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Background: Breast carcinoma is well recognized to be having the highest global

occurrence rate among all cancers, being the leading cause of cancer mortality in

females. The aim of this study was to elucidate breast cancer at the genomic and

transcriptomic levels in different subtypes so that we can develop more

personalized treatments and precision medicine to obtain better outcomes.

Method: In this study, an expression profiling dataset downloaded from the Gene

Expression Omnibus database, GSE45827, was re-analyzed to compare the

expression profiles of breast cancer samples in the different subtypes. Using the

GEO2R tool, different expression genes were identified. Using the STRING online

tool, the protein–protein interaction networks were conducted. Using the

Cytoscape software, we found modules, seed genes, and hub genes and

performed pathway enrichment analysis. The Kaplan–Meier plotter was used to

analyze the overall survival. MicroRNAs and transcription factors targeted different

expression genes and were predicted by the Enrichr web server.

Result: The analysis of these elements implied that the carcinogenesis and

development of triple-negative breast cancer were the most important and

complicated in breast carcinoma, occupying the most different expression genes,

modules, seed genes, hub genes, and themost complex protein–protein interaction

network and signal pathway. In addition, the luminal A subtype might occur in a

completely different way from the other three subtypes as the pathways enriched in

the luminal A subtypedidnotoverlapwith theothers.We identified 16hubgenes that

were related togoodprognosis in triple-negativebreast cancer.Moreover,SRSF1was

negatively correlated with overall survival in the Her2 subtype, while in the luminal A

subtype, it showed the opposite relationship. Also, in the luminal B subtype, CCNB1

and KIF23 were associated with poor prognosis. Furthermore, new transcription

factors and microRNAs were introduced to breast cancer which would shed light

upon breast cancer in a new way and provide a novel therapeutic strategy.

Conclusion: We preliminarily delved into the potentially comprehensive

molecular mechanisms of breast cancer by creating a holistic view at the

genomic and transcriptomic levels in different subtypes using computational

tools. We also introduced new prognosis-related genes and novel therapeutic

strategies and cast new light upon breast cancer.
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Introduction

Breast carcinoma is well recognized to be having the highest

global occurrence rate among all types of cancers, being the leading

cause of cancer mortality in females worldwide (Ferlay et al., 2021).

In the United States, it is estimated that approximately 281550 new

female cases were diagnosed in 2021, and it accounted for 15% of

estimated deaths due to cancer among women (Siegel et al., 2021). It

is well known that breast cancer, which harbors high biological

heterogeneity both between and within tumors, is not a single

disease and can be classified into four subtypes according to the

molecular types, such as luminal A, luminal B, Her2-overexpressed,

and triple-negative breast cancer (TNBC) (Perou et al., 2000).

Luminal A and luminal B subtypes express the hormone

receptors and have a better prognosis than the other two

subtypes (Harbeck et al., 2019). The Her2-overexpressed subtype

only has Her2 expression and lacks expression of the estrogen

receptor (ER) and progesterone receptor (PR), and this subtype has

achieved tremendous clinical success because of effective therapy

targeting Her2 (Cancer Genome Atlas Network, 2012; Harbeck

et al., 2019). TNBC is characterized by the absence of ER, PR, and

Her2 expression, which possesses distinct molecular traits and

unique recurrence and metastatic patterns (Sørlie et al., 2001;

Nielsen et al., 2004; Harbeck et al., 2019).

Currently, the clinical approach to treating breast cancer

has been mainly composed of surgery, radiotherapy,

chemotherapy, endocrine treatment, and targeted therapy

(Harbeck et al., 2019). Although the treatment has been

relatively perfect, the reduction of decline in the death rate

for breast cancer slowed in females over the past decade,

which suggests that we should elucidate the pathogenesis,

occurrence, and development of cancer more accurately and

find new potential prognostic biomarkers so that we can

ensure early diagnosis and develop more personalized

treatments and precision medicine to obtain better

outcomes (Ferlay et al., 2021). For this to be possible, we

think that it is sensible to get a holistic view of the mechanism

of breast cancer with system biology approaches. By analyzing

high-throughput data extracted from omics data, these

approaches present an opportunity to depict the behavior

of networks and offer novel therapeutics.

Previous studies have mostly analyzed the molecular

mechanisms by comparing the difference between tumor and

normal tissues of the breast or focused only on one subtype of

breast cancer (Yang et al., 2019; Lin et al., 2020; Liu S. et al., 2020).

Actually, during clinical treatment, different measures will be

performed according to their subtype, so it is inappropriate to

consider different subtypes as a whole to analyze. Also, focusing

only on a single subtype cannot help us identify the difference and

similarities among different subtypes. In addition, most studies are

limited to exploring biomarkers and do not combine the genome

with the transcriptome for further exploration.

In this study, we preliminarily delved into the potentially

comprehensive molecular mechanisms of breast cancer by

creating a holistic view at the genomic and transcriptomic level

in four different subtypes using computational tools. To the best of

our knowledge, this is the first time such a systematic biological

study was performed on breast cancer according to its subtypes and

at the genomic and transcriptomic level.We also first explored genes

such as SRSF1,BUB1B,KIF23,HNRNPF, andELAVL1 and obtained

an exact result in our study.We re-analyzed the dataset deposited by

Gruosso et al, (2016) and exhibited considerable protein–protein

interaction networks. In addition, we performed network, clustering,

and functional analysis so that we could have a deep understanding

of the central genes of each subtype. Otherwise, pathways of different

subtypes were identified with enrichment analysis, and new micro-

RNAs (miRNAs) and transcription factors (TFs) were introduced to

assay the regulatory mechanisms of differential expression genes

(DEGs).

Materials and methods

Microarray data and DEG screening

A microarray dataset with accession number “GSE45827” from

the GEO database was downloaded (Gruosso et al., 2016). This

dataset includes 14 cell line samples, 41 TNBC cancer samples,

30 Her2 cancer samples, 29 luminal A cancer samples, 30 luminal B

cancer samples, and 11 normal breast tissue samples, and we only

used the cancer samples and normal breast tissue samples to analyze.

GEO2R (RRID:SCR_016569, http://www.ncbi.nlm.nih.gov/geo/

FIGURE 1
Overlapping of (A)DEGs, (B)hub genes, and (C)seed genes.
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geo2r/) is an online tool that can be used to screen DEGs across

different groups. Using GEO2R of GEO, groups (TNBC vs. normal,

Her2 vs. normal, luminal A vs. normal, and luminal B vs. normal)

were compared to identify DEGs of the four subtypes.

Benjamini–Hochberg false discovery was used for p-value

adjustment. Genes were declared as DEGs when |lgFC|≥3 and

the adjusted p-value (adj.p) < 0.01. The heat map was performed

by SangerBox online tool version 3.0 (http://www.sangerbox.com/

FIGURE 2
Heatmap and volcano plot analysis of DEGs. In the volcano plot, blue dots on the left indicate the downregulated genes, gray dots in themiddle
indicate genes that are not differentially expressed, and red dots in the right indicate the upregulated genes. [(A): TNBC vs. normal, (B) Her2 vs.
normal, (C) luminal A vs. normal, and (D) luminal B vs. normal.]
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tool), and the volcano plot was drawn by GraphPad Prism for

Windows (v9.2.0, RRID:SCR_002798, GraphPad Software, San

Diego, California United States, www.graphpad.com).

PPI network construction

The PPI networks of DEGs were built with the STRING online

tool (v11.0, RRID:SCR_005223, https://string-db.org/) (Szklarczyk

et al., 2019). DEGs were mapped to the STRING database to

estimate the interactive relationships, setting the confidence cutoff

to 0.95. Then, Cytoscape (v3.8.2, RRID:SCR_003032) software was

used to visualize the PPI network. For network analysis, the

MCODE plugin (v2.0.0, RRID:SCR_015828) of Cytoscape

software was used to investigate modules, highly connected sub-

networks, and seed genes based on default settings (Bader and

Hogue, 2003; Shannon et al., 2003). CytoHubba plugin version 0.1 of

Cytoscape (v3.8.2, RRID:SCR_003032) was applied to detect hub

genes (Chin et al., 2014). The criteria of hub genes were as follows:

MCC cutoff =1000, degree cutoff = 10, closeness cutoff = 50, and

betweenness cutoff = 1000. In addition, Venn diagrams were drawn

by FunRich software (v3.1.3, RRID:SCR_014467).

Pathway enrichment analysis

Genes clustered with MCODE were analyzed by the

Cytoscape ClueGO plugin (v2.5.8, RRID:SCR_005748),

choosing Reactome and KEGG databases to retrieve pathways

(Kanehisa and Goto, 2000; Bindea et al., 2009; Jassal et al., 2020).

Bonferroni step down was used to adjust the p-value, and signal

pathways with adj.p ≤ 0.05 were recognized.

Survival analysis

The Kaplan–Meier plotter mRNA breast cancer database

(RRID:SCR_018753, https://kmplot.com/analysis/), an online

database, was used to analyze the overall survival (OS) with

hazard ratios (HRs), 95% confidence intervals (95% CIs), and

logrank p-value. The JetSet best probe set was selected as gene

probes. During the prognosis analysis, patients were split into

two groups in accord with the auto-select best cutoff. The logrank

p-value <0.05 was considered to show a statistical significance.

The forest plot was drawn using Xiantao scholar (https://www.

xiantao.love/), another online platform for data analysis.

Expression analysis of prognosis-related
hub genes

The differential expression of prognosis-related hub genes

was analyzed in the GSE45827 dataset and validated in TCGA

dataset using the ggplot2 package of R software. During the

analysis, the Mann–Whitney U test, Welch’s t-test, and Student’s

t-test were used, respectively, depending on the normality and

homogeneity of variance. Similarly the p-value < 0.05 was

considered to show a statistical significance.

Functional exploration of each prognosis-
related hub gene

GeneMANIA (http://www.genemania.org) was used to evaluate

the functions of prognosis-related hub genes according to several

bioinformatics methods, such as co-expression, physical interaction,

prediction, co-localization, and shared protein domains and

pathways (Warde-Farley et al., 2010).

miRNA and TF enrichment analysis

The microRNAs and TFs were predicted using the Enrichr

online server (RRID:SCR_001575) (Kuleshov et al., 2016).

MiRNAs were predicted by the TargetScan microRNA

2017 database, while TFs were predicted by the

ChEA2016 database. Adj.p ≤ 0.01 was considered to show

FIGURE 3
Protein–protein interaction networks were built with
differentially expressed genes. [(A): TNBC vs. normal, (B) Her2 vs.
normal, (C) luminal A vs. normal, and (D) luminal B vs. normal.]
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statistical significance. ThemiRNAs with higher combined scores

were selected.

Results

By analyzing the GEO database, DEGs
were identified

The microarray dataset “GSE45827” which includes primary

invasive breast carcinoma (41 TNBC, 30 Her2, 29 luminal A, and

30 luminal B) and 11 normal tissues has been analyzed. Using the

GEO2R tool, we found 1170, 1058, 733, and 854 DEGs which are

significantly variably expressed between TNBC vs. normal,

Her2 vs normal, luminal A vs. normal, and luminal B vs.

normal, respectively. Most of the DEGs overlapped between

the four molecular subtypes (Figure 1A). The heat map and

volcano plot are shown in Figure 2.

Protein–protein interaction networks
were constructed

The PPI networks with DEGs were conducted using the

STRING online tool. The edges indicate both functional and

physical protein associations. The TNBC subtype has the most

nodes and edges. A total of 501, 429, 245, and 316 nodes (genes) are

in PPI networks TNBC vs. normal, Her2 vs. normal, luminal A vs.

normal, and luminal B vs. normal, respectively (Figures 3A–D). The

topological clusters also called modules found inMCODE identified

groups of genes with a similar function, and each module has the

most effective genes, called seed genes. Similarly, the TNBC subtype

has themostmodules and seed genes. Interestingly, these sets of seed

genes in different subtypes exhibited few overlaps (Figure 1C).

Network topology was measured based on the graph theory

concepts such as MCC, degree, closeness, and betweenness. Seed

genes such as CDC6 and RFC3 were hub genes in the TNBC. In the

Her2 subtype, AURKB was identified as both a seed gene and a hub

gene. Only SRSF1 which coincided with the TNBC and

Her2 subtype was introduced as a hub gene in the luminal A

subtype. All the hub genes in the luminal B subtype overlapped with

the TNBC and Her2 subtype (Figure 1B). The hub genes are

represented in Table 1.

Pathway enrichment analysis was
performed

The pathway enrichment analysis was executed based on

genes identified by MCODE. We reached 51, 25, 10, and

15 pathways by performing the pathway enrichment analysis

from 163, 112, 53, and 88 genes, respectively (Figure 4). The

genes used to analyze pathways were those that were included in

PPI modules. The pathways involved in TNBC were mainly

about DNA replication, DNA repair, and mitosis, while in the

Her2 and luminal B types, they were mitosis, and most of the

pathways involved in Her2 and luminal B subtypes were included

in the TNBC subtype. In addition, the pathways that play a role in

luminal A were totally different from the other three subtypes,

especially associated with extracellular matrix organization and

collagen formation. In the TNBC subtype, the top three pathways

that contain the most genes are a condensation of prometaphase

chromosomes, Chk1/Chk2(Cds1)-mediated inactivation of

cyclin, and activation of ATR in response to replication stress.

In the Her2 subtype, condensation of prometaphase

chromosomes, resolution of sister chromatid cohesion, and

amplification of signals from the kinetochores are the top

three pathways. Syndecan interactions, MET-activated

PTK2 signaling, and MET-promoted cell motility are the top

three pathways in the luminal A subtype. In the luminal B

subtype, the top three pathways are an amplification of the

signal from the kinetochores, amplification of the signal from

unattached kinetochores via a MAD2 inhibitory signal, and

resolution of sister chromatid cohesion. Furthermore, there

were also some pathways that are unique to specific subtypes,

for example, the ERBB4 pathway in TNBC and the

NOTCH4 pathway in luminal B.

Survival analysis of hub genes in different
subtypes was carried out

We then considered whether the hub genes in the different

subtypes of breast cancer were associated with prognosis. The

relationship between hub gene expression and survival rates was

evaluated using the Kaplan Meier plotter. The prognostic analysis

demonstrated that hub genes such as CDC6, NDC80, BUB1B,

FOXM1, NUF2, MCM4, CDC20, BUB1, MCM2, CCNB2, ASPM,

PRC1, PLK1, HNRNPF, CCNA2, and KIF2C were related to good

prognosis in TNBC (Figure 5A). In addition, SRSF1 was negatively

correlated with overall survival (OS) in the Her2 subtype, while in

the luminal A subtype, it showed the opposite relationship (Figures

5B,C). In the luminal B subtype, CCNB1 and KIF23 were associated

with poor prognosis (Figure 5D).

The expression of prognosis-related hub
genes in each subtype was analyzed in the
GSE45827 dataset and validated in
another independent dataset

The expression of hub genes that were related to prognosis in

GSE45827 was analyzed using ggplot2 of R software. All the hub

genes that were analyzed in TNBC were upregulated, including

ASPM, BUB1, BUB1B, CCNA2, CCNB2, CDC6, CDC20, FOXM1,

HNRNPF, KIF2C, MCM2, MCM4, NDC80, NUF2, PLK1, and
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PRC1 (Figure 6A–P). SRSF1 was a hub gene that was related to

prognosis in both Her2 and Luminal A subtypes, and its

expression profiles in the two subtypes were similar—it had a

higher expression level in the normal tissues than in the tumor

tissue (Figure6Q–6R). The two hub genes that were associated

with prognosis in the luminal B subtype were also upregulated

(Figure 6S–6T). Then, we validated the expression of prognosis-

related hub genes in TCGA dataset. The expression of SRSF1 in

Her2 and luminal A subtypes is not consistent with the result of

the GEO profile analysis, and it was highly expressed in tumor

tissues rather than normal tissues (Figure 7Q–7R). The

expression levels of the rest hub genes were in accordance

with the GEO profile analysis (Figure 7A–P, Figure 7S,T).

Potential functions for each prognosis-
related hub gene were explored

We then investigated the functions of the prognosis-

related hub genes using GeneMANIA. It showed that these

genes were correlated with mitotic nuclear division

(FDR=2.13e-33), chromosome segregation (FDR=1.68e-24),

microtubule cytoskeleton organization involved in mitosis

(FDR=8.79e-20), spindle (FDR=8.94e-18), mitotic cell cycle

checkpoint (FDR=9.00e-17), negative regulation of the

mitotic cell cycle (FDR=3.42e-14), and metaphase/

anaphase transition of the mitotic cell cycle (FDR=3.00e-

17) (Figure 8).

TABLE 1 Hub genes in the PPI network.

ID MCC Degree Closeness Betweenness ID MCC Degree Closeness Betweenness

TNBC vs. normal Her2 vs. normal

CDK1 9.22E+13 89 192.19008 22078.67341 NDC80 9.22E+13 40 140.9357 1013.13909

CDC5L 8106206 77 192.6067 69392.04571 KIF2C 9.22E+13 34 139.8357 1240.99518

CCNB1 9.22E+13 64 178.27341 7504.97904 KIF11 9.22E+13 43 145.0857 2836.58396

CDC20 9.22E+13 62 165.25675 3752.95365 CDK1 9.22E+13 73 163.2691 20555.50241

BUB1 9.22E+13 57 172.85675 3211.85824 CDC20 9.22E+13 52 138.8952 2567.19563

PLK1 9.22E+13 57 171.69008 4346.90413 CCNB2 9.22E+13 47 136.4191 1209.68801

CCNB2 9.22E+13 56 160.54008 2061.86361 CCNB1 9.22E+13 50 149.0857 3631.78964

CCNA2 9.22E+13 55 161.05675 4757.15522 CCNA2 9.22E+13 44 134.2286 2002.89489

BUB1B 9.22E+13 52 168.52341 5703.00881 BUB1B 9.22E+13 45 145.3357 4540.65528

AURKB 9.22E+13 51 168.02341 2567.01982 BUB1 9.22E+13 49 148.6691 3185.181

KIF11 9.22E+13 48 167.77341 2555.27954 AURKBa 9.22E+13 46 145.8357 3137.25928

NDC80 9.22E+13 47 165.22341 1237.29857 KIF23 5.50E+12 27 131.3333 9398.7775

KIF2C 9.22E+13 42 163.02341 1465.60477 UBE2C 1.07E+12 31 123.4036 2928.73296

NUF2 9.22E+13 35 155.40317 1007.52523 CDC5L 822688 65 163.5071 53316.02571

ASPM 9.22E+13 34 145.35913 1083.30296 RACGAP1 8.86E+07 22 141.2333 18065.07384

KIF23 9.22E+13 31 149.33095 11155.80535 ECT2 41048 11 123 4077.48928

CDC6a 47892 27 140.84127 1232.15458 SRSF1 1082 12 112.3119 2071.32644

MCM2 8932 26 141.43889 3024.46868 Luminal A vs. normal

MCM4 9062 25 141.10556 1725.51468 SRSF1 1034 11 51.00238 1044.8

PRC1 3.82E+11 24 141.62341 1039.07441 Luminal B vs. normal

RACGAP1 1.25E+10 24 159.54762 17261.72834 CDK1 1.57E+11 57 110.2952 6869.988

PCNA 1845 23 139.58889 2598.0432 CDC20 1.57E+11 45 96.84524 1313.656

CHEK1 6622 20 148.45317 8464.48184 BUB1 1.57E+11 42 102.3786 1944.034

RPA1 2406 18 138.29603 2279.10647 BUB1B 1.27E+11 38 99.2119 1242.749

RFC3a 1648 15 146.13651 1025.54515 CCNB1 7.79E+10 40 100.7119 1303.47

SRSF1 1826 15 131.52937 1327.95608 RACGAP1 987987 19 94.56667 4407.43

FOXM1 6673 13 132.69881 3099.92655 KIF11 1.56E+11 37 98.87857 1629.572

ECT2 367926 11 138.58095 4860.54991 KIF23 2.62E+09 23 90.05 3930.105

HNRNPF 1729 11 128.79603 2045.45414 CDC5L 26009 47 109.5952 21827.75

ELAVL1 1693 11 128.62937 1102.88098

aSeed genes.
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miRNAs and TFs enriched with DEGs were
determined

ThemiRNAs and TFs, as important regulators of DEGs, were

predicted using the Enrichr web server. It is worth noting that the

luminal A subtype had the most TFs, while it had the least hub

genes among the four molecular subtypes. Seven TFs exerted

their function in all four subtypes (Figure 9). TFs that were

meaningful in breast cancer development are shown in Table 2.

The top 10 miRNAs enriched with DEGs in each subtype are also

shown (Figure 10).

Discussion

In the present study, bioinformatic approaches were carried

out to show the DEGs, modules, seed genes, PPI, and hub genes

in each subtype (TNBC, Her2, luminal A, and luminal B). The

topological clusters which have high-density regions in the

network, also called modules, find in MCODE-identified

groups of genes with a similar function. Genes in the highly

interconnected subnetwork modules are expected to be involved

in the same pathways or in roles with related biological functions.

Each module has a most effective gene which has high centrality,

named seed genes. The nodes in the PPI network represent genes,

while the edges indicate both functional and physical protein

associations. Nodes with high degree, betweenness, closeness,

andMCC are significant for the network and are called hub genes

which can serve as targets. The analysis of these elements implied

that the carcinogenesis and development of TNBC were the most

important and complicated processes in breast carcinoma,

occupying the most DEGs, modules, seed genes, hub genes,

and the most complex PPI network.

The role of some of those hub genes that we identified in our

study has been verified in breast cancer, such as UBE2C whose

overexpression plays a critical role in the incidence and

development of breast cancer, and such a therapeutic strategy

that combines palbociclib with tamoxifen might be promising in

patients with HR+/HER2-breast cancer overexpressing UBE2C

(Mo et al., 2017; Kim et al., 2019). Otherwise, it is reported that

MCM2 and MCM4, which have a higher expression in high

histological grade breast cancer, may be used as useful

parameters to distinguish luminal A and luminal B subtypes

instead of ki-67 and are related to poor prognosis (Issac et al.,

FIGURE 4
Pathway enrichment analysis of clustered genes. Interconnected and informative pathways mainly are indicated by identical colors. The most
significant pathway in each network is labeled. [(A): TNBC vs. normal, (B) Her2 vs. normal, (C) luminal A vs. normal, and (D) luminal B vs. normal].
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2019), which is partly consistent with our results in the TNBC

subtype. Also, high expression of RACGAP1 is supposed to be not

only a strong poor prognostic marker in luminal-like breast

cancer but might also be a predictor of response to treatment with

tamoxifen and adjuvant chemotherapy (Milde-Langosch et al.,

2013). In addition, the expression levels ofCDK1 andCCNA2 have

been previously revealed to be considerably higher in breast cancer

tissues than those in normal tissues, and these genes lead to breast

cancer development and are related to poor prognosis (Xing et al.,

2021); however, compared with their study, we found that

CDK1 had an independent association with prognosis, and the

discrepancy may be due to different analysis methods, as we

analyzed according to the subtype while they did not. Others

have shown that overexpression of CDC20 indicates unfavorable

prognosis and poor response to endocrine therapy in ER + breast

cancer (Alfarsi et al., 2019; Tang et al., 2019); in contrast, we

discovered that CDC20 was related to worse prognosis only in the

TNBC subtype, and we think that the different datasets that we

analyzed result in the inconsistency. Other genes such as BUB1,

NUF2, CDC20, ASPM, KIF2C, and PRC1 have biological relevance

to breast cancer progression, and PLK1, NDC80, and CCNB2 only

to TNBC progression, and these genes predict worse prognosis

(Wang et al., 2015; Tang et al., 2019; Yang et al., 2019; Lv et al.,

2020; Ren et al., 2020; Chen et al., 2021; Jiang et al., 2021; Koyuncu

et al., 2021); likewise, we also found that these genes correlated

negatively with prognosis in the TNBC subtype. Moreover, it is

also reported that high expression levels of AURKB, CDC6, and

ECT2 suggest a poor prognosis for breast cancer (Mahadevappa

et al., 2017; Daulat et al., 2019; Huang et al., 2019; Xiu et al., 2019),

whereas we only found that CDC6was negatively positively related

to overall survival, and we consider that it is also the different

datasets and analysis methods that cause the disparity.

Furthermore, it is previously revealed that it might be an

efficient therapeutic method to target FOXM1 to impede

advanced relapse and treat endocrine resistance (Roßwag et al.,

2021). In addition, genes such as SRSF1, BUB1B, KIF23, and

HNRNPF also play an important role in breast cancer, but so

far, there is few reports on the association between these genes and

the treatment or prognosis of breast cancer in the previous studies

(Tyson-Capper and Gautrey, 2018; Du et al., 2021; Jian et al., 2021;

Koyuncu et al., 2021); inspiringly, we performed it and obtained an

exact result in our study. Also, we newly introduced applicant

genes such as RPA1 and CDC5L in TNBC, but their mechanism

remains to be discovered with exploratory studies.

FIGURE 5
Prognostic value of hub genes. Forest plots show the correlation between hub gene expression and prognosis in different subtypes of breast
cancer. [(A): TNBC, (B) Her2, (C) luminal A, and (D) luminal (B).]
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In terms of the pathway enrichment analysis, the nodes

represent the pathway, while the edges mean that there is a

functional similarity between the two pathways. As was

consistent with the abovementioned analysis, the pathway

enrichment analysis also showed that TNBC is the most

complex subtype in breast cancer. In addition, there is an

overlap of the pathways in the TNBC, Her2, and luminal B

subtypes, while the pathways enriched in the luminal A

subtype were unique. This suggested that the luminal A

subtype occurs in a completely different way. If so, the

treatment of the luminal A subtype should be different

from the other three subtypes, especially the postsurgical

adjuvant therapy, or in other words, there should be a

specific treatment strategy to be formulated just for the

luminal A subtype compared with the others. Of course,

pathways about DNA replication and DNA repair are only

included in TNBC, which means studies focused on these

pathways can help shed light upon TNBC and develop

treatments that are only indicated for TNBC. Also, for the

same reason, patients of TNBC, Her2, and luminal B subtypes

may benefit from studies on mitosis in the future. Otherwise, in

addition to pathways related to DNA replication, DNA repair,

FIGURE 6
Expression of hub genes in GSE45827. (A–P) ASPM, BUB1, BUB1B, CCNA2, CCNB2, CDC6, CDC20, FOXM1, HNRNPF, KIF2C, MCM2, MCM4,
NDC80, NUF2, PLK1, PRC1 expression in TNBC subtype. (Q) SRSF1 expression in Her2 subtype. (R) SRSF1 expression in Luminal A subtype. (S,T)
CCNB1, KIF 23 expression in Luminal B subtype.
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and mitosis, the ERBB4 signal was only enriched in TNBC,

while the NOTCH4 signal was only in the Her2 subtype, and

chemokine and kinesins in both of them, compared with the

luminal B subtype. ERBB4, a member of the human epidermal

growth factor receptor family, has been previously reported to

be a valuable prognostic marker when united with the

pathologic stage in TNBC and may be helpful in predicting

the therapeutic efficacy for TNBC (Kim et al., 2016). However,

the biological function of ERBB4 and its potential as a cancer

drug target have not been explicitly described, and we also

hope that patients suffering from TNBC with

ERBB4 overexpression would benefit from further clinical

trials on receptor tyrosine kinase (RTKs). NOTCH4 has

been identified to hinder differentiation, functional

development, and branching morphogenesis of the

mammary epithelium (Uyttendaele et al., 1998). In breast

cancer, NOTCH4 is predominantly expressed in the

Her2 subtype, and the expression is also discovered to be

associated with bad prognostic factors (Wang et al., 2018).

As the NOTCH4 signal pathway is found to be enriched in the

FIGURE 7
Validation of hub genes in TCGA dataset. (A–P) ASPM, BUB1, BUB1B, CCNA2, CCNB2, CDC6, CDC20, FOXM1, HNRNPF, KIF2C,MCM2,MCM4,
NDC80, NUF2, PLK1, PRC1 expression in TNBC subtype. (Q) SRSF1 expression in Her2 subtype. (R) SRSF1 expression in Luminal A subtype. (S,T)
CCNB1, KIF 23 expression in Luminal B subtype.
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Her2 subtype in our study, using NOTCH4 antagonists to

suppress NOTCH4 signaling may be a novel and individually

distinct strategy to treat Her2 subtype breast cancer.

According to the result of TF analysis, although most of the

TFs have been reported to be associated with breast cancer, there

were still TFs such as EOMES, POU3F2, NR3C1, and RUNX1 that

were less reported in breast cancer. Studies focused on these TFs

may shed light upon breast cancer in a new way and provide a

novel therapeutic strategy. For microRNA analysis, the miR-875

family has been reported to serve as a marker for detection and

prognosis in breast cancer (Liu et al., 2021). Others, such as miR-

1284, miR-3613, and miR-208a families play a role in the

progression of breast cancer (Zhang et al., 2019; Zou et al.,

2019; Liu Y. et al., 2020). It is valuable to investigate other

miRNAs in experimental studies.

The present research also includes some limitations. First,

our study only looks at data in one dataset, and the GPL

platform used in the dataset is now not universally applicable.

Second, most of the clinicopathologic features are not

included in the dataset, and we cannot rule out that these

factors might have influenced our results. Third, we just

FIGURE 8
Protein–protein interaction network (GeneMANIA) of prognosis-related hub genes.

FIGURE 9
Overlapping of TFs.
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predicted the TFs and miRNAs through DEGs and did not

calculate the relationship between them or carry out

experiments to validate it, but this is just what we are

doing now.

Conclusion

In this study, we preliminarily delved into the potentially

comprehensive molecular mechanisms of breast cancer by

TABLE 2 Transcription factor enrichment analysis.

TNBC vs. normal Her2 vs. normal Luminal A vs. normal Luminal B vs. normal

E2F4 CLOCK CLOCK CLOCK

AR FOXM1 FOXM1 FOXM1

CLOCK RELA ZNF217 RELA

RELA POU3F2 SOX2 BACH1

E2F7 BACH1 WT1 SOX2

BACH1 ZNF217 RELA EOMES

CHD1 AR CJUN AR

KDM6A SOX2 AHR

E2F1 FOXA1 ESR1

FOXM1 PIAS1 AR

E2F7 ESR2

AHR ARNT

CJUN NR3C1

WT1 PIAS1

SMAD4 RUNX1

PPAR

SMAD4

FIGURE 10
miRNA enrichment analysis results.

Frontiers in Genetics frontiersin.org12

Wang et al. 10.3389/fgene.2022.989565

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.989565


creating a holistic view at the genomic and transcriptomic levels in

different subtypes using computational tools. Our study introduced

a network of genes, pathways, prognosis-related genes, TFs, and

miRNAs which are possibly associated with a different subtype of

breast cancer, and they can be good candidates for further analysis

and provide novel approaches to treat breast cancer.
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