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Androgen receptor gene (AR) is essential for male growth and fertility. Its

mutations are responsible for androgen insensitivity syndrome (AIS) that

usually shows the phenotype of azoospermia resulting in male infertility. This

study reported the first case of mild AIS with complete normal serum hormones

in a Chinese family. The proband referred for infertility because of azoospermia.

His uncle and two cousins are both infertile and have azoospermia. Whole-

exome sequencing in the genetic analyses showed that the proband carries a

novel hemizygous AR missense mutation, NM_000044.6: c.2051G>C
(p.Gly684Ala), in exon four within the ligand-binding domain. His mother

and maternal aunt are heterozygous carriers, while his father and brother

are wildtype, indicating that the mutation in the proband was inherited from

his mother. This pattern is consistent with the genetic model of the X-linked

recessive inheritance of AR in AIS pathogenesis. HOPE predicts that p.Gly684Ala

increases the hydrophobicity of AR but does not change the AR conformation.

PolyPhen-2 predicts that p.Gly684Ala is harmful. This study provides the new

knowledge to understand the AR gene mutations in MAIS.
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1 Introduction

Androgen receptor (AR) binds androgen and plays a role in regulating male reproductive

development (Bennett et al., 2010). TheAR gene is located in Xq11-12 and encodes 920 amino

acids, composed of the N-terminal transactivation domain (NTD), the DNA binding domain

(DBD), and the C-terminal ligand binding domain (LBD) (Mongan et al., 2015). Mutations in
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theAR gene are themain reason of androgen insensitivity syndrome

(AIS), which is divided into complete (CAIS), partial (PAIS), and

mild (MAIS) according to the degree of feminization of patients

(Bennett et al., 2010). Because a normal level of AR is necessary for

responding to testosterone and gonadotrophin, which are essential

for spermatogenesis, patients with AIS usually show the phenotype

of male infertility (Hiort and Holterhus, 2003; Batista et al., 2018). In

patients with MAIS who present with normal male external

genitalia, infertility is often the only clinical manifestation of

undervirilization (Hiort and Holterhus, 2003; Batista et al., 2018).

However, the cause ofmale infertility inAIS remains unclear and the

effectual remedy to obtain fertility in AIS patients has not been

developed (Finlayson et al., 2017). But it was reported that the AIS

patients would show the abnormal growth of reproductive organs

and germ cells may be related to elevated oestrogens level caused by

increased luteinizing hormone and testosterone (Hiort and

Holterhus, 2003; Wang et al., 2009).

In this study, we reported the first case of MAIS with

complete normal serum hormones in a Chinese family. A

novel hemizygous AR missense mutation, NM_000044.6:

c.2051G>C (p.Gly684Ala), in exon four within the ligand-

binding domain were identified in the proband using whole-

exome sequencing (WES). HOPE predicts that p.Gly684Ala

increases the hydrophobicity of AR but does not change the

AR conformation. PolyPhen-2 predicts that p.Gly684Ala is

harmful. However, a previous study has shown that this

mutation cannot affect the transactivation activity of AR when

expressing this site-mutated AR in Hep3B cells (Koivisto et al.,

1997). This study provides the new knowledge to understand the

AR gene NM_000044.6: c.2051G>C mutations in MAIS.

2 Patients and methods

2.1 Case description

A 32-year-old man was referred to the Reproductive Medical

Center of Jiangxi Maternal and Child Health Hospital for

evaluation of subfertility. The proband had been married for

10 years and had been unsuccessful in attempting to father a

FIGURE 1
The nonsense mutation of the androgen receptor (AR) in a family with azoospermia. (A) A family with azoospermia was analyzed by whole-
exome sequencing. A hemizygous AR missense mutation, NM_000044.6: c.2051G>C (p.G684A), was identified in the proband (III-2). (B) Sanger
sequencing confirmed that the proband has a hemizygousmutation and hismother (II-2) andmaternal aunt (II-4) are heterozygous carriers, while his
father and brother are wildtype. (C) The relativemRNA expression levels of AR in testicular tissue from the proband is similar to a control subject.
(D) The effect of the AR mutation on the protein structure was predicted by HOPE (https://www3.cmbi.umcn.nl/hope/). The amino acid is mutated
from glycine to alanine; the gray part is the main part of the protein, the green part is the wild-type residue, and the red part is the side chain of the
mutant residuemutation NM_000044.6: c.2051G>C (p.G684A). (E) The effect of themutation on the organismwas predicted by PolyPhen-2 (http://
genetics.bwh.harvard.edu/pph2/). The result showed that the mutation is harmful.
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child. He had no significant medical or surgical history and was

not on any long-term medications. Chromosomal analysis

demonstrated a normal karyotype (46, XY). Y chromosome

microdeletions were not detected in the proband. And the

proband with normal hormone. The proband (III-2) is from a

family with a history of infertility (Figure 1A). Semen analysis

showed that no sperm are produced in the ejaculate (Table 1) and

there are no germ cells in the testicular biopsies. His uncle (II-5)

and two cousins (III-6 and III-7) are both infertile and have

azoospermia. The family members participating in this study

provided signed informed consent. This study was approved by

the Institutional Ethics Committee on human subjects of Jiangxi

Maternal and Child Health Hospital. Therefore, we employed

whole-exome sequencing in the genetic analyses of the proband

(III-2), his parents (II-1 and II-2), brother (III-3), and maternal

aunt (II-4).

2.2 Method

2.2.1 Screening for candidate causative genetic
variations

Genomic DNA was extracted from peripheral blood of each

sample using the TIANamp Genomic DNA Kit (TIANGEN,

Beijing). The Agilent SureSelect Human All ExonV6 Kit (Agilent

Technologies, Santa Clara, CA, United States) and Illumina

Novaseq 6,000 platform (Illumina Inc., San Diego, CA,

United States) were used for exome capture and genomic

DNA sequencing. The resulting fastq data were submitted to

in-house quality control software to remove low-quality reads,

and then were aligned to the reference human genome (hs37d5)

using the Burrows–Wheeler Aligner (Li and Durbin, 2010).

Single nucleotide variants (SNVs) and insertions/deletions

(indels) were called with samtools to generate gVCF (Li et al.,

2009). The raw calls of SNVs and indels were further filtered with

the following inclusion thresholds: 1) read depth >4; 2) root-
mean-square mapping quality of covering reads >30; and 3) a

variant quality score >20. Annotation was performed using the

ANNOVAR tool (Wang et al., 2010). Variants with a minor allele

frequency >0.01 in 1,000 Genomes data (Genomes Project et al.,

2015), esp6500siv2_all (https://evs.gs.washington.edu/EVS/),

gnomAD data (Lek et al., 2016), and in house Novo-

Zhonghua exome database from Novogene were filtered. Only

SNVs occurring in exons or splice sites (within 10 bp splicing

junctions) are further analyzed. Synonymous SNVs and small

fragment non-frameshift (<10 bp) indels in the repeat region are

discarded. Variations are screened according to scores of SIFT

(Kumar et al., 2009), Polyphen (Adzhubei et al., 2010),

MutationTaster (Schwarz et al., 2010), and CADD (Kircher

et al., 2014), and the 787 potentially deleterious variations are

reserved if the score of more than half of these four softwares

support harmfulness of variations. The pathogenic variations

were further predicted by the classification system of the

American College of Medical Genetics and Genomics

(Richards et al., 2015), there were three pathogenic variations,

seven likely pathogenic variations and 1,179 uncertainty

pathogenic variations. Given the characteristics of the

pedigree, hemizygous, compound heterozygous, and de novo

variants were considered to be candidate causal variations.

The relationship between the proband and his parents was

estimated using the pairwise identity-by-descent (IBD)

calculation in PLINK (Purcell et al., 2007). The IBD sharing

between the proband and parents in all trios is between 45% and

55%. Finally, AR and TEX11 be the candidate causative genetic

variations.

2.2.2 Real-time quantitative polymerase chain
reaction

Total RNA extraction from testis tissue was extracted by

Trizol (T9108, Takara), and cDNA was got by reverse

transcription with RT kit (FSQ-101, TOYOBO). Taq II

quantitative kit (DRR820A, Takara) was used to perform

Real-time quantitative PCR with StepOnePlus™ Real-Time

PCR System instrument (Thermo Fisher Scientific,

Massachusetts, United States). Relative transcriptional

levels of target genes was determined with the 2−△△Ct

method.

2.2.3 Protein structure predicted
Annotations about AR was obtained from UniProtKB

entry P10275. HOPE SERVER(https://www3.cmbi.umcn.nl/

hope/) was accessed to analyze the effect of variation

(Venselaar et al., 2010). The structural information of

human wild type Androgen Receptor was obtained from

Protein Data Bank (PDB ID: 1E3G). And Missense3D

TABLE 1 Semen parameters and serum hormone levels in the proband
carrying a hemizygous mutation in AR.

Parameters III-2

Age (years) 32

Gene AR

Genome location (GRCh37.p13) chrX:186653613

DNA change (NM_000044) Exon 4: c.G2051C (hemizygous)

Amino acid alteration (full length: 920 aa) p.G684A (nonsense)

Allele frequency in gnomAD (%) 0

Semen volume (ml) 2.4 (Ref. > 1.5)

Total sperm (106/ml) 0 (Ref. > 39)

Sperm concentration (106/ml) 0 (Ref. > 15)

Follicle stimulating hormone (IU/L) 3.5 (Ref. 0.95–11.95)

Luteinizing hormone (IU/ml) 3.22 (Ref. 0.57–12.07)

Testosterone (ng/dl) 349.24 (Ref. 142.39–923.14)

Estradiol (pg/ml) 14.00 (Ref. 11–44)

Prolactin (ng/ml) 12.11 (Ref. 3.46–19.4)
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(http://missense3d.bc.ic.ac.uk/~missense3d/) was used to

structure and assess missense variants (Ittisoponpisan et al.,

2019).

2.2.4 Statistical analyses
The means ± SEM of the data were expressed. T tests was

used to assessed differences between the control and the

sample.

3 Results

WES showed that the proband carries the hemizygous AR

missense mutation NM_000044.6: c.2051G > C (p.G684A),

which showed in Supplementary Material. His mother (II-2)

and maternal aunt (II-4) are heterozygous carriers, while his

father (II-1) and brother (III-3) are wildtype, indicating that the

mutation of AR in the proband was inherited from his mother.

This pattern is consistent with the genetic model of the X-linked

recessive inheritance of AR in AIS pathogenesis. Combined with

the score of more than half of these four softwares (SIFT,

Polyphen, MutationTaster and CADD) support harmfulness

of variations, we thought that NM_000044.6: c.2051G > C

(p.G684A) was potentially deleterious variations. We also

confirmed the variation in the individuals by Sanger

sequencing (Figure 1B). Although this mutation is absent in

the gnomAD browser (Table 1), it was previously found in the

cancer cells of patients with prostate cancer (Koivisto et al.,

1997). In this family, all the infertile males (the proband, his

uncle II-5, and two cousins III-6 and III-7) did not have

prostate cancer, which implies that c.2051G>C is not the

causal mutation for prostate cancer. In addition, the proband

has normal body hair, a normal male pattern facial hair, and

normal male external genitalia (testicular volume of 18 ml, and

penile measurements of 6.5 cm × 2.2 cm). In addition, infertility

is the only clinical manifestation of undervirilization in his

uncle (II-5) and two cousins (III-6 and III-7), without

hypospadias or cryptorchidism. Therefore, this family

represents a case of infertile MAIS.

However, it is unclear whether this mutation affects the

function of AR in human testis. In this study, quantitative

real-time polymerase chain reaction (PCR) showed that the

testis of the proband transcribes an equivalent level of AR as

that of a fertile control (Figure 1C). Therefore, HOPE and

PolyPhen-2 were applied to predict the effect of the mutation

on the AR protein, and Missense3D was used to predict the

wildtype and mutation protein 3D structure (Figure 1D). HOPE

and Missense3D predicts that p. G684A increases the

hydrophobicity of AR but does not change the AR

conformation (Figure 1D). PolyPhen-2 predicts that p. G684A

is harmful (Figure 1E). These results suggest that p.G684A may

affect the normal function of LBD, compromising the binding of

AR to androgen.

4 Discussion

Around 600ARmutations have been described inAIS, but there

are few AR mutations related to MAIS, compared with CAIS and

PAIS (Gottlieb et al., 2012). AR mutations in MAIS are mainly

found in NTD and LBD of AR (Gottlieb et al., 2012). Intriguingly,

theARNM_000044.6: c.2051G>Cmutation in this family occurred

in exon 4, which encodes part of the LBD that binds to androgens

and transmits downstream signals. On the other hand, the AR

NM_000044.6: c.2051G > C mutation was consistent with that the

reported MAIS were solely due to substitution mutations (Gottlieb

et al., 2012). And the HOPE, Missense3D and PolyPhen-2 results

(Figures 1D,E) suggest that p.G684Amay affect the normal function

of LBD, compromising the binding of AR to androgen. Androgen

signaling in testis is essential for sperm production (Hughes et al.,

2012). Therefore, the novel mutation in LBD of AR may be

responsible for MAIS azoospermia.

In MAIS, hormone concentrations are usually normal, but

elevated serum follicle stimulating hormone (FSH), luteinizing

hormone (LH), and testosterone levels could be found in MAIS

patients (Batista et al., 2018) (Karuppiah and Kudabadu, 2018). But

Abou Alchamat et al. (2017) described, MAIS is often unnoticeable,

but mainly detected in normal phenotypic males with infertility.

Consistently, Peña et al. (2020) summarized that male infertility

maybe the only pheotype of MIAS patients. The proband in this

study has normal serum FSH, LH, estradiol (E2), prolactin (PRL),

and testosterone (Table 1). It is reported that AR mutation caused

the MAIS may interfere the spermatogenesis specific downstream

actions but not affect recognize testosterone and not impaired the

feedback on LH secretion, that maybe why the hormone is normal

(Ochsenkühn and De Kretser, 2003). From this, the proband is the

MAIS with complete normal serum hormones to our knowledge.

According to this case, MAIS individuals with completely normal

male sexual characteristics and without gynecomastia are likely to be

diagnosed with infertility in the absence of genome sequencing.

Therefore, genetic investigations serve as the precise diagnostic

criterion for these MAIS patients (Zuccarello et al., 2008; Abou

Alchamat et al., 2017).

Hormone replacement therapy has been used to treat AIS

(Kosti et al., 2019), (Weidler et al., 2019). Two studies

demonstrated that hormone therapy improves sperm count in

infertile patients with AIS with AR mutations (p.V686A and

p.N727K) and helps them become fathers (Yong et al., 1994;

Tordjman et al., 2014). However, the hormone therapy did not

improve the sperm count in an infertile male with MAIS with

azoospermia and elevated serum FSH (Karuppiah and

Kudabadu, 2018). In this study, we also performed hormone

therapy for the proband, but he declined high-dose testosterone

treatment. Whether and how the method of hormone

replacement therapy is effective for patients with AIS with

azoospermia requires verification. In addition, the proband

received treatment with the traditional Chinese medicine

Shengjing capsule, but it was not effective. Therefore, further

Frontiers in Genetics frontiersin.org04

Yuan et al. 10.3389/fgene.2022.988202

http://missense3d.bc.ic.ac.uk/%7Emissense3d/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.988202


study should be performed to develop the effectual remedy to

obtain fertility in MAIS patients.

In conclusion, the present study reported that an infertile

man with MAIS with azoospermia but normal serum hormone

levels. The ARNM_000044.6: c.2051G>Cmutation in this case is

responsible for the phenotype of azoospermia independently of

the transactivation activity of AR. This mutation provides a

candidate target for studying the mechanism of AR in

regulating spermatogenesis using the site-mutated mouse model.
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