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In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a

key component. Different types of TIICs play distinct roles. CD8+ T cells and

natural killer (NK) cells could secrete soluble factors to hinder tumor cell

growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor

cells (MDSCs) release inhibitory factors to promote tumor growth and

progression. In the meantime, a growing body of evidence illustrates that

the balance between pro- and anti-tumor responses of TIICs is associated

with the prognosis in the tumormicroenvironment. Therefore, in order to boost

anti-tumor response and improve the clinical outcome of tumor patients, a

variety of anti-tumor strategies for targeting TIICs based on their respective

functions have been developed and obtained good treatment benefits,

including mainly immune checkpoint blockade (ICB), adoptive cell therapies

(ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal

antibodies. In recent years, the tumor-specific features of immune cells are

further investigated by various methods, such as using single-cell RNA

sequencing (scRNA-seq), and the results indicate that these cells have

diverse phenotypes in different types of tumors and emerge inconsistent

therapeutic responses. Hence, we concluded the recent advances in tumor-

infiltrating immune cells, including functions, prognostic values, and various

immunotherapy strategies for each immune cell in different tumors.
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Introduction

Immunotherapies have become increasingly important for tumor patients,

particularly those with advanced tumors (Tarantino et al., 2022). It is well known

that using immune checkpoint blockades (ICBs) has yielded a beneficial effect in

patients with advanced melanoma and lung cancer (Mehdizadeh et al., 2021);
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adoptive cell therapies (ACT) and chimeric antigen receptor

(CAR)-T cells therapy have also improved the prognosis of

patients with hematologic tumors (Martinez and Moon, 2019).

However, immunotherapy resistance occurs in some tumors,

and a possible explanation for this condition is the complication

of the tumor microenvironment (TME) (Whiteside, 2012).

TME, which is created by various cells and soluble molecules

including immune cells and cytokines, exerts significant effects

on tumor development and progression (Duhan and Smyth,

2021). In TME, the crosstalk of immune cells and tumor cells

significantly controls tumor growth, namely, cancer

immunoediting (Burnet, 1970). Cancer immunoediting

involves three phases: elimination, equilibrium, and escape

(Dunn et al., 2002; Wilczyński and Nowak, 2012). In the

elimination phase, various effector cells and molecules

destroy tumor cells and dampen tumor progression. For

instance, dendritic cells (DCs) can present tumor antigens to

T cells, and subsequently, T cells release perforin and granzyme

to inhibit tumor cell growth or kill tumor cells through the Fas/

FasL signal pathway. However, if immune cells can not

eliminate tumor cells, cancer immunoediting might proceed

into the equilibrium or escape phase. In the equilibrium phase,

tumor cells could not be detectable and are deemed to be in a

dormant status in the clinical. However, when the balance

between tumor proliferation and apoptosis is disturbed by

various signaling pathways, like the Wnt/β-catenin pathway,

tumor cells start to proliferate dramatically and result in tumor

metastasis, namely, the escape phase (Wilczyński and Nowak,

2012). In the escape phase, the anti-tumor immune response is

weakened or suppressed via multiple mechanisms which

mainly disturb the cancer immunity cycle (Wilczyński and

Nowak, 2012; Wada et al., 2022). The cancer immunity cycle

also consists of three phases: priming, migration, and effector.

In the priming phase, the process of antigen-presenting is

hampered by inhibitory signaling pathways, which impairs

the activation of effector cells. In the migration phase, tumor

cells release inhibitory molecules to restrain immune cell

infiltration. In the effector phase, these mechanisms are even

more complex. Immune cells infiltrating into the tumor sites

perform diverse functions, thus, they influence tumor

progression in various ways. The function of these immune

cells will be discussed below (Wada et al., 2022). Importantly,

immune checkpoints (ICs) are essential for tumor progression

in every phase. Over the past decades, attention given to ICs has

increasingly grown. The ICs can be produced by various cells,

including immune cells and tumor cells infiltrating the TME.

They could cause the dysfunction of effector cells and inhibit

the apoptosis of tumor cells (Mehdizadeh et al., 2021; Munari

et al., 2021). Apart from the immune cell components, cancer-

associated fibroblasts (CAFs) and tumor endothelial cells (ECs)

are associated with an aberrant vascular system that can

transport nutrition to tumor cells and disturb the

therapeutic delivery of T cells into the tumor sites

(Nagarsheth et al., 2017; Lamplugh and Fan, 2021). It is well

known that high demands for nutrients in tumor cells lead to

the formation of abnormal vascular networks which promote

tumor growth. Due to the intense competition for nutrients

between tumor cells and immune cells, the nutrients and

oxygen are insufficient in TME, causing a hypoxic and acidic

status. Hypoxia-inducible factor 1-alpha (HIF1α) is a key factor
in upregulating the level of vascular endothelial growth factor

(VEGF) that arms the aberrant vasculature and fosters the

epithelial-–mesenchymal transition (EMT) in the hypoxic

microenvironment (Lamplugh and Fan, 2021). Under the

hypoxic condition, tumor cells could escape

immunosurveillance depending on activated HIF1α signaling

which promotes CTL apoptosis. Besides, in TME, tumor cells

and other immunosuppressive cells could express indoleamine

2,3-dioxygenase (IDO), which depletes tryptophan and results

in the impairment of CD8+T cell cytotoxicity (Lamplugh and

Fan, 2021). Other substances metabolized by tumor cells,

including hyper glycolysis, lactate, and lipid, can impede the

antigen-presenting process of DCs, recruit regulatory T cells

(Tregs), and help tumor cells eventually escape from immune

surveillance (Davis et al., 2015). Additionally, soluble factors

also deliver signals to control tumor development. For example,

upon the high levels of tumor-derived lactate, high-expressed

PD-L1 on the surface of tumor cells, or IL-4, IL-10, and TGF-β
are present in TME, tumor-associated macrophages (TAMs)

would polarize into the M2 phenotype, which plays a pro-

tumor role (Goossens et al., 2019; Petty et al., 2019). The

presence of TGF-β in TME also stimulates TAMs to produce

arginase-1 (Arg-1) and inhibit T cell immune response. Hereby,

since the complex TME controls the benefits of

immunotherapy, a comprehensive understanding of the

complex components of tumor-infiltrating immune cells is

required for tumor immunotherapy. In this review, we

discussed the role of tumor-infiltrating immune cells in the

process of tumor elimination in TME, as well as current

immunotherapeutic strategies. In addition, we described the

function and predictive value of tertiary lymphoid structures

in TME.

Priming phase

Tumor antigens could be recognized by DCs, which present

antigens to T cells and activate T cells. This process is a pivotal

step in the priming phase (Eryn and Ott, 2021). Tumor

antigens include tumor-specific antigens (TSAs) and tumor-

associated antigens (TAAs). Tumor antigens include mutant

and viral antigens. Genomic aberrations of tumor cells result in

mutant antigens, which affects antigens recognition and

presentation (Lu et al., 2014). Therefore, a comprehensive

understanding of the antigen-presenting cells (APCs) is

extremely critical.
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Dendritic cells

DC subsets are specialized in antigen recognition and

presentation and induce a tumor-specific immune response

in patients. DC subsets are divided into conventional dendritic

cells (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived

DCs (moDCs), according to different functions and phenotypes

(Kvedaraite and Ginhoux, 2022). Notably, cDCs include are of

two types: type 1 (cDC1s) and type 2 (cDC2s). cDC1s are

critical for anti-tumor response and are associated with patient

survival. cDC1 infiltration apparently improved prognosis in

solid tumors, such as head and neck squamous cell carcinomas

(HNSCC) , lung adenocarcinoma, melanoma, and triple-

negative breast cancer (TNBC) (Bogunovic et al., 2009;

Roberts et al., 2016; Barry et al., 2018; Böttcher et al., 2018).

cDC1s express XC-chemokine receptor 1 (XCR1), which is used

to make a distinction between cDC1 and other DC subsets

(Villani et al., 2017). XCR1 expressed by cDC1s could bind to

the CD8+T cell phenotype XC-chemokine ligand 1 (XCL1),

which activates T cell function. XCL1 is also expressed by tumor

cells, which boosts this process by activating T cells (Matsuo

et al., 2018; Sánchez-Paulete et al., 2018; Ferris et al., 2020).

CD103+ cDCs1 can prime CD8+ T cells and CD4+T cells by

cross-presenting antigen (Cancel et al., 2019). CD40 expressed

by cDCs1 binds to the CD40 ligand, which is produced by

CD4+T cells, which activates CD8+T cells (Schoenberger et al.,

1998). cDC1s also express CXC-chemokine ligand 9(CXCL9)

and CXCL10 to activate CXCR3+ T and NK cells, recruit CD8+

T cells into the tumor sites, and foster the efficacy of anti-PD-

1 or anti-TIM-3 therapy (de Mingo Pulido et al., 2018; Chow

et al., 2019). Moreover, after the use of PD-1 blockade,

CD8+T cells release IFN-γ, which promotes cDC1 to secrete

IL-12 by using the non-canonical NFκB-dependent
mechanism. In turn, IL-12 augments CD8+T cell functions

(Stratikos et al., 2014; Garris et al., 2018). As a side note, the

primary source of the CXCL9 and CXCL10 seems to be

expressed by CD103+cDC1s in TME (Mikucki et al., 2015).

Additionally, CCL5 and Fms-related tyrosine kinase 3 (FLT3)

produced by NK cells or CCL4 produced by tumor cells could

attract cDC1s into the tumor sites (Barry et al., 2018; Böttcher

et al., 2018), but the activation of the WNT/ β-catenin signaling

pathway and the accumulation of prostanoidprostaglandinE-

2(PGE2) in TME could deduce the production of CCL4/CCL5,

respectively (Spranger et al., 2017; Böttcher and Reis e Sousa,

2018; Ruiz de Galarreta et al., 2019).

cDC2s are specialized in priming CD4+T cells through

MHC-II molecules and secreting IL-12 (Mittag et al., 1950;

Segura et al., 2013; Jhunjhunwala et al., 2021). When Tregs are

depleted, cDC2s could potently activate CD4+T cells to kill

tumor cells and are associated with a favorable prognosis in

HNSCC and melanoma (Binnewies et al., 2019). However, the

functions of cDC2 in TME are less clear. The function of pDCs

is complicated for controlling tumor progression. pDCs may

promote tumor growth, foster angiogenesis, and promote

metastasis in TME by triggering Tregs and releasing

inducible co-stimulator (ICOS)-L, PD-L1, and IDO

(Aspord et al., 2013). Some studies have shown that higher

pDC frequencies are correlated with worse outcomes

(Kvedaraite and Ginhoux, 2022). Conversely, pDCs also

play the anti-tumor role by producing type I interferons

(IFN-Is), which enhances the cytotoxicity of T cells and

NK cells, or releasing Granzyme B that kills tumor cells

directly. In TME, some inhibitory factors, like TGF-β,
could also impair toll-like receptor (TLR)–induced IFN-α
secretion by pDCs and promote tumor growth (Kvedaraite

and Ginhoux, 2022). Notably, the pDC functions in cross-

priming CD8+T cells remain currently unclear and need to be

further dissected (Fu et al., 2022). At this juncture, it is well

documented that moDCs are the inflammation subsets and

produce various inflammatory cytokines to induce tumor

growth (O’Keeffe et al., 2015). On the contrary, moDCs

loading tumor antigens inhibit tumor progression by cross-

presenting antigens, and this property has been considered as

a therapeutic agent (Ma et al., 2013). However, the function of

moDCs is still thoroughly unclear in tumor settings (Duhan

and Smyth, 2021; O’Keeffe et al., 2015). Lastly, several factors

in the tumor microenvironment have been implicated in the

evolution of DCs into a tolerogenic phenotype, including

TGF-β, IL- 10, and VEGF. This tolerogenic property of

DCs might help tumor cells escape from immune

surveillance, limit effector T cells functions, boost the

production and expansion of Tregs, and even induce DC

apoptosis (Mahnke et al., 2003; Chen et al., 2017;

Castenmiller et al., 2021).

Furthermore, antigen presentation can also be influenced by

tumor cells. During tumor development, tumor antigens can be

lost or mutated, leading to the formation of neoantigens. Even

with the assistance of HSP90, neoantigens are hidden by the

tumor and result in the dysfunction of DCs (Jaeger et al., 2019). A

study has shown that tumor antigen loss was associated with

resistance to ICB in non-small small-cell lung cancer (NSCLC)

(Anagnostou et al., 2017). Expression of the HLA-I complex is

reduced by genetic alterations and the modulation of

transcription, failing to recognize antigens (Jhunjhunwala

et al., 2021). Cytokines also affect the expression of the HLA-I

complex. For instance, the inhibition of IFN-γ signaling

pathways decreases the level of the HLA-I complex and leads

to resistance to anti-CTLA-4 therapy in melanoma (Gao et al.,

2016). However, while the deficiency is tumor-specific, how does

an immune response recognize antigens? This issue requires an

in-depth research (Jhunjhunwala et al., 2021).

DC-based immunotherapies: Given the properties of DCs and

tumor antigens, using the cDC1-based vaccine in mice tumor can

enhance infiltration of T cells and halt tumor progression (Wculek

et al., 2019). It was discovered that targeting XCR1 is crucial for the

delivery of tumor antigen to cDC1 and, subsequently, CD8+T cell
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priming (de Mingo Pulido et al., 2021). The cDC2-based vaccine

may also potently inhibit tumor growth and prolong the survival

(Saito et al., 2022). Treatment with antibodies against the CD47-

SIRPα axis could activate cDC2s, enhancing the cytotoxicity of

CD8+ T cells (Saito et al., 2022). FLT3 is a key factor for the

differentiation and maturation of cDCs; thus, FLT3 agonist, CDX-

301 (FLT3L), has been developed (Kvedaraite and Ginhoux, 2022).

A study has reported that FLT3L boosts the efficacy of DC-targeting

vaccines in melanoma (Bhardwaj et al., 2020). Besides, some studies

for other tumors are under the clinical trials (NCT04491084,

NCT05029999, and NCT05010200). In recent years, pDCs-based

treatment has been developed and has acquired benefits. For

instance, using vaccination based on pDCs could enhance CD8+

T functions and improve the prognosis of patients (Tel et al., 2013;

Westdorp et al., 2019) (NCT01863108). Additionally, the TLR7/

TLR8 agonists used to activate pDCs are currently in preclinical

models (Zhou et al., 2022) and are under clinical trials

(NCT04588324, and NCT03906526). MoDCs-based vaccines

have been generated, which loads tumor (neo)antigens for

presentation to T cells. MoDCs-based vaccines can overcome the

“silence” of DCs caused by neoantigens to restore and enhance the

presentation functions of DCs, and improve the prognosis in

melanoma patients (Carreno et al., 2015). It is well documented

that using autologous monocyte-derived DC vaccination could

facilitate the cytotoxicity of CD8+ T cells (Baek et al., 2015)

(NCT02285413). Researchers have also shown autologous DC-

based vaccines in which tumor antigens are loaded could also be

considered as a potential therapeutic strategy through delivering the

antigen presenting cells (Yewdall et al., 2010). Another study has

shown that small interfering RNA (siRNA) reduces cDC1-

immunosuppressive signals to delete PD-L1 and PD-L2 from

moDCs (Hobo et al., 2010). A DCs-based vaccine combined with

CTLA-4 inhibitor enhanced anti-tumor response (Ribas et al., 2009).

Treatment with TLR9 agonists and anti-PD-1 was also associated

with a high infiltration of DCs (Ribas et al., 2018). Furthermore,

nanomaterials with autophagy regulation have been developed,

which is important for DC function and facilitates its anti-tumor

activity (Guan et al., 2022). Engineered exosomes to activate DCs

have also been proposed and are considered as a promising method

to develop (Huang et al., 2022a; Fu et al., 2022). For instance, HELA-

Exos play an anti-tumor role by activating cDC1 and then

enhancing the function of CD8+ T in breast cancer (Huang

et al., 2022a). Despite the fact that DC vaccines have acquired

good efficacy in mouse models and clinical trials, they still face huge

challenges as a treatment strategy, as DC vaccines could not be

appropriate for a wide range of cancers.

B cells

B cells could also take up antigens and process antigens byMHC

class molecules to T cells (Avalos and Ploegh, 2014; Bruno et al.,

2017). Extensive infiltration of B cells promotes tumor antigens to

stimulate T cells potently and is associated with longer progression-

free survival (PFS) and overall survival (OS) in NSCLC (Germain

et al., 2014). B cells exert an important influence which activates

CD4+T cells and induces CD4+T cell differentiation into follicular

helper T (Tfh) cells (Hong et al., 2018). CD40L on activated T helper

cells binds to CD40 on B cells to promote proliferation and

development of B cells, and B cells and Tfh cells are involved in

the formation of germinal centers (GCs) (He et al., 2013; Crotty,

2019). Intratumoral B cells could differentiate into plasma cells that

express CD38, CD138, and CD79a. In high-grade serious ovarian

cancer, the presence of high-level CXCL-13 +B cells, T cells, and PCs

signified a better survival (Kroeger et al., 2016; Montfort et al., 2017;

Moran et al., 2021). Intratumoral B cells switch isotypes and produce

IgG or IgA antibodies, which is contradictory in influencing tumor

growth (Lauss et al., 2021). Lastly, regulatory B (Breg) cells have been

proposed in TME (Saze et al., 2013). Breg cells could produce TGF-β,
IL-10, and IL-35, facilitate Treg polarization and help

M2 macrophages and myeloid-derived suppressor cells (MDSCs),

leading to disturbing tumor antigen presentation and promoting

tumor proliferation. CD39 and CD73 on the surface of Breg cells

could hydrolyze ATP to adenosine and suppress the tumor death in

TME (Brossart, 2022; Flores-Borja and Blair, 2022). Therefore, the

role of B cells is a double-edged sword (Fridman et al., 2020).

B-based immunotherapies

Some studies have proved that the fusion of antigen peptides

loading on B cells can further enhance anti-tumor immune

efficacy. The CD40/CD40L pathway is also critical to adoptive

cell therapies with tumor antigen peptide-loaded B cells (Evans

et al., 1950; Wennhold et al., 2017). Furthermore, ACT with

CD40-activated B cells loaded with RNA encoding tumor antigen

or DNA encoding tumor antigen inhibited the progression of

melanoma and colorectal cancer (Gerloni et al., 2004; Colluru

and McNeel, 2016). B-cell receptor (BCR) on the surface of

B cells can directly process antigens and activate T cells. Thus,

researchers exploited this trait to edit a specific BCR toward

tumor antigens in vitro. The editing BCR strategies are attractive,

but they have are yet to be applied to treat tumors (Page et al.,

2021). Antibodies, targeting B cells, are mainly used to treat

hematological malignancy, such as anti-CD19 and anti-CD20,

which results in a conducive prognosis (NCT04160195), and

currently, relevant trials are on the way.

Migration phase

Activated T cells primarily eliminate tumor cells in TME. Hence,

activated T cells need to migrate from blood vessels to the

microenvironment with the influence of various molecules and

constructions. Vascular endothelial growth factor expressed by

tumor cells can promote tumor angiogenesis and inhibit the
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migration of activated T cells (Nagarsheth et al., 2017). Adhesion

molecules, including intercellular adhesion molecule-1 (ICAM-1)

and vascular cell adhesion molecule-1 (VCAM-1), could help T cells

to adhere to the vessel wall and migrate into TME (Lamplugh and

Fan, 2021). Recently, ectopic lymphoid aggregation has been

discovered in the tumor sites, which resembles secondary

lymphoid organs (SLOs), termed tertiary lymphoid structures

(TLSs) (Dieu-Nosjean et al., 2008). High endothelial venules

(HEVs), one of the components of TLS, can facilitate the

migration of immune cells into the tumor sites and accelerate

tumor cell destruction (Sautès-Fridman et al., 2019). Lymphoid

tissue-inducer cells (LTi), initiating SLOs formation, may enhance

the expression of adhesion molecules like VCAM1 and ICAM1, and

then stimulate HEV formation of TLS by expressing LTα1β2, which
could combine with LTβ. However, it is still unclear whether LTi cells
drive TLS formation (Jacquelot et al., 2021a; Schumacher and

Thommen, 2022).

Consequently, promoting immune cell migration into the

TME could be a usable strategy to enhance anti-tumor

immunity. Several studies have demonstrated that the

combination of anti-PD-L1 and antiangiogenic therapy can

facilitate intratumoral HEV formation and augment the efficacy

of immunotherapies (Allen et al., 2017; Johansson-Percival

et al., 2017). In addition, LTβR agonistic antibodies, which

binds LTα1β1 to induce HEVs, have been shown to boost the

efficacy of anti-VEGFR2 and anti-PD-L1 combination therapy

in a recalcitrant glioblastoma model (Allen et al., 2017;

Schumacher and Thommen, 2022). Targeting LIGHT

directly to tumor vasculature with vascular targeting peptides

(VTP) induced HEVs in various tumors, improved response to

ICB, and facilitated lymphocyte infiltration (Johansson-

Percival et al., 2017; He et al., 2018; He et al., 2020).

Intriguingly, this study has shown the depletion of Treg cells

could drive HEV formation (Colbeck et al., 2017). Therapeutic

induction of HEVs with ACT immunotherapy promotes

lymphocyte trafficking and enhances anti-tumor response,

which is a promising strategy (Lucas and Girard, 2021).

Effector phase

Activated T cells recognize tumor cancer antigens on tumor

cells by T-cell receptor (TCR) and release effector molecules to

eliminate tumor cells. In TME, immune cells and tumor cells

secrete and express various molecules to regulate tumor

progression and metastasis. Herein, we discussed how

immune cells affected tumor progression.

T cells

According to their phenotypes, T cells are primarily classified

into CD8+T cells and CD4+T cells. They play significant roles in

tumor immunotherapy by releasing a variety of molecules to

hamper tumor growth.

CD8+ T cells

When stimulated by tumor-specific antigen, CD8 + T cells

can secrete perforin and granzyme which can directly kill tumor

cells, or mediate the apoptosis of tumor cells by the Fas/FasL

signaling pathway (Hamann et al., 1997). After the initial antigen

stimulation is removed, CD8 + T cells can generate a series of

memory subsets under physiological conditions. Memory T- cells

are divided into four categories: Tmemory stem cell-like (TSCM)

(Gattinoni et al., 2017), central memory T (TCM), effector

memory T (TEM), and tissue-resident memory (TRM)

(Sallusto et al., 1999; Schenkel and Masopust, 2014). TSCM

cells mostly localize in the lymph nodes and have the capacity

for self-renewal. TCM cells can express the lymph node homing

molecules such as CCR7 and CD62L. TEM cells produce

integrins and chemokine receptors and traffic them into

various tissues (Masopust et al., 2001; Sallusto et al., 2004).

TCM cells and TEM cells could trigger immune activity in

different tissues, but TRM cells provide a more advanced

immune response (Yang and Kallies, 2021). In a mouse

model, the finding suggested that TRM cell deficiency resulted

in uncontrolled tumor growth with no change in the number of

CD8 effector cells. Researchers further found that their anti-

tumor capacity enhanced from 40% to more than 80% by

increasing the number of TRM cells in TME (Nizard et al.,

2017). Consequently, TRM cells are focused on gradually.

CD8+ TRM cells

CD8+ TRM cells were initially defined in infected tissues

such as the skin, lung, and intestine (Gebhardt et al., 2009;

Masopust et al., 2010; Purwar et al., 2011). Gradually, CD8+

TRM cells were found in TME and were associated with the

prognosis of tumor patients (Edwards et al., 2018; Savas et al.,

2018; Abdeljaoued et al., 2022; Anadon et al., 2022; Jin et al.,

2022; Smith, 2022). Different phenotypes are expressed by

CD8+ TRM cells to destroy tumor cells effectively. First,

CD103 is a characteristic marker for CD8+ TRM cells (Okla

et al., 2021). CD103+ TRM-like cells possess a cytotoxic

characteristic and secrete inflammatory cytokines such as

GZMB, TNF-α, IL-2, and IFN-γ (Ganesan et al., 2017). They

could also combine with E-cadherin on the surface of tumor

cells to retain TRM in the tissue (Zhang and Bevan, 2013;

Ganesan et al., 2017; Gauthier et al., 2017; Hoffmann and

Schon, 2021). The expression of CD103 is highly

heterogeneous. For instance, CD103 is essential in the skin,

lung, and intestine (Gebhardt et al., 2009; Ganesan et al., 2017;

Dumauthioz et al., 2018), but it is dispensable for the liver
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(Ghilas et al., 2020). CD103+ CD8+ TRM cells were associated

with improved survival in cancer patients (Edwards et al., 2018;

Savas et al., 2018; Hewavisenti et al., 2020; Shen et al., 2021;

Huang et al., 2022b; Jin et al., 2022). For example, CD103+

CD8+ TRM cells infiltrating into TME were associated with a

better adjuvant therapeutic benefit and were considered as an

ideal prognostic biomarker in muscle-invasive bladder cancer.

Second, CD8+ TRM cells are anchored in the tumor lesions by

CD49a (VLA-1 ), which binds to collagen in the extracellular

matrix (Roberts et al., 1999; Cheuk et al., 2017). When anti-

VLA-1 antibodies were applied to treat patients with tumors,

the number of TRM cells declined in TME (Sandoval et al.,

2013). CD49a+CD8+ TRM cells produce IFN-γ to inhibit

tumor progression in a melanoma mouse model, and

alleviate inflammatory diseases (Cheuk et al., 2017; Le Floc’h

et al., 2007; Murray et al., 2016). Moreover, CD49a also

enhances the frequency of antigen encounters (Bromley

et al., 2020). Third, CD69, a C-type lectin, effectively limits

CD8+ TRM cell circulation by reducing the expression of

sphingosine-1 phosphate receptor-1 (S1PR1), which

facilitates the migration of TRM cells (Mackay et al., 1950;

Bankovich et al., 2010; Skon et al., 2013). By the way, CD69 once

was presumed as a marker of TRM cells, but CD69− TRM cells

have also been reported (Steinert et al., 2015). CD8+ TRM cells

also express chemokines like CXCR6, which promotes cell

retention in the tumor sites and unleash effector functions in

ovarian cancer (Muthuswamy et al., 2021a; Muthuswamy et al.,

2021b). Interestingly, the level of TGF-β in TEM is required for

the expression of CD103 and CD49a on the surface of CD8+

TRM cells in the lung, skin, and intestine (Zhang and Bevan,

2013; Boutet et al., 2016; Nath et al., 2019; Qiu et al., 2021a;

Barros et al., 2022). TGF-β also inhibits the expression of

S1PR1 through downregulating the transcription factor

Krüppel-like factor 2 (KLF2) (Skon et al., 2013). Moreover,

the heterogeneity of TRM cells depends on the regulation of

TGF-β signaling. These findings suggested that TGF-β signaling
might impact the production of TRM cells and the cytotoxicity

of CD8+T cells (Mackay et al., 2013; Christo et al., 2021; Yang

and Kallies, 2021). However, it is well known that TGF-β is a

typical inhibitory cytokine to suppress the anti-tumor immune

response. Thus, more research into the TGF-β signal pathway is
required (Qiu et al., 2021b). In addition, CD8+ TRM cells

express various immune checkpoint proteins, such as CTLA-4,

PD-1, and PD-L1. These molecules are linked to CD8+T cell

exhaustion (Gabriely et al., 2017; Philip and Schietinger, 2022).

CD39 on the surface of CD8+ TRM cells also promotes tumor

growth (Guo et al., 2022).

For heterogeneity of CD8+ TRM cells, researchers

hypothesized several models of its differentiation, which

included a separate lineage, self-maintenance, “one cell, one

fate,”, and “one cell, multiple fates”. However, a plethora of

studies have manifested that phenotypes of CD8+ TRM cells

were specific to different tumor types, and CD8+ TRM cells

were regarded as tissue-tailored (Amsen et al., 2018;

Enamorado et al., 2018; Okla et al., 2021; Konjar et al.,

2022). Furthermore, phenotypes of CD8+ TRM cells are

inconsistent between lung cancers and healthy lung tissues

(Marceaux et al., 2021). These findings have a significant

impact on immunotherapy for various tumors. We also

concluded the function of different phenotypes of CD8+

TRM cells (Table1). Of note, although TRM cells play a

crucial role in autoimmune diseases and viral infections,

they are still in infancy in human tumors.

The CD8+ TRM-based targeted therapies

According to the known functions of TRM cells,

researchers have proposed some approaches to fortify the

function of TRM cells and enhance anti-tumor response.

First, the treatment with PD-1 inhibitors enhanced the

capacity of CD8+ TRM cells in melanoma, lung cancer,

and esophageal cancer (Edwards et al., 2018; Han et al.,

2020; Abdeljaoued et al., 2022). Furthermore, in the

preclinical melanoma model, using the combination of

CD39 inhibitor and ICB made tumor growth retardation

(Sade-Feldman et al., 2018). Recently, a bispecific CD28H/

PD-L1 antibody has been developed, which could increase the

number of TRM cells and enhance anti-tumor immunity

(Ramaswamy et al., 2022). Second, vaccines have been

designed to treat tumors. In a preclinical cervical cancer

model, the HPV vaccine promoted CD103 expression on

the surface of TRM cells and effectively prolonged the

survival (Sandoval et al., 2013; Komdeur et al., 2017). By

the same token, using STxB-E7 vaccination enhanced the

number of TRM cells and delayed tumor growth in

HNSCC (Mondini et al., 2015). After using Polypoly-ICLC-

assisted tumor lysate vaccine to treat patients with low-grade

gliomas, the drugs acquired a good efficacy and the number of

CD8+ TRM cells increased in TME (NCT02549833).

Treatment with cervicovaginal vaccination with

HPV16 E7aa4362 peptide/CPG-1826 could induce the

production of CD103+ CD8+ TRM cells, and; subsequently,

the number of CD8+ T cells increased, resulting in

suppressing tumor progression in the genital tract (Huang

et al., 2022b). Vaccines were also applied to generate TRM

cells in mouse models of various infections (Zens et al., 2016;

Yang and Kallies, 2021; Zheng andWakim, 2021). Researchers

also attempted to utilize ACT to hinder tumor growth (Lim

and June 2017). Using the adoptive transfer of expanded

CXCR6+ TRM cells has acquired the benefits in

gastrointestinal cancer (Abdeljaoued et al., 2022).

Reprogramming DCs to induce CD103 expression of CD8+

TRM cells has acquired obvious efficacy in a preclinical model

of breast cancer (Wu et al., 2014). In a melanoma mouse

model, short-term depletion of CD11c+ cells not only
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facilitated TRM cell trafficking but also was favorable for long-

term TRM cell maintenance (Vella et al., 2021). Of note, few

clinical trials have been performed to dissect TRM cell

functions in different tumors (Craig et al., 2020). In a

nutshell, CD8+ TRM cells potentially serve as a critical

role, but some challenges remain. For instance, what are

the mechanisms by which TRM cells enhance anti-tumor

immunity? Are the phenotypes consistent between normal

tissues and tumor cells? Which phenotypes could define

TRM? How are the TRM cells maintained and replenished

in TME? Therefore, these problems will trigger intense

research.

CD4+ T cells

CD4+ T cells play a pivotal role in mediating adaptive

immunity by various mechanisms. Over the past decades,

TABLE 1 The rRole of TRM cells in cancer patients.

Cancer types Phenotype The function of TRM
cell

References

Lung cancer CD103, and CD8 High CD103+ CD8+ TRM tumor infiltration boosts
anti-tumor activity

Tarantino et al. (2022)

CD103, and CD8 CD8+TRM tumor infiltration reduces the risk of
metastasis

Mehdizadeh et al. (2021)

CD103, and CD8 CD8+TRM in TLS prolongs the survival (p < 0.05) Martinez and Moon, (2019)

CD8, CD103, CD69, and
CD49a

CD8+ TRM cell infiltration is positively associated with a
better prognosis

Burnet. (1970); Dunn et al. (2002); Whiteside. (2012);
Wilczyński and Nowak. (2012); Duhan and Smyth.
(2021); Wada et al. (2022)

Melanoma CD69, CD8, and CXCR6 Tumor-specific TRMs have a role in limiting the
invasion of the tumor into the other tissues

Munari et al. (2021)

CD39, CD103, and PD-1 High CD39+ TRM infiltration is associated with a better
outcome

Nagarsheth et al. (2017)

CD8, CD103, and CD69 CD8+ TRMs enhance anti-tumor response Lamplugh and Fan, (2021)

CD8, CD103, CD69,
CD49a, PD-1, and LAG-3

A high proportion of CD8+ TRMs are positively
associated with the clinical outcome

Davis et al. (2015); Goossens et al. (2019); Petty et al.
(2019)

Bladder cancer CD103, and CD8 High-level CD103+CD8+TRM cell infiltration enhances
the efficacy of immunotherapy

Eryn and Ott. (2021); Tarantino et al. (2022)

CD103, and CD8 TRM cells infiltrating the tumors are linked to lower
tumor stage

Lu et al. (2014)

CD103, CD8, CD69, and
CD49a

The high density of CD8+ TRMs is positively associated
with a good prognosis

Kvedaraite and Ginhoux, (2022)

Ovarian cancer CD3, CD8 CD103, and
CD69

CD103+ CD8+ TRMs in tumor site enhance anti-tumor
immunity

Bogunovic et al. (2009); Böttcher et al. (2018)

CD103, CD8, PD-1,
and CD3

High proportions of CD8+ TRMs have a positive
correlation with the prognosis

Roberts et al. (2016); Villani et al. (2017); Barry et al.
(2018)

Breast cancer CD103, and CD8 CD8+ TRM infiltration reduces the release rate (RFS; p =
0.002)

Matsuo et al. (2018)

CD8, CD103, CD69, and
PD-1

CD8+CD103+ TRM infiltration is associated with a
favorable prognosis

(Sánchez-Paulete et al., 2018; Cancel et al., 2019; Ferris
et al., 2020)

Pancreatic ductal
adenocarcinoma

CD8, and CD103 PD-1 Increased numbers of CD8+ TRMs are associated a
better prognosis (DFS: p = 0.22, OS: p = 0.009)

Schoenberger et al. (1998)

Liver cancer CD8, and CD103 The number of CD8+ TRMs is positively correlated with
the prognosis (OS: p < 0.0001)

de Mingo Pulido et al. (2018)

Gastric cancer CD8, and CD103 Low levels of CD8+ CD103+ TRM cells are associated
with a worse prognosis

Chow et al. (2019)

CD103, CD69, PD-1,
TIGIT, and CD39

CD8+ TRMs amplify anti-tumor response Stratikos et al. (2014)

cutaneous squamous
cell carcinoma

CD8, and CD103 CD8+ CD103+ TRM cells are negatively associated
with OS

Garris et al. (2018)

Head and neck cancer CD8, and CD103 High CD103+ cell infiltration is associated with a good
prognosis (OS: p = 0.0014, DSS: p = 0.0015, DFS: p =
0.0018)

Mikucki et al. (2015)

DFS, disease-free survival; DSS, disease-specific survival; OS, overall survival; RFS, relapse-free survival.
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extensive research suggested that CD4 +T cells could be mainly

divided into T-helper 1 (Th1) cells, T-helper 2 (Th2) cells,

T-helper 17 (Th17) cells, follicular helper T cells, and

regulatory T cells. Th1 cells secrete IL-2 and IFN-γ. IL-2

promotes CD8+ T cell proliferation and activation, as well as

the development of CD8+ memory cells (Kim et al., 2006;

Williams et al., 2006). IFN-γ facilitates the process of antigen

presentation (Dong, 2021). Th2 cells produce IL-4, IL-5, and IL-

10 to exert their function. For example, after pathogens have been

cleared, IL-10 inhibits innate immunity and function of Th1 cells,

which could maintain host immune homeostasis (Couper et al.,

1950). Th17 cells principally facilitate the death of extracellular

bacteria and fungi (Luckheeram et al., 2012). Because of the

complicated function of Tfh cells and Treg cells in anti-tumor

immunity, thus, we mainly discussed the roles of Tfh cells and

Treg cells.

Follicular helper T cells

Tfh cells, accumulated in the GCs of SLO and TLS, express a

variety of phenotypes which are essential for the formation and

maturation of the GCs (Asrir et al., 2017; Ribeiro et al., 2022;

Schmidleithner and Feuerer, 2022) and improve the prognosis in

breast cancer, colorectal cancer, and pancreatic ductal

adenocarcinoma (PDAC) (Yamaguchi et al., 2020; Lin et al.,

2021; Noël et al., 2021). IL-21 secreted by Tfh cells activates the

STAT3 signaling pathway to induce the expression of

transcription factor B cell lymphoma 6 (BCL6) and participate

in the differentiation of Tfh cells (Nurieva et al., 2008; Linterman

et al., 2010; Lüthje et al., 2012). IL-21 also plays a pivotal role in

triggering CD8+T cell function and tumor regression in the lung

adenocarcinoma model (Cui et al., 2021). BCL6 is the main

transcription factor which upregulates the expression of

CD28 and CXCR5, promotes the differentiation of Tfh cells

through repressing Blimp1, and is important for GC to respond

to tumor antigens (Nurieva et al., 2009; Yu et al., 2009; Ciucci

et al., 2022). Of note, CD28 is required for the differentiation of

Tfh cells. If CD28 was deficient in T cells or reduced by its

inhibitor, the differentiation of Tfh cells was blocked. Tfh cells

could express CTLA-4, which binds to CD80/CD86 and leads to

the inhibition of CD28 (Hart and Laufer, 2022). Tfh cells are

recruited into the B cell zone to form GC by expressing CXCR5,

which combines with CXCL13 + B cells (Kim et al., 2001). CD40L

on the surface of Tfh cells activates B cells and sustains the

survival of GC B cells by binding CD40 (Vinuesa et al., 2016). Tfh

cells also express ICOS. ICOS binding to its ligand ICOSL is

essential for the survival of GC B cells and the maintenance of

Tfh cell phenotypes by reducing the Kruppel-like factor 2

(Liu et al., 2015; Weber et al., 2015). In addition, other

cytokines have different roles to affect Tfh functions. High-

level IL-2 secreted by Th1 cells mediates the impairment of

Tfh function through activating STAT5 signaling, whereas IL-6

secreted by DCs inversely prevents STAT5 from the combination

of the IL-2rb locus (Hart and Laufer, 2022). Astoundingly, TGF-β
in humans plays a protective role for Tfh cells, which activates

STAT3 and STAT4 by interacting with IL-12 and IL-23, and

silences genomic organizer SATB1 to aid Tfh cell differentiation

(Kurata et al., 2021; Chaurio et al., 2022; Schmidleithner and

Feuerer, 2022). However, it is a negative regulator in mice, and

using TGF-β inhibitors reduces Tfh accumulation in the tumor

sites (McCarron and Marie, 2014; Niogret et al., 2021). Although

Tfh cells have been explored, it is deficient for the mechanism of

Tfh differentiation and the function of GCs in various tumors.

Tfh-related immunotherapies

Recently, studies have found that the presence of Tfh cells is

important for upregulating CD8-dependent anti-tumor

immunity and improving the benefit of anti-PD-L1 therapy in

tumors (Chen et al., 2021; Niogret et al., 2021). Immune

checkpoint inhibitors also facilitated Tfh cells to activate

B cells and further improved the anti-tumor response in

specific breast models (Hollern et al., 2019). In addition, anti-

CXCR5 CAR-T cells were applied to treat B cell Nonnon-

Hodgkin’s lymphoma (B-NHLs), which eliminated B-NHL

cells and lymphoma-supportive Tfh cells (Bunse et al., 2021).

In a study, targeting Bcl6 – Blimp1 axis has been proposed to

facilitate T cell differentiation, but the drug has not been

generated (Ciucci et al., 2022). These data provide a treatment

strategy for Tfh cells, but it is required to further investigation for

the role of Tfh cells in human tumors.

Treg cells

Treg cells, another subset of CD4+ T cells, are responsible

for immunosuppression and help tumor cells avoid immune

surveillance. Tregs can be divided into three populations: naïve

Tregs (FOXP3low, CD25low, and CD45RA+), eTregs

(FOXP3high, CD25high, and CD45RA-), non-Tregs

(FOXP3low, CD25low, and CD45RA-) based on themselves

their phenotypes. The eTreg acts as a vigorous suppressor,

whereas non-Tregs are immunostimulatory and secrete IFN-γ
(Miyara et al., 2009). Emerging evidence indicated that eTregs

resulted in a poor prognosis, but non-Tregs infiltration in

colorectal cancer (CRC) was associated with a favorable

outcome (Saito et al., 2016). Thus, a challenge was posed

that distinguished the types of FOXP3+ Tregs in tumors

(Kim et al., 2020). Further analysis found that the prognostic

value of intratumoral Tregs in various tumors is inconsistent

(Shan et al., 2022). In order to identify Tregs and dissect their

functions, we must understand the phenotypes and cytokines

expressed by Tregs. FOXP3 is a credible marker of Treg cells,

and is essential for maintaining the function of Treg cells. It is
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reported that loss of FOXP3 expression could impair the

stability of Tregs and transform Tregs into effector cells (Qu

et al., 2022). It is intriguing that CD25 binding to IL-2 could

activate STAT5 signaling and then induce expression of

FOXP3 to inhibit CD8+ T cell response (Chinen et al.,

2016). A study has also shown that CD45RA + Tregs play a

suppressive role and are associated with an unfavorable

prognosis in CRC (Saito et al., 2016). Cytokines secreted by

Tregs, such as IL-10, IL-35, and TGF-β, are key factors in

inhibiting the function of NK cells and effector T cells and

promoting tumor progression (Qu et al., 2022). Increased IL-10

and IL-35 have been associated with worse outcomes in cancer

patients (Zhao et al., 2015; Turnis et al., 2016). IL-35 also elicits

the expression of inhibitory molecules on Teffs like TIM-3 and

CTLA-4, which induces Teffs into the exhaustion status (Turnis

et al., 2016; Sawant et al., 2019). IL-10 impairs CD8+ T cell

function, and inhibits the expression of MHC II molecules and

APCs activation (Wang et al., 2019). TGF-β is a crucial

mediator for immunosuppression in the TME, which fosters

the expression of FOXP3 on Tregs (Turnis et al., 2016; Colak

and Ten Dijke, 2017), and induces the conversion of Th17 cells

into Tregs, resulting in immune tolerance (Gagliani et al.,

2015). Notably, Tregs could release GZMB and perforin to

directly kill effector T cells and NK cells in TME (Cao et al.,

2007). Furthermore, antigen-specific Tregs could disturb the

combination of the effector T cells and cognate antigen by

interacting with APC (Qu et al., 2022). Tregs also express

CD39 and CD73, resulting in adenosine aggregation in TME

(Allard et al., 2020). Additionally, CCR4 is the most studied

receptor that can recruit Tregs into TME and promote tumor

growth by binding to CCL22 or CCL17 (Gobert et al., 2009).

Tregs express immune checkpoint molecules to bolster their

function, such as TIM-3 and CTLA-4 (Dixon et al., 2021).

Treg-based targeted therapies

Based on these immunosuppressive mechanisms of Tregs,

researchers have proposed numerous noteworthy therapeutic

strategies. First, the depletion of Tregs via anti-CD25 mAb

(daclizumab) and toxin conjugated anti-IL-2 (denileukin

diftitox) induced tumor regression and prolonged disease-

free survival (DFS) in tumors (Solomon et al., 2020;

Nishikawa and Koyama, 2021). Despite the fact that anti-

CD25 mAb could deplete Tregs in melanoma, it did not

elicit an anti-tumor immune response (Luke et al., 2016).

The anti-CD25 antibody, RG6292, designed to deplete Tregs

without disturbing IL-2 signaling on effector T cells, has been

applied in a mouse model (Solomon et al., 2020) and is

currently being tested in human tumors (NCT04158583).

Furthermore, immune checkpoint inhibitors (ICIs) like anti-

CTLA-4 antibody or anti-TIGIT antibody combined with the

blockade of CD25 potently resulted in the depletion of Tregs

and enhanced anti-tumor responses in a mouse model (Arce

Vargas et al., 2017). Near-infrared photoimmunotherapy (NIR)

was also used to precisely deplete Tregs in TME (Sato et al.,

2016). Second, It has been reported that using AZD8701, which

targets FOXP3 on Tregs, reduces the number of

FOXP3 expression in mouse models (Sinclair et al., 2019),

and its clinical trial is ongoing (NCT04504669). Epigenetic

modifiers have been designed to target genes that regulates

FOXP3 expression on Tregs, leading to the depletion of Tregs.

For instance, targeting Treg-specific demethylated region

(TSDR) and histone deacetylation reduced

FOXP3 expression on Tregs (Ma et al., 2018; Nagai et al.,

2019). Third, CCR4 blockade may reduce the accumulation

of Tregs in the tumor sites and improve therapeutic benefits in

different types of cancers. Mogamulizumab, a defucosylated

anti-CCR4 mAb, has been approved to treat patients with

Sézary syndrome, a cutaneous T cell lymphoma. It has been

tested for the clinical response in phase 1 clinical trials in

various solid tumors (Shan et al., 2022). FLX475, another

CCR4 inhibitor, is currently being evaluated alone or in

combination with anti-PD-1 and anti-CTLA-4 for the

treatment of advanced tumors (Shan et al., 2022). TNFR2-

expressing Tregs play a potently immunosuppressive role in

human tumors, so targeting TNFR2 has been generated such as

APX601, which is tested and resulted in reducing Treg

frequency and hindering Treg function in tumors (Hariyanto

et al., 2022). Moreover, TGF-β receptor inhibitors have

been investigated. TGF-β-R inhibitors (Galunisertib)

suppress Treg function and control tumor growth

(Holmgaard et al., 2018). The combination therapy of

galunisertib and ICIs further reduced Treg numbers in a

mouse melanoma model, and this approach is being

investigated in human tumor (Ravi et al., 2018).

Glycoprotein-A repetitions predominant (GARP) could

facilitate the secretion of TGF-β and Treg function in

preclinical models. Using the anti-GARP antibody, S1055a,

could lead to the depletion of Tregs and activate effector

T cells in preclinical models, and this drug is being

investigated in a clinical trial (Shan et al., 2022).

Besides, TGF-β-responsive CAR-T cells could prevent naïve

T cells from differentiating into Tregs and promote anti-tumor

immunity (Zhang et al., 1950). DC/4T1Adv-TGF-β-R fusion

vaccine could inhibit tumor-derived TGF-β, which leads to

the reduction of Tregs and favor anti-tumor immunity in the

mouse model (Hou et al., 2018). In HPV positive cancers, a

clinical trial, treatment with HPV vaccination alone or in

combination with anti-PD-L1/TGF-β Trap (M7824), is

underway (NCT04432597). Another clinical trial, using a

TGF-β receptor ectodomain-IgG Fc fusion protein

inhibitor of TGF-β in solid tumors, also is being investigated

(NCT03834662). In brief, targeting T subsets is important for

cancer immunotherapy. Despite enormous progress in the field,

a further analysis needs to be conducted.
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Tertiary lymphoid structures

Tertiary lymphoid structures which have been already

mentioned are defined by an inner B-cell zone and an outer

T-cell zone. B cells are indispensable for TLSs. Currently,

activation of B cells in infections and autoimmune diseases

has been studied, but little research has been performed in

different cancers (Cogné et al., 2022). Naïve B cells could be

activated through the interactions between BCR and tumor

antigens, upon activated CD40 signaling (Cancro and

Tomayko, 2021). In PDAC, immature B cells present in TLS

only express IgD, and mature B cells express IgG and IgM

(Andrew et al., 2021)). Likewise, in lung cancer, naive B cells

express IgD, but mature B cells express IgD-CD38+ CD138+

(plasma cell) (Germain et al., 2014). These findings indicate B cell

activation maybe undergo class-switch recombination (CSR).

The activated induced deaminase (AID) expressed by B cells

is required for CSR and could promote somatic hypermutation

(SHM) (Dieu-Nosjean et al., 2016; Lehmann-Horn et al., 2016).

Isotype class switching depends on different cytokines released

by Tfh cells. For instance, upon the presence of IFN-γ in GC,

IgG2a and IgG3 were expressed by B cells, but IgG2a and

IgG3 were also converted to IgE mediated by IL-4 (Kinker

et al., 2021). IgG and IgA antibodies secreted by plasma cells

could recognize tumor antigens and control tumor cell growth. It

is reported that high-level IgG antibody in vitro was correlated

with a worse prognosis in breast cancer patients, but IgA

antibody in vitro that reacts to tumor antigens is associated

with TLS presence in TME (Garaud et al., 2018). In another

study, a high-level IgG antibody is associated with a better

immune response. Moreover, supernatants (SNs), including

IgG and IgA antibodies, were used to evaluate the immune

responses to 33 tumor antigens, and the results were different

(Germain et al., 2014). Thus, the role of antibodies produced by

GC B cells must be further explored. For the TLS formation, it is

currently being explored, but researchers have demonstrated that

the combination of 5-Aminoleuvulinic aminoleuvulinic acid-

photodynamic therapy (ALA-PDT) and anti-PD-L1 mAb

could promote the TLS formation and then enhance the

clinical outcome in cutaneous squamous cell carcinoma (Zeng

et al., 2022). Another study has also reported that TGFB1 mRNA

expression was also associated with TLS formation in ccRCC

(Takahara et al., 2022). However, the research has shown that

tumor-associated sensory neurons are negatively correlated with

mature tertiary lymphoid-like structures and HEVs (Vats et al.,

2022).

Growing evidence showed that TLSs were associated with

clinical outcomes of cancer patients (Schumacher and

Thommen, 2022). Although TLSs were frequently correlated

with a favorable prognosis in human tumors, but some

studied have reported that TLSs were also linked to a negative

correlation with clinical outcomes in hepatocellular carcinoma

(HCC) and clear-cell renal carcinoma (ccRCC) (Finkin et al.,

2015; Jacquelot et al., 2021a) or no impact on OS in melanoma

and prostate cancer (Ladányi et al., 2014; García-Hernández

et al., 2017). Moreover, the prognostic value of TLSs is

inconsistent with the same tumor types, such as HCC and

breast cancer (Liu et al., 2017; Calderaro et al., 2019). These

inconsistencies might be explained by TLS heterogeneity,

including TLS maturation state, location or detected

phenotypes in tumors (Jacquelot et al., 2021a) (Figure 1).

With respect to TLS location, the prognostic values differ

from tumor types. The location and maturity of TLS

contribute to the difference in HCC prognosis. Compared to

TLS situated in stromal tumor, the intratumoral and peritumoral

mature TLSs were associated with a favorable prognosis

(Calderaro et al., 2019). Pancreatic cancer with intratumoral

TLS signified a better prognostic value and exhibited a lower

infiltration of immunosuppressive cells and higher infiltration of

T and B cells compared to peritumoral TLS (Hiraoka et al., 2015).

TLSs could also predict the prognosis of patients with tumor

metastases. In melanoma and breast cancer, no representative

phenotypes of TLS was observed in brain metastases (Cipponi

et al., 2012; Lee et al., 2019). Besides, TLS density was related to

primary tumor types in metastatic organs (Remark et al., 2013;

Schweiger et al., 2016; Montfort et al., 2017; Lee et al., 2019). For

example, TLS levels were found to be high in patients with lung

metastases from colorectal and breast cancers. With regard to

TLS maturation, TLS maturation were divided into three types:

early, primary-, and secondary follicle–like TLS (Posch et al.,

2018). The different degrees of maturation of TLS denoted

inconsistent prognostic values in CRC, because early TLS

without GCs had almost no impact on clinical outcome

compared to mature TLS which signified a better outcome (Di

Caro et al., 2014; Posch et al., 2018). In patients with lung

squamous cell carcinoma, both early and primary TLSs did

not affect patient survival, and only secondary TLSs exerted a

favorable role in the prognosis (Siliņa et al., 2018). In

preneoplastic hepatic lesions, immature TLSs did not

effectively inhibit tumor cell growth (Meylan et al., 2020).

Immature TLS without dendritic cell lysosome-associated

membrane protein (DC-LAMP) exhibited a worse prognosis

than existing TLS with DC-LAMP in NSCLC and ccRCC

(Giraldo et al., 2015) 243). However, whether TLS is mature

or not, its presence is associated with positive outcomes in oral

squamous cell carcinoma (Li et al., 2020a). Remarkably, the most

important factor should be the components of TLSs in various

tumors. Tfh cells and B cells could express various chemokines to

promote TLS formation. The presence of HEVs aids immune

cells migration. These components have the potential to improve

clinical outcomes. However, Tregs, the component of TLSs, play

an immunosuppressive role and result in tumor growth

(Martinet et al., 2012; Gu-Trantien et al., 2017; Ishigami et al.,

2019). As a side note, a study has supposed that follicular Treg

(Tfr) cells might be a key factor to reduce the number of

CD8+T cells in adenocarcinoma (Wang et al., 2022).
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Moreover, it was reported that the plasma cells are crucial for the

efficacy of ICB in the presence of TLS, but the molecular and

cellular mechanisms for promoting plasma cells to response ICB

are still unclear. Thus, the role of plasma cells in presence of TLS

needs to be further explored (Teillaud and Dieu-Nosjean, 2022).

TLS with high levels of M2 macrophages and CD4+THC cells

(CD3+CD8−Bcl6− ) correlates with tumor progression and a

higher recurrence rate in patients with CRC (Yamaguchi et al.,

2020). In NSCLC, the subgroup with low-level DC-LAMP + DCs

and high-level CD8+T cells reduced the likelihood of survival,

suggesting the importance of DC-LAMP + DCs in TLS (Goc

et al., 2014). Noteworthily, researchers have also reported that

TRM could promote TLS maturation, and the number of TRM

was more abundant in mature TLS in patients with lung

adenocarcinoma. Furthermore, high-level TRM within TLS,

especially CD103+ TRM, was associated with a better

prognosis (Yang et al., 2022; Zhao et al., 2022). However, the

components still need to be explored in the future. Some studies

also proposed that the density of TLSs varied at different stages of

the tumor. TLSs were less abundant in T3 and T4 stages

compared to T1 and T2 stages of oral squamous cell

carcinoma, but TLSs were more abundant in advanced stages

(II-IV) than in stage I gastric cancer and high-grade breast cancer

(Sautès-Fridman et al., 2019). Another study also reported that

the number of TLS might be associated with the prognosis and

could be considered as a target for treating patients with urachal

carcinoma (Zhang et al., 2022a). Based on these conclusions, it is

urgent to precisely understand the formation, components, and

mechanism of TLS. Researchers have hypothesized the formation

and maturation process of TLS in CRC and NSCLC, respectively,

but there is a lack of evidence to support it (Meng et al., 2021).

Hence, a comprehensive analysis of TLS is an area of immense

interest.

Inducing or improving TLS function not only enhances

anti-tumor responses, but also promotes the expansion of

autoreactive T and B cells. First, the presence of intratumoral

TLS has been regarded as a favorable marker of the

responsiveness of ICB therapy in lung cancer, ccRCC,

bladder cancer, urothelial carcinoma, melanoma and soft-

tissue sarcoma (Groeneveld et al., 1990; Petitprez et al.,

2020; van Dijk et al., 2020; Voabil et al., 2021).

Accordingly, ICB increased the density of TLS or induced

TLS formation in the tumor sites (Rita et al., 2020). Besides,

ICB therapy combined with CXCL13 facilitated immune cell

FIGURE 1
Patients with cancer have different prognosis due to TLS heterogeneity. Compared to stromal TLS, intratumoral or both intratumoral and
peritumoral mature TLSs were associated with a better prognosis in different tumors. TLSs with GCs have been shown to kill tumor cells more
effectively than immature TLS. PDAC: pancreatic ductal adenocarcinoma; HCC: hepatocellular carcinoma; CRC: colorectal cancer; ccRCC: clear
cell renal cell carcinomas; DC-LAMP: Dendritic dendritic Cell cell Lysosomelysosome-–Associated associated Membrane membrane
Proteinprotein; FDC: follicular dendritic cells; HEV: high endothelial venules.
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infiltration and TLS formation (Hsieh et al., 2022). Second,

therapeutic vaccination also induced TLS formation in

specific tumors. For instance, therapeutic vaccination

targeting HPV16 and HPV18 induced TLS formation

compared to non-vaccinated patients in high-grade cervical

intraepithelial neoplasia (CIN2/3) (Maldonado et al., 2014).

In PDAC, a specific vaccine, an irradiated, allogeneic

granulocyte–macrophage colony-stimulating

factor–secreting pancreatic tumor vaccine (GVAX), in

combination with cyclophosphamide, was used to elicit TLS

formation via suppressing the Treg pathway and activating

the Th17 cell pathway. Lastly, the induction of HEV has

already been elaborated (Lutz et al., 2014). To sum up, the

role of TLS has been stated above. Thus, it is worthy of a

comprehensive investigation of TLS, including the formation

of TLS, the mechanisms of controlling tumor progression, and

the interactions of TLS and immunotherapies, even the

strategies for targeting TLS in TME.

Innate lymphoid cells

Innate lymphoid cells (ILCs) are an important part of the

immune system to defend against tumor cells on the front line.

ILCs are divided into five categories on the basis of cytokines

and specific transcription factors, including natural killer (NK)

cells, lymphoid tissue inducers, helper ILC1s, helper ILC2s, and

helper ILC3s (Spits et al., 2013; Vivier et al., 2018). These cells,

which lacks antigen-specific receptors, have different functions

through secreting cytokines or activating specific signaling

pathways.

Natural killer cells

NK cells have the potential to mediate anti-tumor

immunity via directly or indirectly killing tumor cells. NK

cells can be defined by the expression of CD16 and

CD56 markers, but somatically rearranged antigen

receptors like TCR is scarce (Myers and Miller, 2021;

Stefania et al., 2021). Accordingly, NK cells are categorized

into two subsets: CD56brightCD16- and CD56dimCD16+ NK

cells. CD56bright NK cells not only release a variety of

cytokines, but also interact with various molecules secreted

by other immune cells (Fehniger et al., 1950; Cooper et al.,

2001; Wagner et al., 2017a). CD56dimCD16+ NK cells rapidly

mediate antibody-dependent cellular cytotoxicity (ADCC)

through secreting granzyme and perforin (Bryceson et al.,

2006; Stabile et al., 2015; Voskoboinik et al., 2015; Freud et al.,

2017; Bald et al., 2019; Prager et al., 2019). With respect to the

cytotoxicity of NK cells, the cytotoxicity receptors exert a

powerful influence, including CD16 and the natural

cytotoxicity receptor family, such as NKp30, NKp40,

NKp44, and NKp46. CD16 is the strongest activating

receptor and a trigger to ADCC without the assistance of

other receptors (Bournazos et al., 2017). The natural

cytotoxicity receptor family combined with tumor-

associated ligands to remove malignant cells (Kruse et al.,

2014; Barrow et al., 2019; Karagiannis and Kim, 2021).

NKG2D is another important activating receptor, which

recognizes MHC class I chain–related proteins sequence A

(MICA) and MICB and then promotes the production of IFN-

γ (Zompi et al., 2003; Raulet et al., 2013). NKG2D also

interacts with transmembrane adaptor protein DAP10 to

enhance the cell cytotoxicity (Sivori et al., 2021). Of note,

soluble NKG2D ligands released by tumor cells have been

reported to correlate with poor outcomes (Lanier, 2015;

Ferrari de Andrade et al., 2018). Likewise, soluble

NKp30 ligand from tumor cells promoted tumor

progression and metastasis (Semeraro et al., 2015). On the

surface of NK cells, inhibitory receptors also are expressed,

which contains immunoreceptor tyrosine-based inhibitory

motifs (ITIMs) (Myers and Miller, 2021). The inhibitory

KIRs (iKIRs) recognize and bind to class I HLA molecules

to hinder activating signals and impair NK cell functions

(Guillerey et al., 2016; Chiossone et al., 2018). NKG2A/

CD94 heterodimers combine with HLA-E molecules to

impede their cytolytic activity and might assist tumor cells

to evade immune surveillance. NKG2C/CD94 heterodimers,

on the other hand, activate NK cells by binding to HLA-E, and

their activation is dependent on NKG2A (Shifrin et al., 2014;

Sivori et al., 2019; Myers and Miller, 2021). As a side note, the

KIRs have both activating and inhibitory functions (Sivori

et al., 2021). As mentioned previously, NK cells promote anti-

tumor immunity through releasing IFN-γ, TNF-α, granzymes

and perforins, but they could transdifferentiate into helper

ILC1s (hILC1s ) under activated TGF-β signaling, resulting in
impairing NK cell-mediated tumor control (Cortez et al.,

2017; Gao et al., 2017; Cuff et al., 2019; Jacquelot et al.,

2022). Besides, IL-15 signaling also triggers NK cells to

convert into hILC1-like cells in head and neck cancer, but

whether hILC1 cells can differentiate into NK cells is still

unclear (Jacquelot et al., 2022). NK cell cytotoxicity was

associated with clinical outcomes of cancer patients. Some

studies have demonstrated an enhanced prognosis with

tumor-associated NK cells in CRC (Tartter et al., 1960),

renal cancer (Eckl et al., 2012; Chiossone et al., 2018),

melanoma (Messaoudene et al., 2016; Cursons et al., 2019),

gastric cancer (Du and Wei, 2018), and HCC (Zhang et al.,

2017a). However, NK cell infiltration exerts a negative

influence on the prognosis in NSCLC (Platonova et al.,

2011), breast cancer (Mamessier et al., 2011; Liu et al.,

2021a), and renal cell carcinoma (Schleypen et al., 2003).

These paradoxical observations are mainly based on the

level expression of receptors or production of functional

molecules.
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Helper ILC1

Both hILC1s and NK cells express secrete IFN-γ, TNF-α, and
transcription factor T-bet, but hILC1s do not depend on Eomes

and have lower cytotoxicity (Bernink et al., 2013; Kim et al.,

2021). Based on these features, NK cells and hILC1s mirror

CD8+T cells and CD4+T, respectively (Gordon et al., 2012). In

the context of cancer, hILC1s have both a tumoricidal function

and an immunosuppressive function. When the presence of

TGF-β in TME, hILC1s induced the development, growth and

metastasis of tumors (Tumino et al., 2020). Although the hILC1s

secrete IFN-γ to kill tumor cells (Castro et al., 2018; Verma et al.,

2020), the IFN-γ can drive EMT leading to carcinogenesis (Wang

et al., 2020a), and tumor cells escape (Zaidi and Merlino, 2011).

When the function of hILC1s was impaired, TNF-α production

decreased, resulting in a pro-tumor effect in patients with tumor

(de Weerdt et al., 2016; Gao et al., 2017). Several studies have

shown that the presence of hILC1s has a paradoxical prognosis in

various tumors (Dadi et al., 2016; Salimi et al., 2018; Qi et al.,

2021). Intriguingly, one study found that hILC1s predominantly

expressed activating receptors in the early stage of CRC, but they

converted to expressing inhibitory receptors in the advanced

stage (Qi et al., 2021).

Helper ILC2

The hILC2s could release various cytokines and express

transcription factors, including IL-4, IL-5, IL-13, IL-33

receptor, GATA3, and RORα (Entwistle et al., 2019). IL-33 is

a major activator of hILC2s by binding to the IL-33 receptor.

Some studies have shown that a large number of hILC2s infiltrate

and exert an anti-tumor effect in IL-33 enriched the tumor sites

(Kim et al., 1950; Jacquelot et al., 2021b). For instance, IL-33

activated hILC2s, which released granulocyte-–macrophage

colony-stimulating factor (GM-CSF) and eosinophils were

attracted to the tumor location. These activities eradicated

tumor cells in melanoma (Jacquelot et al., 2021b). However,

IL-33 also promotes tumor development and angiogenesis by

various mechanisms (Maggi et al., 2020). For instance, IL-33

could raise the number of CD4+FOXP3+Tregs to suppress

immune activity. Accordingly, hILC2s have played both pro-

tumor and anti-tumor roles. The hILC2–MDSC regulatory axis

has been discovered in various tumors (Chevalier et al., 2017;

Trabanelli et al., 2017; Maggi et al., 2020). The hILC2s secret IL-

13 to activate MDSCs which could inhibit anti-tumor immunity,

and MDSCs, in turn, produce IL-13 to enhance

immunosuppressive activity further (Maggi et al., 2020).

Besides, the anti-tumor function of hILC2s also has been

reported in HCC (Xu et al., 2021a; Heinrich et al., 2022),

CRC (Ercolano et al., 2021; Huang et al., 2021; Qi et al.,

2021), pancreatic cancer (Moral et al., 2020), and melanoma

(Wagner et al., 2020; Peng et al., 2021a; Jacquelot et al., 2021b).

Helper ILC3

The roles of hILC3s in cancer prognosis are controversial,

which expresses IL-17, IL-22, IL-23 receptor, GM-CSF, and the

RORγt (Penny et al., 2018; Meininger et al., 2020). In NSCLC,

hILC3s produce IL-22, and TNF-α, recruit Teff cells, and

promote TLS formation to prolong the survival (Carrega

et al., 2015; Goc et al., 2016). In contrast, in breast cancer, IL-

22 produced by hILC3s impelled tumor proliferation and

metastasis (Irshad et al., 2017). In CRC, ILC3s produced IL-

22 which activated STAT3 phosphorylation signaling to promote

the development and invasion of tumor (Kirchberger et al.,

2013). Additionally, IL-22 is important to maintain and repair

the epithelial barrier (Goc et al., 2016; Mao et al., 2018). GM-CSF

produced by hILC3s could attract macrophages in the gut and

induce the generation of FOXP3+Treg cells to counteract the

immune response (Mortha et al., 2014). IL-17 released by

hILC3 played a role in tumorigenesis of the liver with

infection of Helicobacter hepaticus and CRC (Wang and

Karin, 2015; Han et al., 2019). In human squamous cervical

carcinoma and breast cancer, high-level IL-17 played a pro-

tumor role (Punt et al., 2015; Irshad et al., 2017). IL-12 secreted

by hILC3s inhibited tumor development in melanoma (Eisenring

et al., 2010; Wu et al., 2020). In breast cancer, RORγt + hILC3s

could also enhance the likelihood of lymph node metastasis

(Irshad et al., 2017). Recently, a new subset of ILCs,

regulatory ILCs, has been reported, which releases IL-10

following TGF-β signaling to play a tumor-promoting role

(Wang et al., 2017; Bald et al., 2019; Wang et al., 2020b).

High levels of IL-23 in TME binding to IL-23 receptors

expressed by hILC3s were associated with gut tumorigenesis

(Man, 2018; An et al., 2019). LTi cells are important components

to assist the formation of Peyer’’s patches and lymphoid

neogenesis and inhibit tumor growth (Tumino et al., 2020).

The interactions of hILCs

The phenotypes and functions of hILC subsets changed

under different microenvironments. For example, hILC2s

converted to hILC1s by expressing the receptors for IL-1β, IL-
12, and IL-18, and further expressed hILC1 phenotypes, such as

T-bet, IFN-γ. Additionally, under the presence of IL-4, hILC2s

were reversed (Bald et al., 2019; Salvo et al., 2020). Under the

influence of cytokines like IL-12, IL-23, and IL-1β, hILC3s

exhibited the characteristics of hILC1s as well as cytotoxic

activity against tumor growth in melanoma (Nussbaum et al.,

2017; Cella et al., 2019). In pulmonary squamous cell carcinomas

(SqCC), hILC3s derived from hILC1s conversion suppressed

anti-tumor immunity and thus shortened patient survival

(Koh et al., 2019). Besides, in the presence of TGF-β, hILC2s
were converted into hILC3-like cells and hILC3s were converted

into ILCregs (Koh et al., 2019). However, the conversion
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masochisms are still not a comprehensive explanation and are

necessary to be explored.

NK-related therapies

With the advent of cancer immunotherapy, targeting innate

lymphoid cells has been reported. First, targeting inhibitory and

activated NK cell receptors have been developed. Anti-KIR2D

antibody (Ab) (Lirilumab; IPH2102) or combined with ICBs has

been used to treat patients with hematological malignancies

(Benson et al., 2012; Benson et al., 2015; Yalniz et al., 2018).

An anti-NKG2A mAb (omalizumab; IPH2201) has been applied

in chronic lymphocytic leukemia (André et al., 2018; Kamiya

et al., 2019) and could unleash the cytotoxicity of NK by

combining with anti-PD-L1 mAb (André et al., 2018).

Besides, anti-NKG2A mAb is being evaluated in a clinical trial

by combining an anti-EGFR Ab (cetuximab) in advanced solid

cancers (NCT02643550). However, a study has shown that

NKG2A blockade could promote CD8+T cell functions, but

were ineffective for NK cells in mouse tumor model with

HPV16 induction (van Montfoort et al., 2018). Additionally,

CAR-NK cells have been engineered to have a chimeric receptor

(NKG2D), which improves their cytotoxic capacity against

tumor cells (Chang et al., 2013; Parihar et al., 2019). Second,

a novel approach, using pluripotent stem cells (iPSC) to elicit

NK cells, has been designed. Treatment with iPSC-derived NK

cells or combined with anti-PD-1 Ab made cancer cell growth

arrest (Li et al., 2018; Cichocki et al., 2020). Third, CAR-NK

cell-based therapeutic regimens are considered as a promising

therapeutic method, and increasing evidence has been shown in

the preclinical models. The therapeutic strategy using CAR-NK

cells has been proven to improve the anti-tumor efficacy in

preclinical models of CRC and acute myeloid leukemia (AML)

(Hayes, 2021). HER-2-specific CAR-NK cells were injected into

ovarian cancer mice also ameliorated NK cytotoxicity (Han

et al., 2015). CXCR1-modified NK cells enhanced anti-tumor

activity in ovarian cancer mice with peritoneal xenografts (Ng

et al., 2020). CAR-NK cells with targeting EGFR increased anti-

tumor efficacy in a mouse model of glioblastoma (Han et al.,

2015). CAR-NK cells with targeting CD19 can the cytotoxic

activity of NK cells in acute lymphoblastic leukemia (ALL)

(Quintarelli et al., 2020). Noteworthily, Cytomegalovirus

(CMV), the most potent stimulator of NK cells, has been

adopted to treat pediatric ALL and it could prolong the

survival (Sivori et al., 2021). DAP10, when added to the

CAR-NK cells, has been reported to enhance NK cell

cytotoxicity potently through facilitating and maintaining the

expression of NKG2D (Morvan and Lanier, 2016).

Additionally, it is intriguing that cytokines also are

considered to add to the frame of CAR-NK cells. For

example, IL-15 incorporated into the CAR construct

enhanced NK cell cytotoxicity and eliminated tumor cells

(Daher and Rezvani, 2021). Although CAR-NK cells have

been designed to combat tumor cells, there are few relevant

studies. In recent years, in order to find out beneficial

approaches, researchers have registered relevant clinical trials

(NCT03415100, NCT03940820, NCT03692637,

NCT02839954, NCT03383978, and NCT03941457). Of note,

two clinical trials have been withdrawn and suspended,

respectively (NCT03579927, NCT01974479).

Moreover, because cytokines are important for ILCs,

cytokine-based therapy could affect the functions of ILCs.

Pre-activated NK cells ex vivo by several cytokines, primarily

including IL-12, IL-15, and IL-18, could be endowed with

memory-like features, termed cytokine-induced memory-like

NK cells (CIML-NK), and then last to exert an anti-tumor

function (Romee et al., 2016). At present, this strategy has

been investigated for hematological malignancies

(NCT01898793, NCT03068819, and NCT02782546). TGF-β is

a potently immunosuppressive factor. A study has been

conducted that deleting TGFβR2 from NK cells using

CRISPR-Cas9 technology could suppress the function of TGF-

β and maintain their cytotoxicity in AML. Therefore, NK cells

have been engineered to express a non-functional TGFβR2-like
receptor in order to inhibit the function of TGF-β (Daher and

Rezvani, 2021). High doses of IL-2 have been applied to the

clinical practice to treat a small part of patients with advanced

tumors (Marabondo and Kaufman, 2017), but IL-2 could

increase the number of Tregs (Ghiringhelli et al., 2005;

Adotevi et al., 2018). Furthermore, researchers found utilizing

IL-15 did not result in Tregs expansion in patients with

neuroblastoma (Nguyen et al., 2019). Consequently, IL-15

which increases the number and function of NK cells, is

considered as a therapeutic strategy. Therapy with IL-

15 superagonist, ALT-803, has been reported to boost anti-

tumor activity of NK and T cells and prolong patient survival

(Hosseini et al., 2020; Sivori et al., 2021). It is surprising that

ALT-803 can attach to other molecular structures in order to

generate a pleiotropic compound and obtain benefits (Sivori

et al., 2021). Recently, treatment with IL-15 has been

investigated and the results of several clinical trials have been

published (NCT01572493, NCT03759184, NCT03905135,

NCT04185220, and NCT02689453). Treatment with the

combination of human IL-15 (rhIL-15) and monoclonal

antibody, including alemtuzumab, obinutuzumab, avelumab,

or mogamulizumab, has been reported to boost the

cytotoxicity of NK cells and enhance the efficacy of these

monoclonal antibodies in small population patients with

advanced chronic lymphocytic leukemia (Dubois et al., 2021).

However, these studies have found that systemic IL-15 (N-803)

impacted the presence of infused NK cells in AML, although it

improved the function of CD8+ T cells (Berrien-Elliott et al.,

2022; Pende and Meazza, 2022). Therefore, N-803 is still being

investigated in the clinical trials (NCT03050216 and

NCT01898793). Another cytokine, IL-12, is of a similar anti-
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tumor function to IL-15. The injection of membrane-bound

interleukin 21 (mbIL-21) after haploidentical HSCT of

patients with leukemia reduced the risk of relapse (Ciurea

et al., 2017). Additionally, the combination therapy of IL-15

and IL-21 was used in rhabdomyosarcoma to enhance anti-

tumor response (Wagner et al., 2017b).

Lastly, novel polyfunctional antibodies, termed natural killer

cell engagers (NKCEs), have been generated. NKCEs have been

proposed to generate a more effective benefit against tumor cells

(Davis et al., 2015). The CD16 x CD33 NK cell engager was the

first bispecific killer engager (BiKE) which are used to treat

patients with AML (Wiernik et al., 2013). Furthermore, new

tri-specific killer cell engagers (TriKE) have been designed. Anti-

CD16 x IL-15 x anti-CD33 TriKE played an anti-tumor role

through eliciting NK cell functions in mouse models of tumors

(Vallera et al., 2016; Vallera et al., 2020), and its efficacy was

reported in a terminated clinical trial (NCT03214666). Anti-

CD16 x anti- CD19 x IL-15 TriKE promoted NK cells to perform

tumoricidal functions in chronic lymphoid leukemia (Felices

et al., 2019). Similarly, another tri-specific NK cell

(1615133TriKE) also could eliminate tumor cells by the

mechanism of ADCC (JU et al., 2017). Besides, human

EGFR3 x NKp30 NK cell engagers have been developed,

which is modified based on the affinity of B7-H6. They

induced NK cells to secret cytokines and eliminate tumor cells

(Demaria et al., 2021). NKp46-NKCEs fused with a tumor

antigen and an Fc fragment could kill tumor cells by the

mechanism of ADCC (Demaria et al., 2021). Intriguingly,

adaptive NK cells with potent ADCC capacity were able to

not only ablate the immunosuppressive response of MDSCs

and Tregs, but also amplify the efficacy of BiKE and TriKE

(Sivori et al., 2021). The various NKCE strategies are promising

therapeutic tactics and are necessary to be further explored.

The hILC-related therapies

At present, harnessing helper ILCs is relatively rare and

mainly targets cytokines that influence the cytotoxicity of

these cells. Treatment with IL-33 alone or the combination of

IL-33 with PD-1 blockade boosted the cytotoxicity of hILC2s and

anti-tumor activity in a mouse model of melanoma (Maggi et al.,

2020; Jacquelot et al., 2021b). However, IL-33 may stimulate

hILC2s to produce the immunosuppressive ectoenzyme CD73,

thereby promoting tumor growth (Maggi et al., 2020). Targeting

the hILC2–MDSC axis should be promising in APL. IL-13 is a

key molecule in this axis. Targeting the IL-13 receptor on tumor

cells has shown a good efficacy in glioma mouse model. Anti-IL-

13R mAb was also used to treat patients with glioblastoma

(Maggi et al., 2020). In a completed clinical trial, treatment

with IL-4 PE38KDEL cytotoxin in patients with relapsed

gliomas has shown to have a good prognosis (NCT00014677).

The high levels of IL-4R also promote tumor growth, so targeting

IL-4R has been designed. It is well known that using anti-IL-4R

antibodies had a significant impact on a variety of tumors (Yang

et al., 2012a; Seto et al., 2014). In patients with AML treated by

allogeneic HSCT, IL-22 secreted by ILC3s might forestall graft

versus host disease (GVHD), and thus IL-22 could be a feasible

treatment option (Munneke et al., 2014). The function and

plasticity of helper ILCs are important for tumor therapy.

Thus, increasing research into helper ILCs should be

conducted in the future.

Other tumor-infiltrating immune cells

Myeloid-derived suppressor cells
Myeloid-derived suppressor cells have been reported as

inhibitors of anti-tumor immunity by antigen-specific and

non-specific patterns (Serafini et al., 2006). Some researchers

have shown that MDSCs are negatively associated with the

prognosis of tumor patients (Serafini et al., 2006; Tian et al.,

2019). MDSCs can be devided into two subtypes, monocytic

MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-

MDSCs). M-MDSCs could promote the maturation of DCs,

differentiate into M2-TAM, produce nitric oxide (NO), Arg-1

which could deplete arginine, and secrete inhibitory cytokines

including IL-10 and TGF-β (Wilczyński and Nowak, 2012; Tie

et al., 2022a). PMN-MDSCs mainly induce antigen-specific

T-cell tolerance and hinder T-cell migration by producing

reactive oxygen species (ROS) (Gabrilovich, 2017; Li et al.,

2020b). PMN-MDSCs also secrete some cytokines to facilitate

angiogenesis in TME (12). Moreover, tumor cells could secrete

various molecules to attract MDSCs into TME like GM-CSF and

IL-6, in turn, MDSCs induce the mutations of tumor cells and

express some proteins like SA100A8/9 to avoid immune

surveillance (Sinha et al., 1950a; Bresnick et al., 2015; Li et al.,

2020b). IL-6 also promotes MDSC accumulation and inhibits

anti-tumor immunity by activating the JAK/STAT3 signaling

pathway, which results in increased production of ROS, NO, and

PD-L1 (Ostrand-Rosenberg and Fenselau, 1950; Weber et al.,

2021). Other molecules such as CCR2 or CCR5 are important for

the migration of MDSCs. MDSCs also induce the production of

Tregs and Th17 cells (Sinha et al., 1950b; Messmer et al., 2015).

MDSC-based therapies
According to MDSC functions, targeting MDSCs has been

developed. First, depletion of MDSCs has been carried out in

mouse models. It is reported that tyrosine kinase inhibitors

(TKIs) could deplete MDSCs. For instance, Sunitinib was used

to eliminate MDSCs by interfering with VEGF and

STAT3 signaling pathways in renal cell carcinoma (Peng

et al., 2021b). Using ibrutinib could restrain the production

MDSCs in melanoma (Stiff et al., 2016). Another novel

therapeutic strategy has been proposed. Targeting S100A

family proteins, “peptibodies” adjoined to antibody Fc
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fragments could selectively eliminate MDSCs (Qin et al., 2014).

The TNF-related apoptosis-induced ligand (TRAIL) receptors

are also considered as a target for the depletion of MDSCs

(Condamine et al., 2014; Dominguez et al., 2017; Hartwig

et al., 2017). Targeting TRAIL-R2, DS-8273a, is ongoing in

advanced solid tumors and lymphoma (NCT02076451).

Second, it is a practical strategy that MDSCs are blocked to

migrate to the tumor sites. Targeting chemokines or its receptors

which help MDSC migration could inhibit MDSC recruitment

and trafficking. Targeting CCR5 secreted by MDSCs has been

reported to reduce the number of tumor-infiltrating MDSCs, and

improve the survival in melanoma and breast cancer (Velasco-

Velázquez et al., 2012; Zhang et al., 2013; Blattner et al., 2018).

Targeting CXCL13 or its receptor CXCR5 could decrease the

accumulation of MDSCs in TME in preclinical models (Ding

et al., 2015; Garg et al., 2017). CXCR2 antagonists have been

reported to make MDSCs range from overt infiltration to subtle

infiltration and T-cell infiltration increase in the tumor sites.

Targeting CXCR2 also augments the therapeutic efficacy of PD-1

blockade (Highfill et al., 2014; Zhang et al., 2020). Additionally,

CXCR2 antagonists (Reparixin and AZD5069) are currently in

the clinical trial phase for locally advanced or metastatic breast

cancer metastatic (NCT05212701) and castration-resistant

prostate cancer (NCT03177187), respectively. Targeting

CCL2–CCR2 axis has shown a good outcome in mouse

models (Li et al., 2017; Xu et al., 2021b), but anti-CCL2 mAbs

or CCR2 antagonists are mainly used to treat immune diseases in

the clinical trials. Only a CCR2/CCR5 Dual Antagonist (BMS-

813160) is being used to try to treat patients with locally

advanced PDAC, which is in the clinical trial phase

(NCT03767582). Targeting colony-stimulating factor

1 receptor (CSF1R) or its ligand CSF-1 could prevent myeloid

cell differentiation into MDSC and impede tumor progression

(Cannarile et al., 2017; Yeung et al., 2021). Other studies have

demonstrated that CSF-1R blockades combined with

CXCR2 antagonists, ICB or anti-VEGFR mAbs have better

efficacy in tumor patients (Tie et al., 2022b). Third, the

downregulation of immunosuppressive functions of MDSCs is

a promising approach. The inhibition of COX-2/ PGE2 signaling

could suppress MDSC functions, which leads to impairing the

production of Arg-1 and ROS, improves CD8+ T cytotoxicity,

and delays tumor growth (Eruslanov et al., 2010; Obermajer et al.,

2012; Zelenay et al., 2015). In preclinical models of glioma,

targeting COX2 combined with acetylsalicylic acid

downregulated the levels of PGE2 and inhibited glioma

progression (Fujita et al., 2011). Phosphodiesterase-5 (PDE-5)

inhibitors could also impair the level of Arg-1 produced by

MDSCs. Using PDE-5 inhibitors has been shown to boost the

anti-tumor immune activity of T cells and NK cells, reduce the

accumulation of MDSCs and Tregs, and promote cancer cell

growth arrest in patients with HNSCC and metastatic melanoma

(Weed et al., 2015; Hassel et al., 2017). The inhibition of the

STAT3 pathway is another therapeutic strategy to impair the

function of MDSCs. The STAT3 inhibitor, AZD9150, combined

with ICB, has been utilized to treat patients with diffuse large B-

cell lymphoma in a clinical trial (NCT01563302). In localized and

metastatic castration-resistant prostate cancer patients,

treatment with TLR9-targeted STAT3 siRNA delivery to

abrogate the immunosuppressive function of MDSCs

diminished the enzymatic activity of Arg-1, inhibited

STAT3 target gene and T cell function (Hossain et al., 2015).

IL-6 inhibitors also impacted the STAT3 signaling by reducing

STAT3 phosphorylation and the expression of

STAT3 downstream anti-apoptotic genes in ovarian cancer

(Guo et al., 2010a; Guo et al., 2010b). Lastly, another credible

strategy is to reduce the production of MDSC populations. All-

trans-retinoic acid (ATRA) binding to the retinoid receptor

could induce the immature myeloid cell (IMC) population to

differentiate into macrophages and dendritic cells, neutralize

high ROS production and increase glutathione synthase (Liu

et al., 2021b; Bi et al., 2022). ATRA administration or combined

with other immunotherapies increased the number of T cells,

enhanced dendritic cell functions, and downregulated the ROS

generation in MDSCs, resulting in improving anti-tumor

immunity (Li et al., 2014; Bauer et al., 2018; Tobin et al.,

2018). The combination of ATRA and ipilimumab are more

effective than using ipilimumabmonotherapy alone in metastatic

melanoma and cervical cancer patients (Tobin et al., 2018; Liang

et al., 2022). ATRA administration is an extremely promising

therapeutic option for restraining the immunosuppressive

functions of MDSCs, thus, its application needs to be further

explored in other tumors. Additionally, some studies have

reported that histone deacetylase inhibitors (HDACs) also

control the differentiation of MDSCs and inhibit MDSC

functions in tumor mouse models (Orillion et al., 2017; Briere

et al., 2018; Christmas et al., 2018). The low-dose HDACi

trichostatin-A could impair the suppressive activity of MDSCs

and prevent MDSCs from trafficking, but the off-target effects

that is the upregulation of PD-L1 should be tackled in further

research (Li et al., 2021; Adeshakin et al., 2022). Other

approaches to impact the differentiation and function of

MDSCs, such as promoting the expression of interferon

regulatory factor (IRF)-8, and inhibiting casein kinase 2 (CK2)

signaling, are promising strategies (Valanparambil et al., 2017;

Hashimoto et al., 2018; De Cicco et al., 2020; Xia et al., 2020).

In summary, targeting MDSCs have been developed and

acquired good outcomes in preclinical models. However, due to

the MDSC heterogeneity in various tumor types, the drugs

targeting MDSCs could not be applied broadly. Thus, further

studies are indispensable in the different tumor types. Secondly,

the plasticity of MDSCs has been mentioned previously. Thus,

the factors which reshape the differentiation of MDSCs are

essential for future treatment strategies. In addition, even if

the depletion of MDSC and the inhibition of MDSC

trafficking are favorable options, the complicated mechanisms

to reduce the number of MDSCs have not been revealed, so
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complementary researches are cardinal to develop new options

and improve the prognosis.

Tumor-associated macrophages
Macrophages have been traditionally divided into two types:

inflammatory M1-macrophages (anti-tumoral phenotypes) and

immunosuppressive M2-macrophages (pro-tumoral phenotypes)

(Cassetta and Pollard, 2020; Christofides et al., 2022).

Macrophages are recruited into the tumor sites and play

different functions, termed tumor-associated macrophages.

CSF1 is a key factor for the recruitment of macrophages and

polarizes macrophages to express the M2 phenotype (De et al.,

2016; Christofides et al., 2022). It is reported that the inhibition of

CSF-1 could decrease the accumulation of TAM and transform the

M2 phenotype into the M1 phenotype (Ramesh et al., 2019).

CCL2 also attracts macrophages into the tumor sites and mediates

macrophage polarization (Korbecki et al., 2020; Yang et al., 2020).

TAMs have a dual function, pro-tumoral and anti-tumoral

functions. TAMs promote tumor progression by following

pathways. First, TAMs release various molecules to assist tumor

cell proliferation and metastasis. Growth factors expressed by

TAMs such as epidermal growth factor (EGF) aid tumor cell

proliferation. NF-kB-mediated factors like IL-6 and CCL2 prevent

tumor cell apoptosis (Xiang et al., 2021). TAMs also induce and

activate the Wnt/β-catenin signaling, resulting in the proliferation

of tumor progenitor cells in liver cancer (He and Tang, 2020).

TAMs secrete CCL5 to activate the STAT3β-catenin pathway and

favor the metastasis of tumor cells (Huang et al., 2020). The

proangiogenic growth factors released by TAMs like VEGF,

platelet-derived growth factor (PDGF) and fibroblast growth

factor (FGF) also facilitate tumor cell migration (Kumari and

Choi, 2022). Second, TAMs play an immunosuppressive role by

expressing various small molecules. TMAs facilitate the ICs

expression on tumor cells or produce IL-10, TGF-β, Arg-1, and
IDO to impede T cell function (Arlauckas et al., 2018; Xiang et al.,

2021; Kumari and Choi, 2022). Finally, TAMs also upregulate the

level of inhibitory receptors to inhibit T cell and NKcell activity

and recruit Tregs into TME (Yang et al., 2012b;Wu et al., 2019; Tie

et al., 2022a). Conversely, TAMs could inhibit tumor progression

by increasing their phagocytic capacity and enhancing the function

of antigen presentation. TAMs also produce cytokines to activate

Th1 and CD8+T cells and improve anti-tumor immunity (Moeini

and Niedźwiedzka-Rystwej, 2021). Of note, the polarization of

macrophages could be reshaped in the complex TME. For

instance, activated mTOR signaling pathways facilitated the

polarization of M2 macrophages (Mazzone et al., 2018; Chen

et al., 2022).

The TAMs-based immunotherapies
Targeting TAMs mainly inhibits its pro-tumoral functions, and

several studies have been conducted. First, depleting TAMs and

arresting the recruitment of TAMs have been reported. Targeting

the CSF-1/CSF-1R axis has been tested in preclinical models and is a

significant therapeutic option to decrease the production and

aggregation of TAMs. Inhibiting the CCL2/CCR2 axis is another

reasonable treatment strategy for preventing TAMs from migrating

into tumor sites. The efficacy of CSF-1 andCCL2 inhibitors has been

comprehensively reviewed, therefore, we will not be covered here

(reviewed in refs (Rasmussen and Etzerodt, 2021)). Second,

inhibition of the immunosuppressive function of TAMs could

boost anti-tumor immunity by polarizing M2 TAMs into anti-

tumor phenotypes. The TLR7/8 influences the TAM polarization to

skew toward M1 TAM, thus, its agonist, R848-Ad, has been used to

treat tumors in themousemodels and then improves the anti-tumor

activity (Rodell et al., 2018; Rodell et al., 2019). Upon a TLR agonist,

targeted delivery of a long peptide antigen to TAMs via using a

nano-sized hydrogel (nanogel) activated TAMs to promote tumor

apoptosis and activate anti-tumor immune responses, including

antigen-presenting activity and altering tumor immune responses

from resistance to responsiveness (Muraoka et al., 2019; Tie et al.,

2022a; Zhang et al., 2022b). Activated TLR3 ligands also shift the

M2 phenotype to the M1 phenotype by upregulating the expression

of MHC-II molecule (Vidyarthi et al., 2018). The PI3K/AKT

pathway is responsible for the recruitment of M2-TAM, thus,

PI3Kα inhibitors could impede tumor cell growth and invasion

(Khan et al., 2013). PI3Kγ upregulates the immunosuppressive

properties and downregulates the anti-tumor properties of TAMs

(Vergadi et al., 1950; Zhang et al., 2017b; Kaneda et al., 2017), thus,

targeting PI3Kγ would be necessary. Activation of the

CD40 receptor on TAMs could convert TAMs into

M1 macrophages (Wiehagen et al., 2017; Hoves et al., 2018).

Using the combination of CD40 agonists and anti-CSF1R

antibodies enhanced the cytotoxicity of T cells (Xiang et al.,

2021). The inhibition of the NF-κB pathway by the siRNA

pathway could transform TAM into M1 macrophages (Ortega

et al., 2016). Other molecules also impact the polarization of

TAMs, such as HDAC, and the microRNA processing enzyme

DICER, because blocking HDAC or DICER could produce

M1 phenotypes (Tie et al., 2022a; Tajaldini et al., 2022). Third,

restoring phagocytic capacity is crucial for TAMs. The activated

SIRPα–CD47 axis could limit the TAM phagocytic capacity for

cancer cells. Therefore, targeting SIRPα has been proposed and

tested in pancreatic cancer and breast cancer, where it strengthens

the phagocytosis ability of macrophages and promotes tumor cell

death (Jaiswal et al., 2009; Theocharides et al., 2012; Hu et al., 2020;

Jia et al., 2021). Anti-CD47 antibodies have also been reported to

strengthen the anti-tumor activity of macrophages (Brierley et al.,

2019; Sikic et al., 2019; Jia et al., 2021), and some anti-CD47mAbs in

different tumors are in the clinical trials (NCT02953509,

NCT04751383). Inhibition of leukocyte immunoglobulin-like

receptor subfamily B (LILRB)- MHCI pathway axis could recover

the phagocytic capacity of TAMs (Barkal et al., 2018). Finally, CAR

expressed by TAMs has been reported to improve phagocytosis,

transform TAMs to the M1 phenotype, and enhance anti-tumor

immunity (Christofides et al., 2022). CAR for phagocytosis (CAR-P)

could improve the phagocytic capacity of TAMs and hinder tumor
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cell growth in solid tumors (Morrissey et al., 2018; Kumari and Choi,

2022). CAR-macrophages (CAR-M) have also been developed,

which inhibits tumor progression in a mouse model (Klichinsky

et al., 2020; Villanueva, 2020; Sloas et al., 2021). Furthermore, a

recent study proposed another tactic, anti-CCR7 CAR-M cells,

which induces macrophages toward CCR7-positive cells and then

deletes CCR7-positive cells by a series of activities (Kumari and

Choi, 2022). At present, a novel method, targeting TAMs with

nanomaterials, has been reported. The use of nanomaterials to

inhibit tumor growth not only promotes anti-tumor immunity,

but it also reduces the off-target effects and adverse events. The

details of nanoimmunotherapies for TAMs have been concluded in

this review (Kumari and Choi, 2022). Therefore, targeting

nanoimmunotherapies is a promising option. Thus, more

research is needed in the future.

In brief, although these therapeutic strategies have been

successfully applied in mouse models and even in the clinical

trials, targeting TAMs is still limited. At present, targeting all

macrophage populations is less effective than targeting pro-

tumor TAMs, so researchers want to further focus on

targeting a specific macrophage population to reach

maximal efficacy. Additionally, though the blockade of

recruitment of TAMs is a potential option, it is a better

strategy that converts TAMs from M2 to M1. Thus,

further exploration needs to dissect the mechanisms of

TAM polarization from top to bottom and develop novel

treatment agents. Moreover, some inhibitory molecules have

not been thoroughly discussed, including CD163, CD206,

and TREM2. Thus, extensive investigations about targeting

these molecules needs to be performed. Finally, the

combination therapy of based-TAM and other ways like

radiotherapy are also worthy of research.

Conclusion and perspectives

With the advancement of immunotherapies, it is well revealed

that tumor-infiltrating immune cells play increasingly important

FIGURE 2
Tumor-infiltrating immune cells are important. Different cells play different roles. CD8+ T cell, CD8 TRM, and NK could kill tumor cells. Bregs,
Tregs, MDSCs, and M2-TAM promote tumor cell growth. Tumor cells also secrete various molecules to disturb immune cell function. These
molecules can convert cell phenotype and change their function, like NK cells. Specially, TGF-β derived from tumor cells could promote the function
of CD8 TRM and Tfh cells. The crosstalk of these immune cells are is important for their function. Inhibitory cells secrete various
immunosuppressive molecules to impair the cytotoxicity of effector cells. CD8 TRM: CD8 tissue resident memory; DC: dendritic cell; cDCs:
conventional dendritic cells; pDCs: plasmacytoid DCs; Tfh: T follicular cell; NK: natural killer; hILC: helper innate lymphoid cells; Bregs: regulatory
B cells; Tregs: regulatory T cells; MDSC: myeloid-derived suppressor cell; M2-TAM: M2 macrophages; EMT: epithelial mesenchymal transition.

Frontiers in Genetics frontiersin.org18

Yaping et al. 10.3389/fgene.2022.988703

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.988703


roles and interact with the efficacy of targeting these immune cells.

Therefore, the dissection of these cell properties in TME is

indispensable for improving the clinical response of

immunotherapies. In this review, we have dissected the

characteristics of mainly tumor-infiltrating immune cells,

including their phenotypes, their recruitment, their activation, and

immune-based therapies (Figure 2). The interactions with these cells

in TME are complicated due to the presence of anti-tumor and pro-

tumor activities, which is associated with the clinical outcome of

cancer patients. In addition, these cells also form a special structure

which impacts the clinical outcome of tumor patients, but it remains

in its infancy for TLS properties. Correspondingly, according to the

characteristics of these immune cells, various immunotherapy

approaches have been developed and are successful in preclinical

tumor models and human tumors, including targeting cytokines and

chemokines, targeting various phenotypes, and CAR-T. Recently,

nanoimmunotherapies have been generated and acquired a better

efficacy, which provides a novel approach to target tumor cells and is

worthy of emulation. However, due to the conspicuously complex

TME, the clinical response of some strategies is limited, even

ineffective and resistant. Consequently, extensive complementary

researches on tumor-infiltrating immune cells are necessary to

overcome these shortcomings and further develop curative tactics

for a conducive prognosis.
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