Mast cells resting,

Mast cells activated, and draw a panorama of immune cell entry

in NOA (Figure 8A). Next, the correlation between individual

immune cells in both datasets was assessed (Figure 8B). To assess

the functional correlation between key genes and immune cells in

male non-obstructive azoospermia, we selected the top three hub

genes for analysis.

FIGURE 5
PPI network construction and hub gene regulatory network. (A) Venn diagram of co-expressed DEGs from GSE45885and GSE45887. (B) DEG-
related PPI networks of NOA. Red nodes represent highly expressed genes and blue nodes represent lowly expressed genes in NOA. (C)DEG-related
TF-mRNA networks of NOA. (D) DEG-related miRNA-mRNA networks of NOA. (E) Friend analysis of hub gene in PPI network. DEGs: differentially
expressed genes; NOA: non-obstructive azoospermia; PPI: protein-protein interaction.
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According to the expression value of the hub gene, the

samples were divided into high expression group and low

expression group, and calculated the difference of immune cell

infiltration levels between the high and low expression groups.

As shown in Figures 8C–E, in the disease group and the

ODF3 high and low expression group, there were

differences in the immune cell infiltration of B cells naïve,

plasma cells, Macrophages M2, Dendritic cells activated, and

Mast cells resting, among which Macrophages M2 and Mast

cells resting were low. Expression genes, plasma cells, B cells

naïve, and Dendritic cells activated are highly expressed genes;

however, in the high and low expression groups of

NR4A2 gene, there are differences in the immune cell

infiltration of B cells naive, Plasma cells, Monocytes,

FIGURE 6
GO enrichment and KEGG pathway analysis of DEGs. (A) GO enrichment result of DEGs. The x-axis label represents gene ratio and
y-axis label represents GO terms. The color indicates GO terms, red indicates activated and blue indicates inhibited. The size of circle
represents gene count. Different colors of circles represent different adjusted p values. (B) GOplot results combined with gene expression
logFC. (C) The most significant enrichment signaling pathway was hSA04742: taste transduction. GO: Gene ontology; KEGG: Kyoto
Encyclopedia of Genes and Genomes; MF: molecular function; BP: biological processes; CC: cell composition.
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Macrophages M2, and Mast cells resting. The expressed genes

are B cells naïve, Plasma cells, and the low-expressed genes are

Monocytes, Macrophages M2, Mast cells resting, and there are

differences in the infiltration of T cells regulatory (Tregs)

immune cells in the high and low expression groups of FOS

genes, which are low-expressed genes. It was statistically

significant (p < 0.05, statistically significant; p < 0.01,

highly statistically significant; p < 0.001, extremely

statistically significant). The above results indicate that the

functional changes of several immune cells may play an

important role in the immune microenvironment of NOA

patients.

4 Discussion

Spermatogenesis is a complex and subtle process

characterized by three specific functional phases: mitotic

proliferation and expansion, meiosis, and spermiogenesis

(Neto et al., 2016). Genetic mutations play an important role

in NOA (Peña et al., 2020). Compared to that of OA, the

pathogenesis of NOA is more complex and difficult to

understand. However, there are currently no specific

therapeutic targets for NOA. Thus, it is of great significance

to construct a molecular regulatory network of NOA to search for

therapeutic targets. In this study, we integrated the

FIGURE 7
GSEA and GSVA. (A) Results of GSEA are presented by ridge maps. The x-axis label represents gene ratio and y-axis label represents KEGG
pathway. (B) Top four most significant enriched gene sets in NOA: ribosome signaling pathway; focal adhesion signaling pathway; protein expor
signaling pathway; type I diabetes mellitus signaling pathway. (C) Results of GSVA were visualized with heatmaps. Red indicates activated and blue
indicates inhibited. GSEA: Gene Set Enrichment Analysis; GSVA: Gene Set Variation Analysis.
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GSE45885 and GSE45887 datasets and identified 527 and

121 common DEGs, respectively, using bioinformatics

methods, among which 119 DEGs were at the intersection of

the two datasets and 31 genes had similar biological functions. To

further investigate the molecular mechanism of the pathogenesis

of NOA, we analyzed the transcription factors of 119 DEGs and

their possible binding miRNAs and successfully identified three

hub genes (NR4A2, FOS, and ODF3). KEGG and GO

enrichment analyses of DEGs showed that the DEGs of NOA

were mainly enriched in taste transduction and pancreatic

secretion signaling pathways. Moreover, the three most

important hub genes (NR4A2, FOS, and ODF3) were

analyzed for immune cell infiltration in NOA testicular tissue,

suggesting that changes in the function of several immune cells in

the immune microenvironment may play an important role in

spermatogenesis. These results suggest that NR4A2, FOS, and

ODF3 are potential biomarkers for the diagnosis and treatment

of NOA.

NR4A2 belongs to the nuclear receptor superfamily and is

involved in multiple BPs including proliferation, metabolism,

immunity, cellular stress, apoptosis, and DNA repair (Safe et al.,

2016). In addition to Nr4a proteins, which are known

transcription factors, they are also important receptors of

hormones (Ke et al., 2004). Testosterone and

dihydrotestosterone secreted from Leydig cells are crucial for

the initiation and maintenance of spermatogenesis (Walker,

2009). Dysfunction of Leydig cells contributes to testicular

spermatogenesis disorders in OA patients (Walker, 2009). A

FIGURE 8
Immune infiltration analysis. (A) CIBERSORT algorithm analysis of immune cell infiltration panorama. Different colors represent different
immune cell subsets. (B) CIBERSORT algorithm analysis of immune cell infiltration panorama correlation heat map. Red represents positive
correlation and blue represents negative correlation. (C) Functional correlation between ODF3 expression in NOA and immune cells. (D) Functional
correlation betweenNR4A2 expression in NOA and immune cells. (E) Functional correlation between FOS expression in NOA and immune cells.
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previous study reported that NR4A2 plays an essential role in

Leydig cells, and can regulate the transcription of steroidogenic

acute regulatory protein (StAR) or 3β-hydroxysteroid
dehydrogenase (3β-HSD) in Leydig cells (Martin and

Tremblay, 2010; Hu et al., 2018). Dai et al. (2021), (Martin

et al., 2008) investigated the expression patterns, distribution,

and functions of NR4A2 in male Tianzhu white yaks and found

that NR4A2 is involved in the regulation of male yak

reproduction, especially steroid hormones and androgen

metabolism. Our study further indicates that NR4A2 might

play an essential role in spermatogenesis, and the detailed

regulatory mechanism of NR4A2 in the spermatogenesis of

patients with NOA needs to be further studied. FOS, also

known as the c-fos gene, is a transcription factor. One study

showed that the expression of c-fos mRNA is appreciably lower

and ERβmRNA is higher in the testes of men with NOA than in

those with OA, which suggests that c-fos transcriptional activity

is associated with spermatogenesis. However, few studies have

focused on c-Fos transcriptional activity during spermatogenesis,

and the detailed mechanisms are unclear. The outer dense fiber

(ODF) protein is a keratin that includes ODF1, ODF2, and ODF3

(Araújo et al., 2009). The tail is an important structure for proper

sperm function. Studies have demonstrated that ODF proteins

are the main cytoskeletal structures of the sperm tail and are

preferentially expressed during mammalian spermiogenesis

(Kierszenbaum, 2002; Petersen et al., 2002). Among them,

ODF3 is transcribed in the testes, more specifically in

spermatids, and is involved in sperm tail formation (Petersen

et al., 2002; Sarkar et al., 2022). Unfortunately, there is little

evidence that ODF3 is an important trigger for the

pathophysiological process of NOA.

We conducted KEGG and GO enrichment analyses of DEGs

and found that the DEGs of NOA were mainly enriched in taste

transduction and pancreatic secretion signaling pathways. A recent

study showed that olfactory receptor 2 is present in vascular

macrophages (Orecchioni et al., 2022). However, no studies have

reported the involvement of these pathways in spermatogenesis.

Whether these pathways are involved in spermatogenesis needs to

be verified using larger sample sequencing and experiments.

A previous study has confirmed that inflammation in the

reproductive tract contributes to testicular dysfunction and male

infertility (Hedger, 2011). Therefore, we performed immune

infiltration analysis and found that immune cells are involved

in the pathophysiological process of NOA. One study reported

that T cell subsets are essential for intact spermatogenesis and

may be targets for the treatment of chronic orchitis and immune

infertility (Gong et al., 2020). Suppressor T cells predominate in

patients with obstructive azoospermia, whereas T cells of the

helper phenotype predominate in patients with unilateral

testicular obstruction (el-Demiry et al., 1987), but T cells and

their subset distribution in the testis of NOA are unknown. In

addition, several studies have suggested that B cells and

macrophages contribute to spermatogenesis (Cabas et al.,

2011; de Oliveira et al., 2021), similar to our results. Dong

et al. (2021) also found that macrophages are the most

important immune cells in NOA by immune infiltration

analysis. All these studies showed that immune cells play an

important role in NOA, and the mechanism by which immune

cells impact spermatogenesis should be further studied.

Although we obtained several key findings in the present study,

there are still some limitations. First, althoughwe analyzed two datasets

with 51 patients, the effects of race and region on the findings were not

observed. We look forward to verifying our results using a larger, real-

world sample size. Second, our analysis was based on data from a

public database and we did not conduct experiments to verify our

results. Third, the hub genes, pathway enrichment, and results of

immune infiltration analysis were not validated by external datasets or

clinical samples. Fourth, we must admit that WGCNA is a better

analytical method, while DEGs is themore commonmethod to screen

for differential genes. We believe that the analysis method combining

WGCNA and DEGs will make the results more rigorous and credible,

which is what we need to work on in the future. Finally, owing to the

lack of patient prognosis information in the dataset, genes related to

patient prognosis were not screened out.

In conclusion, the present study successfully constructed a

regulatory network of DEGs between NOA and normal controls

and screened three hub genes using integrative bioinformatics

analysis. In addition, our results suggest that functional changes

in several immune cells in the immune microenvironment may

play an important role in spermatogenesis. Our results provide a

novel understanding of the molecular mechanisms of NOA and

offer potential biomarkers for its diagnosis and treatment.
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