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Colorectal cancer (CRC) is a common malignant tumor worldwide. Lipid

metabolism is a prerequisite for the growth, proliferation and invasion of cancer

cells. However, the lipid metabolism-related gene signature and its underlying

molecularmechanisms remain unclear. The aimof this studywas to establish a lipid

metabolism signature risk model for survival prediction in CRC and to investigate

the effect of gene signature on the immunemicroenvironment. Lipid metabolism-

mediated genes (LMGs) were obtained from the Molecular Signatures Database.

The consensusmolecular subtypeswere established using “ConsensusClusterPlus”

based on LMGs and the cancer genome atlas (TCGA) data. The risk model was

established using univariate and multivariate Cox regression with TCGA database

and independently validated in the international cancer genome consortium

(ICGC) datasets. Immune infiltration in the risk model was developed using

CIBERSORT and xCell analyses. A total of 267 differentially expressed genes

(DEGs) were identified between subtype 1 and subtype 2 from consensus

molecular subtypes, including 153 upregulated DEGs and 114 downregulated

DEGs. 21 DEGs associated with overall survival (OS) were selected using

univariate Cox regression analysis. Furthermore, a prognostic risk model was

constructed using the risk coefficients and gene expression of eleven-gene

signature. Patients with a high-risk score had poorer OS compared with

patients in the low-risk score group (p = 3.36e-07) in the TCGA cohort and the

validationdatasets (p= 4.03e-05). Analysis of immune infiltration identifiedmultiple

T cells were associated with better prognosis in the low-risk group, including

Th2 cells (p = 0.0208), regulatory T cells (p = 0.0425), and gammadelta T cells (p =

0.0112). A nomogram integrating the risk model and clinical characteristics was

further developed to predict the prognosis of patients with CRC. In conclusion, our

study revealed that the expression of lipid-metabolism genes were correlated with

the immune microenvironment. The eleven-gene signature might be useful for

prediction the prognosis of CRC patients.
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Introduction

Colorectal cancer (CRC) is the third most common

malignant cancer worldwide (Johdi and Sukor, 2020), which

will project a total of 2.2 million new cases and 1.1 million deaths

by 2030 (Douaiher et al., 2017). Therefore, early intervention for

primary CRC contributes to clinical benefit outcomes (Koncina

et al., 2020). At present, the main treatment methods for CRC are

tumor resection, radiotherapy, chemotherapy, anti-angiogenic

therapy, targeted therapy and immunotherapy (Rejhova et al.,

2018; Piawah and Venook, 2019; Dariya et al., 2020; Johdi and

Sukor, 2020). Although a certain degree of success has been

achieved with these treatments, several significant challenges

remain to be addressed. (Biller and Schrag, 2021). However,

the etiology and molecular mechanisms of CRC are still unclear.

Previous studies have identified prognostic and predictive

molecular biomarkers for CRC based on DNA, RNA, or

proteins, such as APC, VEGF-1 (Clarke, 2005; Das et al.,

2017; Koncina et al., 2020). Liu et al. (2020) identified two

risky (TIMP1 and LZTS3) and five protective prognostic

genes (AXIN2, CXCL1, ITLN1, CPT2, and CLDN23) which

provided more evidence for further application of novel

diagnostic and prognostic biomarkers in CRC. A prognostic

signature consisting of nine genes was established with good

performance for the prediction of survival in CRC patients (Chen

et al., 2019). Moreover, novel potential prognostic biomarkers

still need to be explored for patient risk stratification and for the

choice of best treatment options. Therefore, it is necessary to

screen novel molecular therapeutic targets to improve the

survival rate of CRC patients.

Lipids are essential components of biological membranes and

are signaling molecules involved in cellular activities (Bian et al.,

2021). Lipid metabolism plays an important role in maintaining

of cellular homeostasis (Rohrig and Schulze, 2016; Bian et al.,

2021). Numerous studies have demonstrated that lipid

metabolism was involved in the progression, recurrence and

tumor microenvironment (TME) of CRC (Lin et al., 2021).

Dysregulation of lipid metabolism occurs in multiple cancers,

including CRC (Dias et al., 2019; Haffa et al., 2019). Numerous

bioactive secondary messengers trigger the activation of RAS,

phosphoinositide 3-kinases (PI3Ks) and other signaling

pathways to promote tumorigenesis (Yang et al., 2019; Moore

et al., 2020). A previous study has shown that a total of

13 metabolites, including glycerophospholipids, were

associated with a reduced risk of recurrence in CRC patients

(Ose et al., 2021). Blocking metabolic reprogramming of tumor

cells in obese mice improves anti-tumor immunity by impairing

CD8+ T cell infiltration in the tumor microenvironment (Ringel

et al., 2020). However, studies focusing on the characterization

and risk signatures of lipid metabolism-related genes remain

limited.

The aim of this study was to screen genes closely related to

the prognosis of CRC using two published datasets. The 11-gene

signature risk model provided a reference to distinguish high-risk

groups in CRC patients with poor prognosis (Wang et al., 2021b).

The workflow was illustrated in Figure 1.

Materials and methods

Data collection and preparation

RNA sequencing (RNA-seq) data and clinical features were

retrieved from The Cancer Genome Atlas (TCGA) database

(404 samples, TCGA-COAD, https://portal.gdc.cancer.gov/).

Furthermore, the ICGC datasets (302 samples, COAD-US,

https://dcc.icgc.org/releases/current/Projects/) were used to

validate the risk model. RPKM is a widely used method for

normalizing RNA-seq gene expression (Guo et al., 2013). All data

were analyzed using RPKM expression profiles, including

differentially expressed genes (DEGs), consensus clustering,

analysis of tumor-infiltrating immune cells and univariate and

multivariate Cox regression analyses. Lipid metabolism-

associated genes (LMGs) were obtained from the Molecular

Signature Database (MSigDB, http://gsea-msigdb.org). We

selected the following keywords to select Lipid metabolism-

associated genes (LMGs), including “lipid,” “lipid

metabolism,” “metabolism of lipid,” “fat metabolism,” “fatty

acid metabolism,” “metabolism of fat.” A total of 744 LMGs

were selected from MSigDB and provided in the Supplementary

Table S1.

Consensus clustering and DEGs analysis

Consensus analysis was performed using the

“ConsensusClusterPlus” R package to assign patients with

COAD into different clusters in the TCGA dataset.

Subsequently, the DEGs were obtained between clusters with

p < 0.05 and |log2 (fold change)| > 0.5 as the threshold using

“limma” package in R software. The volcano plot was visualized

by “ggplot2” R package.

Immune infiltration

Immune and stromal scores were calculated to evaluate cell

infiltration levels in CRC. Estimation of Stromal and Immune

cells in Malignant Tumor tissues using Expression data

(ESTIMATE) algorithm (https://bioinformatics.mdanderson.

org/estimate/) was adopted to measure stromal level (stromal

scores), immunocyte infiltration degree (immune scores), and

tumor purity using “estimate” R package (Li et al., 2020b; Guo

et al., 2020).

The differences in immune infiltration subtypes were

analyzed between the high- and low-risk groups using two-
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way ANOVA analysis. Furthermore, xCell algorithm was used to

estimate 64 immune and stromal cell types from transcriptome

data using “xCell” R package (Aran et al., 2017).

Functional enrichment analysis

To explore the signaling pathway enrichment of overlapping

genes, the Gene Ontology (GO) term and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analyses were

performed based on the online platform KOBAS (http://kobas.

cbi.pku.edu.cn/index.php) with p < 0.05. The visualization was

performed using “ggplot2” R package (Ito and Murphy, 2013).

Construction of prognostic gene model

Univariate Cox regression analysis was used to identify the

lipid metabolism-related genes associated with prognosis of CRC

with p < 0.05. The multivariate Cox regression analysis was

performed to screen independent prognostic signature. Risk

score for the signature was evaluated as following algorithm:

Riskscore = Coefgene1*expressiongene1 + Coefgene2*expressiongene2
+ Coefgene3*expressiongene3 + ...... + Coefgenen*expressiongenen
(where “Coef” and “expression” are respectively the coefficient

and RNA relative expression value, “gene” represents each

selected gene range from 1 to n) (Wang et al., 2020b). Briefly,

firstly, a robust likelihood-based survival modeling approach was

used to narrow the number of genes from 21 key LMGs and the

best genes were selected for the prognostic model using

“survminer” and “survival” R package (Wang et al., 2021c).

Secondly, multiple Cox regression analysis was performed to

establish prognostic risk model using “survival” R package with a

parameter of “direction = “both” (Wang et al., 2020b). Thirdly,

the prognostic risk model of each sample was calculated with

coefficient value of multiple Cox regression analysis using the

following: Risk score = (−0.376743) × GGT5 + (−0.572140) ×

ASAH1 + (−0.484800) × HMGCL + (0.670476) × CD36 +

(0.733487) × DPM2 + (−0.463117) × ACOX1 + (0.506670) ×

ANGPTL4 + (0.434523) × INSR + (−0.504028) × ADIPOQ +

(0.615982) × ALDH1A3 + (−0.195776) × MMP1. The median

parameter of risk score was 1.012238. The ROC curve was plotted

using “survivalROC” R package with a parameter of “method =

“KM” (Heagerty et al., 2000). The “pheatmap” R package

(version 1.0.2, https://cran.r-project.org/web/packages/

pheatmap/index.html) to show the heat map. The nomogram

was formed to estimate the overall survival (OS) of CRC by using

“rms” and “survival” package in R. The regression coefficients of

the regressionmodel was transformed into scores and plotted as a

nomogram for prediction of prognosis. Moreover, the calibration

FIGURE 1
The workflow of lipid metabolism-related signature identification. TCGA: The Cancer Genome Atlas. MSigDB: Molecular Signatures Database.
ICGC: International Cancer Genome Consortium. LMGs: Lipid metabolism-associated genes.
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curves were used to evaluate the precision of nomogram for the

probability of actual occurrence versus prediction, with Hosmer-

Lemeshow fit goodness test (Zhou et al., 2019).

Results

Identification of two molecular subtypes
and DEGs

A total of 744 LMGs were selected from MSigDB in

Methods or Results and provided the terms in the

Supplementary Table S1. Consensus clustering was

conducted to divide the samples of 404 patients with CRC

into subtypes. Optimal clustering stability was identified with

K = 2 as the cut-off criterion (Supplementary Figures S1A,B).

These samples were divided into two molecular subtypes

including 251 samples in subtype 1 and 153 samples in

subtype 2 (Figure 2A). To explore the dysregulated genes

between two molecular subtypes, the differentially expressed

genes (DEGs) visualized in volcano plot were screened by using

“limma” R package (Ritchie et al., 2015). A total of 267 DEGs

were identified with p < 0.05 and |Log2 (fold change)| > 0.5,

including 153 upregulated DEGs and 114 downregulated DEGs

(Figure 2B). Furthermore, univariate Cox regression analysis

was performed to calculate the hazard ratio (HR) for OS. A total

of 21 genes had a statistically significant effect on OS in CRC

with overlapping DEGs (Figure 2C). The HR values of the

21 genes were calculated and shown in Figure 2D as potential

molecular targets.

FIGURE 2
Identification of differentially expressed LMGswith consensusmolecular subtypes and univariate Cox regression analysis. (A)Molecular subtype
discrimination in TCGA. (B)Differentially expressed LMGs between subtype 1 and subtype 2. (C) Venn diagram showing 21 key LMGs (the intersection
of the differentially expressed LMGs and the overall survival associated LMGs using the univariate Cox regression analysis). (D) Univariated cox
proportional hazards analysis of key LMGs. HR, hazard ratio; CI, confidence interval. LMGs: Lipid metabolism-associated genes.
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Establishment of the lipid metabolism-
related gene risk signature

To establish a lipid metabolism-related gene signature, the

predictive value of the risk score model was explored using the

TCGA-COAD database as the training set. A total of 21 genes

were intersection of those identified by differentially expression

analysis and univariate Cox regression analysis. After that, a

robust likelihood-based survival modeling approach was used

to narrow the number of genes and select the best genes for the

prognostic model using “survminer” and “survival” R package

(Wang et al., 2021c). Finally, a total of 11 genes were screened to

construct the risk model by using the multivariate Cox

regression analysis with a parameter of “direction = both.”

To evaluate the survival risk of patients with CRC, a prognostic

risk model was constructed using risk coefficients and gene

expression as described in previous studies (Zhang et al., 2020;

Liu et al., 2021). Each patient’s risk score in the training was

calculated using a mathematical algorithm. Firstly, we

calculated the coefficient value of each genes using multiple

Cox regression analysis. Secondly, risk score was calculated

using coefficient value and expression of each gene. The

mathematical algorithm in this study was described in the

methods and materials section. The median risk score was

1.012238. By the median value of the risk score, all patients

were divided into high-risk and low-risk groups according to

the median of risk score. Patients with high-risk scores had

higher mortality rate and poorer prognosis (Figure 3A, p =

3.36e-07). Supplementary Table S2 showed the number of

patients along the overall survival and risk scores in TCGA

and ICGC database. The risk score rank distribution of patients

with CRC were shown in Figure 3B. The scatter represented the

survival status and the time under the survival curve in each

patient in Figure 3C. The risk scores between high- and low-risk

groups in TCGA and ICGC database were added in

Supplementary Table S3. The risk signature in the

multivariate Cox model was illustrated in the forest plot

(Figure 3D). The area under the curve (AUC) values of the

ROC curve for 3-years and 5-years OS were 0.775 and 0.796,

respectively (Figure 3E). The novel 11-gene prognostic

signature was validated in 302 patients with CRC using the

ICGC database. Survival analysis indicated that patients in the

high-risk group had poorer prognosis (Figure 3F, p = 4.03e-05,

Supplementary Table S2). The risk score rank distribution and

survival status in each patient was shown in Figures 3G,H. The

expression of the 11-gene signature and the risk score were

visualized in Figure 3I. ROC analysis revealed that the risk

model showed a good prediction accuracy, with the AUC of

0.767 (3-years overall survival) and AUC of 0.745 (5-years

overall survival) (Figure 3J).

FIGURE 3
Development of risk model based on the 11 LMGs signature of CRC patients with the TCGA training cohort and ICGC validation database. (A)
Kaplan-Meier survival plot for overall survival based on risk score of LMGs signature in TCGA cohort. (B) Risk score of CRC patients in high- and low
risk groups in TCGA cohort. (C) Distribution of time under survival curve and survival status of each patient in TCGA cohort. (D) Multivariate Cox
regression analysis of LMGs signature characteristics TCGA cohort. (E) ROC curve for 3 and 5 years overall survival TCGA cohort. (F) Kaplan-
Meier survival plot showing overall survival using risk score of LMGs signature in ICGC validation database. (G) Risk score of CRC patients in risk
groups in ICGC validation database. (H) Distribution of survival time and survival status of each patient in ICGC validation database. (I) The heatmap
showing the gene expression of 11 LMGs signature and risk score in ICGC validation database. (J) ROC curve for 3 and 5 years overall survival in ICGC
validation database. LMGs: Lipid metabolism-associated genes.
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Functional enrichment analysis

To explore the biological functions of the 21 genes, the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways and

gene ontology (GO) terms were analyzed using KOBAS tools

(http://kobas.cbi.pku.edu.cn). In the present study, these

dysregulated DEGs were enriched in fatty acid metabolism

and multiple cancer-related pathways including VEGF

signaling, the PD-1 checkpoint pathway in cancer, the FoxO

signaling pathway and Th1 and Th2 cell differentiation

(Figure 4A). According to the GO term analysis, we found

biological process related to nutrients, including lipid

metabolic processes, fatty acid processes and toll-like receptor

binding (Figure 4B).

Assessment of cell scores in tumor
microenvironment

To predict the cell scores in the tumor microenvironment,

the CIBERSORT and xCell algorithms were used to perform cell

type enrichment analysis in CRC. The relative infiltration levels

of various immune cell subsets were quantified using

CIBERSORT algorithms (Chong et al., 2021). In the present

study, a consistent result was observed in the risk score

stratification (Figure 5A). Furthermore, several kinds of

immune cells with high infiltration levels were significantly

correlated with poorer prognosis of patients, including T

follicular helper cells (Figure 5B, p = 0.048), mast activated

cells (Figure 5C, p = 0.00715) and monocytes (Figure 5D,

p = 0.031). In addition, the xCell method was used to

estimate the abundance scores of 64 immune cell types using

lipid metabolism-associated gene expression data. The

stratification of abundance scores between the high- and low-

risk groups for each patient was demonstrated in Figure 5E.

Moreover, the correlation between immune cells and OS was

assessed by using Kaplan-Meier survival with log-rank test. Our

results demonstrated that the following cells with high

abundance scores were associated with better prognosis,

including Th2 cells (p = 0.0208, Figure 5F), regulatory T cells

(Tregs) (p = 0.0425, Figure 5G), gamma delta T cells (Tgd cells)

(p = 0.0112, Figure 5H) and GMP (p = 0.00493, Figure 5K).While

other immune cells with high abundance scores, including

chondrocytes (p = 0.0452, Figure 5I), endothelial cells (p =

0.0139, Figure 5J), mesangial cells (p = 0.0489, Figure 5L),

mesenchymal stem cells (MSC, p = 0.0331, Figure 5M),

Pericytes (p = 0.0234, Figure 5N), related to poorer prognosis.

Predictive nomogram model of
independent clinical factors

To evaluate the predictive value of risk model based on

clinical features, the relationship between risk score and

clinicopathological variables (age, gender, race, and stage) was

calculated with the Student’s t-test and One-Way ANOVA test.

Our results showed that the risk score contributed to different

roles in the subgroups, including stage (Figure 6A, p = 0.0005),

age (Supplementary Figure S2A, p = 0.1003), gender

(Supplementary Figure S2B, p = 0.1932), race (Supplementary

Figure S2C, p = 0.3185). Patients with early-stage CRC had a

lower risk score compared with patients with advanced CRC

FIGURE 4
Functional enrichment analysis. (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the key LMGs. (B)GeneOntology
(GO) terms. “Ratio” presents the number of genes in our data/the number of all genes in terms or pathways. LMGs: Lipid metabolism-associated
genes. The false discovery rate (FDR) < 0.05 was considered as threshold. The lower boundary value for the -log10(FDR) is 1.301 and the upper
boundary value is infinite.
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(Figure 6A, p = 0.0216). The Kaplan-Meier survival curve showed

that patients in the high-risk group had a dramatically shorter OS

than those in the low-risk group in both early-stage CRC

(Figure 6B, p = 0.0027) and advanced CRC (Figure 6C, p = 0.022).

Risk score model status was incorporated into a nomogram

model to predict the probability of overall survival at 1-, 3- and 5-

years model. The point scale at the top of the nomogram model

showed the score of every indicator, including age, gender, race,

stage and risk score. All the points of each indicator were

summed to estimate probability of OS at 1-, 3- and 5-years in

nomogram plot (Figure 6D). Furthermore, the calibration curve

was constructed to evaluate the performance of nomogram

model. The C-index was 0.761 for OS prediction in training

data, showing fair agreements between the nomogram prediction

and actual observation for the 1-, 3- and 5-years OS

(Figures 6E–G).

FIGURE 5
Immune characteristics of risk groups. (A) Different immune cell levels between high-risk and low-risk groups using CIBERSORT analysis.
Kaplan-Meier plot showing prognostic values of the risk signature between high- and low-risk groups in multiple immune cells using CIBERSORT
analysis, including T follicular helper cells (B), mast activated cells (C), and monocytes (D). (E) The heatmap showing the abundance scores of
immune cells in risk groups using xCell analysis. Kaplan-Meier plot illustrating prognostic values of the risk signature between high- and low-risk
groups using xCell analysis in different immune cells, including Th2 cells (F), Tregs (G), Tgd cells (H), Chondrocytes (I), Endothelial cells (J), GMP (K),
Mesangial cells (L), MSC (M), Pericytes (N). Th2: T helper 2 cells, Treg: Regulatory T cells. Tgd cells: gamma delta T cells. GMP: Granulocyte-
macrophage progenitor, MSC: mesenchymal stem cells.
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Discussion

Colorectal cancer (CRC) is the second leading cause of death

worldwide since 2020 (https://www.who.int/news-room/fact-

sheets/detail/cancer). Previous studies showed prognostic

models contributed to clinical decision and precision medicine

(Zhang et al., 2020; Mohammed et al., 2021). The patients were

divided into high- and low-risk groups for prediction of overall

survival according to the risk stratification in the prognostic

models (Lin et al., 2021). It is critical for improvement of the

personalized therapies and the quality of life.

Intensively proliferating cancer cells need multiple metabolic

patterns to get enough energy for new biomass synthesis

(Warburg et al., 1927). A previous study demonstrated that

lipid metabolism played critical roles in the main

determinants of tumor progression (Bleve et al., 2020). Cancer

FIGURE 6
Construction and calibration of nomogram for prognostic prediction in CRC patients. (A) The association between risk score and clinical stage.
The prognostic value of the risk signature in patients with early/locally advanced CRC (stage I–III) (B) and advanced CRC (stage IV) (C). (D) The
predictive nomogram based on risk score and clinical parameters for overall survival prediction at 1, 3, and 5 years. Calibration curve of the
nomogram at 1 year (E), 3 years (F), and 5 years (G).
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cells show alterations of lipid metabolism, which lead to

dysregulation of energy homeostasis, disruption of gene

expression and signaling pathway (Huang and Freter, 2015;

Pakiet et al., 2019). Numerous lipid molecules involved in

lipid metabolism were considered as potential biomarkers,

including serum polyunsaturated fatty acid metabolites (Zhang

et al., 2017), cerotic acid (26:0) (Mika et al., 2017), γ-linolenic
acid (18:3 n-6) (Kondo et al., 2011), and 12-keto-leukotriene B4

(Savari et al., 2014). However, the development of clinically

useful lipid biomarkers requires a consistent research

methodology. The aim of this study is to investigate the

association between lipid metabolism and survival, and

construct a lipid metabolism-based risk signature to improve

the accuracy of prognosis prediction for survival in CRC patients.

Different colorectal cancer classification systems were

identified by using microsatellite instability and highly

expressed mesenchymal genes. However, these systems

failed to incorporate with other subtypes (Wilkerson and

Hayes, 2010). Consensus molecular subtypes were

clustering algorithms with resampling and network-based

approaches (Wilkerson and Hayes, 2010). Consensus

molecular subtypes revealed prognostic value in metastatic

colorectal cancer (Borelli et al., 2021). Here, the consensus

molecular subtypes were established using

“ConsensusClusterPlus” package in R software (Wilkerson

and Hayes, 2010). In head and neck squamous cell

carcinoma, the molecular features of different subtypes

were evaluated for potentially effective therapeutic agents

(Zhang et al., 2021). In gastric cancer, consensus molecular

subtypes were associated with immune infiltration for

prediction of survival (Yu et al., 2021a). In metastatic

colorectal cancer, consensus molecular analysis

demonstrated that the consensus molecular subtype 2 was

the predominant subtype in left-sided and associated with the

best outcome from the addition of bevacizumab to first-line

chemotherapy (Mooi et al., 2018). Our results proved the

molecular diversity of lipid metabolism-associated genes and

provided different classification strategy for treatment

allocation in CRC. A total of 267 differentially expressed

genes were screened between cluster 1 subtype and cluster

2 subtype according to consensus molecular analysis.

Furthermore, risk model was established using novel 11-

gene signature from DEGs and revealed that high-risk

group had poorer prognosis (p = 3.36e-07). The risk model

was validated to divide patients into high- and low-risk groups

for OS prediction (p = 4.03e-05). Similarly, a novel 4 gene

prognostic signature revealed dramatically influence of

clinical utility with risk model in colorectal cancer

(Ahluwalia et al., 2019).

Numerous evidences from preclinical and clinical data

support that the cancer stem cells (CSCs) are responsible for

tumor recurrence (Peitzsch et al., 2017; Clarke, 2019). Lipid

metabolism has been reported as potential target in bulk and

CSCs, including CRC (Li et al., 2017; Choi et al., 2019). A

previous study showed that blocking stearoyl-CoA desaturase

1 (SCD1) expression or function inhibited the survival of

CSCs, but not bulk colorectal cancer cells in vitro and in vivo

(Yu et al., 2021b). Stem colorectal cancer cells contained a

distinctive lipid profile, with higher free MUFA and lower free

SFA levels than bulk colorectal cancer cells through lipidomic

profiling (Choi et al., 2019). Another study identified

eicosapentaenoic acid, which decreased the cell number of

the overall population of bulk colorectal cancer cells, but not

of the stem colorectal cancer cells. Our results screened 11-

gene signature of lipid metabolism for prediction of overall

survival in colorectal cancer. Further in-depth studies are also

warranted to elucidate the role of 11-gene signature on the

behavior in bulk and stem colorectal cancer cells.

To further investigate the effect of nomogram on the

predictive ability of survival, novel significant molecular

signatures were screened for predicting OS in patients with

CRC. The immune related signature showed better

stratification and more precise immunotherapy in patients

with CRC (Li et al., 2020a). A 13-gene metabolic signature was

constructed to explore the association between metabolism

and the immune microenvironment for prognostic prediction

in stomach adenocarcinoma (Ye et al., 2021). In this study, a

11-lipid metabolism-related gene signature was established

and showed improved prediction of OS for CRC patients,

including GGT5, ASAH1, HMGCL, CD36, DPM2, ACOX1,

ANGPTL4, INSR, ADIPOQ, ALDH1A3, and MMP1. GGT5

(Gamma-Glutamyltransferase 5) is a member of the gamma-

glutamyl transpeptidase gene family involved in glutathione

metabolism (Wickham et al., 2011). GGT5 was associated with

immune cell infiltration and might be a potential

immunological therapeutic target in gastric cancer (Wang

et al., 2022). ASAH1 (N-Acylsphingosine Amidohydrolase

1) encodes a member of the acid ceramidase family of

proteins and is involved in glycosphingolipid metabolism

(Li et al., 1999). ASAH1 was used to build a risk model to

reflect the dysregulated metabolic microenvironment in

gastric cancer (Wen et al., 2020). HMGCL (3-Hydroxy-3-

Methylglutaryl-CoA Lyase) is a mitochondrial enzyme and

associated with HMG-CoA lyase deficiency (Menao et al.,

2009). HMGCL was potential tumor suppressor gene and

associated with poor prognosis in clear cell renal cell

carcinoma (Cui et al., 2019). In colon adenocarcinoma,

HMGCL was screened as prognosis-related metabolic gene

using risk model analysis (Zhao et al., 2021). CD36

(CD36 Molecule) is a transmembrane glycoprotein that

participates in adipose energy storage, and gut fat

absorption (Smith et al., 2008; Tran et al., 2011; Wang and

Li, 2019). A previous study demonstrated that ablation of

CD36-mediated FA uptake attenuated tumor progression

(Wang and Li, 2019). Moreover, CD36 was found to

promote sterile inflammation and activate the protumor
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ability of tumor-associated immune cells (Wang and Li, 2019).

DPM2 (Dolichyl-Phosphate Mannosyltransferase Subunit 2)

serves as a donor of mannosyl residues on the lumenal side of

the endoplasmic reticulum (Radenkovic et al., 2021). A total of

19 lipid metabolism-related genes were used to establish the

risk predictive score model as a potential prognostic indicator

of gastric cancer, including DPM2 (Wei et al., 2021). Similarly,

our result showed that DPM2 was a lipid metabolism-related

prognostic gene in colorectal cancer using risk model analysis.

ACOX1 (Acyl-CoA Oxidase 1) is the first enzyme of the fatty

acid beta-oxidation pathway (Ferdinandusse et al., 2007). A

total of 10 key genes involved in the esophageal cancer

progression were used to constructe a risk model for

prediction of survival, including ACOX1 (Wang et al.,

2021a). The higher expression levels of ACOX1 were

related to poorer prognosis in esophageal squamous cell

carcinoma (p = 0.0051), but better prognosis in esophageal

adenocarcinoma (p = 0.01). Our results revealed that the high

expression of ACOX1 had poorer prognosis in colorectal

cancer. The correlation between ACOX1 and overall

survival of color or rectal cancer will be investigated in the

future. ANGPTL4 (Angiopoietin Like 4) encodes glycosylated

protein containing a C-terminal fibrinogen domain (Kim

et al., 2000). Overexpression of ANGPTL4 promoted

glucose uptake and glycolysis activity in colorectal cancer

cells (Zheng et al., 2021). High ANGPTL4 expression was

associated with pathological stage and shorter overall survival

and disease-free survival in patients with breast cancer (Zhao

et al., 2020a). INSR (Insulin Receptor) is a member of receptor

tyrosine kinase which mediates the pleiotropic actions of

insulin (Kadowaki et al., 1990). NSR rs11668724 G > A

exhibited an increased pancreatic cancer risk (OR = 0.89,

p = 4.21 × 10−5) (Zhao et al., 2020b). Upregulation of INSR

promoted tumorigenesis and metastasis in tongue squamous

cell carcinoma (Sun et al., 2018). The effects of insulin were

used to enhance the therapeutic effectiveness of

chemotherapeutic drugs through downregulation of INSR

signaling (Agrawal et al., 2019). ADIPOQ (Adiponectin,

C1Q And Collagen Domain Containing) is expressed in

adipose tissue exclusively and is involved in metabolic and

hormonal processes (Ferguson et al., 2010). ADIPOQ induced

cytotoxic autophagy in breast cancer cells. The ADIPOQ

rs266729 G/C polymorphism led to low expression levels of

adiponectin in CRC. Decreased levels of adiponectin were

regarded as risk factor for CRC in metabolic syndrome

patients (Divella et al., 2017). ALDH1A3 (Aldehyde

Dehydrogenase 1 Family Member A3) catalyzed the

formation of retinoic acid and played roles in a diverse

range of biological characteristics within cancer stem cells

(Hsu et al., 1994; Duan et al., 2016). MMP1 (Matrix

Metallopeptidase 1) influenced the progression of uveal

melanoma from stage 3 to stage 4 and was correlated with

OS and disease-free survival (Wang et al., 2021b). In future

studies, it is warranted to investigate the biological functions

of these genes in CRC.

There are some limitations in our study. First, there is no

relevant experimental verification owing to lack of conditions in

our study. All CRC patients were obtained from public datasets.

Second, our risk model needs to be evaluated in clinical setting.

Large-scale multi-center cohort will be explored in the predictive

performance of the lipid metabolism-mediated signature for risk

stratification. The prognostic role of the model will be further

evaluated in patients with CRC.

Conclusion

A valid and innovative 11-lipid metabolism gene signature

model was constructed to predict the prognosis of CRC

patients as an independent risk factors, including GGT5,

ASAH1, HMGCL, CD36, DPM2, ACOX1, ANGPTL4,

INSR, ADIPOQ, ALDH1A3, and MMP1. These dyregulated

signature genes were involved in lipid metabolism pathway

and Th1 and Th2 cell differentiation. Furthermore, our risk

signature was correlated with high infiltration levels of T cells

with better prognosis, including Th2 cells, Tregs, and Tgd

cells.
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Technical details of consensus molecular subtypes analysis. (A) consensus
index. (B) K = 2 was regarded as the optimal value in consensus molecular
subtypes of colorectal cancer. CDF: Cumulative Distribution Function.
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