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Homologous recombination deficiency (HRD) is a critical feature guiding drug

and treatment selection, mainly for ovarian and breast cancers. As it cannot be

directly observed, HRD status is estimated on a small set of genomic instability

features from sequencing data. The existing methods often perform poorly

when handling targeted panel sequencing data; however, the targeted panel is

the most popular sequencing strategy in clinical practices. Thus, we proposed

HRD-MILN to overcome the computational challenges from targeted panel

sequencing. HRD-MILN incorporated a multi-instance learning framework to

discover as many loss of heterozygosity (LOH) associated with HRD status to

cluster as possible. Then the HRD score is obtained based on the association

between the LOHs and the cluster in the sample to be estimated, and finally, the

HRD status is estimated based on the score.

In comparison experiments on targeted panel sequencing data, the Precision of

HRD-MILN could achieve 87%, significantly improved from 63% reported by the

existing methods, where the highest margin of improvement reached 14%. It

also presented advantages on whole exome sequencing data. Based on our

best knowledge, HRD-MILN is the first practical tool for estimating HRD status

from targeted panel sequencing data and could benefit clinical applications.
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1 Introduction

Homologous recombination repair deficiency (HRD) usually refers to a state of

Homologous Recombination Repair (HRR) dysfunction at the cellular level. HRD is a

more stable molecular marker of malignancy (Moore et al., 2019), whose positive status is

often found in various malignant tumors including ovarian, breast, and pancreatic ductal
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cancers (Pellegrino et al., 2020). Clinical studies have shown that

cancer patients with HRD-positive status present highly sensitive

to platinum-based chemotherapy and poly (ADP-ribose)

polymerase (PARP) inhibitors (Konstantinopoulos et al., 2015;

Telli et al., 2016). Thus, estimating HRD status in breast/ovarian

cancer patients can expand the benefit population and improve

prognosis (González-Martín et al., 2019; Ray-Coquard et al.,

2019; Fasching et al., 2021). The development of PARP inhibitors

as high-grade serous carcinoma of the ovary, fallopian tube, or

peritoneum (HGSC) therapy resulted from the observation that

BRCAmutations significantly increased the in vitro susceptibility

of cancer cells to PARP inhibition (Bryant et al., 2005; Farmer

et al., 2005).

Unfortunately, estimating HRD status is a complicated

computational problem. The initial idea detects the related

germline variations (Hoppe et al., 2018) or somatic mutations

(GSM) on BRCA1/2 genes (Bell et al., 2011). But later studies

reported a lot of negative examples (Mirza et al., 2016; Coleman

et al., 2017; Pujade-Lauraine et al., 2017). It is suggested that

more markers should be considered in HRD estimation. Powered

by genome sequencing, current methods estimating HRD status

are all NGS data-based (Sztupinszki et al., 2018). There are state-

of-the-art methods for whole-exome sequencing (WES) or

whole-genome sequencing (WGS) data. At present, the

popular clinical sequencing assays for HRD have four

categories: HRR-related gene mutation assays (Ledermann

et al., 2016; Sherill-Rofe et al., 2019), Genomic Instability

Score (GIS) (Alexandrov et al., 2015), mutation signature

(Alexandrov et al., 2013; Alexandrov et al., 2020), and HRD

functional assays. The clinical validity of HRD functional assays

has not been well confirmed (Miller et al., 2020), as each type of

method has its limitations, especially when handling targeted

panel sequencing data. In the Background section, we discuss the

computational issues on targeted panel sequencing data in detail.

Here, we provide HRD-MILN, a novel machine learning-

based approach for estimating HRD status. It accurately and

efficiently captures the genomic features of LOH from targeted

panel sequencing data. Since it is hard to model the unclear/non-

significant associations between a LOHmutation on the genomic

level and the HRD status on the patient level, we use a supervised

learning information imprecise multi-instance learning (MIL)

framework to solve the critical computational issue. Comparison

experiments on real sequencing data validate the MIL model.

Based on our best knowledge, HRD-MILN is the first practical

tool for estimating HRD status from panel sequencing data and

could benefit clinical applications.

2 Background

The initial biomarker for HRD is GSM on BRCA1/2 genes

(Bell et al., 2011; Kanchi et al., 2014). It is soon reported

insufficient because HRR involves dozens of known genes,

and abnormalities in these genes may also contribute to the

HRD phenotype (Lee and Kopetz, 2022). There is no clear

evidence that HRD can also arise through GSM or

methylation of a broader set of HRR-related genes or other

as-yet-undefined mechanisms (Radhakrishnan et al., 2014).

Furthermore, clinical studies showed that it as a biomarker for

predicting PARPi or platinum responses in HGSC patients

cannot currently be established (Swisher et al., 2009; Swisher

et al., 2017; Bernards et al., 2018). Some scholars emphasize

mutational signature (MS) as a novel biomarker for judging HRD

(Davies et al., 2017; O’Kane et al., 2017). Another opinion

suggests the somatic copy number variations (SCNVs) imply

genomic scars (Miller et al., 2020), e.g., telomeric allelic

imbalance (TAI) (Birkbak et al., 2012) and large-scale state

transition (LST) (Popova et al., 2012). From the ARIEL

studies of rucaparib, LOH status can be a biomarker of

PARPi response (Mirza et al., 2016). Thus, HRD biomarkers

have three categories: 1) GSM based, 2) copy number variation

based, and 3) LOH based. As LOH is composed of mutations and

copy number variations, LOH is considered the most potential

efficient biomarker (Abkevich et al., 2012).

The existing methods for estimating HRD status are

developed based on the different HRD biomarkers or

combinations. Some approaches are based on GSM in HRR-

related genes (including BRCA1/2). Although GSM in BRCA1/

2 significantly increased the in vitro Sensitivity of cancer cells to

PARP inhibition (Bryant et al., 2005; Farmer et al., 2005), it is not

sufficient. Furthermore, GSM in other HRR-related genes is

associated with distinct sensitivities to PARPi (Marshall et al.,

2019). Some approaches are based on the MS. This strategy

analyzes MS mainly relies on mutational features, transcriptional

strand bias, genomic distribution, and association analysis with

genomic features to cluster and transform each type of mutation

into a visual pattern. This type of approach has achieved good

results in estimating cancers with HRD. However, it needs as

much genome-wide information as possible is likely to offer

greater specificity and Sensitivity (Miller et al., 2020), e.g.,

MutationalPatterns (Blokzijl et al., 2018) and YAPSA

(Hübschmann et al., 2021). So they might work for WES or

WGS (Goldfeder et al., 2016) but not for targeted panel

sequencing. Moreover, this strategy lacks clinical evidence to

support the efficacy prediction of PARP inhibitors, and its

application is objectively limited by using paraffin-embedded

samples for clinical testing. Some other approaches are based on

genomic scar. There are two commercially available assays, the

tumor BRCA mutation assays with an unweighted sum of GIS or

the assessment of the sub-chromosomal LOH portion of the

genome (Telli et al., 2016). For GIS, BRCA mutation-positive or

GIS score ≥42 can be considered HRD-positive (Telli et al., 2016).

The LOH test’s predefined cut-off of 14% or more defines LOH-

high. It is deemed to be positive for HRD (Bell et al., 2011). The

utility of LOH or GIS showed good clinical validity in their ability

to determine the BRCAwt subgroups that benefited more from
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PARPi in the relapse platinum-sensitive setting (Miller et al.,

2020). However, the accuracy of existing strategies of LOH or GIS

is based primarily on the accuracy of the SCNV assay by the

number of genomic scars for patient tumor samples. The current

SCNV detection tools cannot accurately detect genomic scars.

These false-positive genomic scars can misclassify the sample as

false-positive for HRD.

Moreover, there were discrepant results in the HRD scores in

different races, cancer species, and lifestyles or living conditions

(Pellegrino et al., 2020). Thus, estimating the HRD status by a

uniform threshold is problematic, an unweighted sum of GIS.

Most importantly, such methods generally require high DNA

loading, sequencing data volume, GSM covering the HRR

signaling pathway, etc. The genomic distribution of target

regions is often sparse and uneven on targeted panel

sequencing data (Li et al., 2012; Talevich et al., 2016).

Therefore, TAI and LST cannot be obtained, which may lead

to low GIS on the panel data, thus misclassifying the sample to be

tested as negative for HRD.

Some machine learning (ML) based approaches use HRD

biomarkers to build ML models for estimating HRD status

(Watkins et al., 2014; Chao et al., 2018; Nguyen et al., 2020).

For example, HRDetect (Davies et al., 2017) used a lasso logistic

regression model to identify six distinguishing MS predictive of

BRCA1/BRCA2 deficiency (Gulhan et al., 2019). Using a

machine learning approach instead of a single metric

threshold approach has more significant advantages. It can

effectively solve the accuracy problems and lack of

generalization of the traditional HRD score calculation

method. However, these methods have two disadvantages. 1)

The premise of using supervised learning algorithms is that we

have access to the labels of the training instances. However, we do

not know the intrinsic connection between HRD biomarkers and

HRD. These markers are only a manifestation of HRD, i.e., we

cannot get the label of genomic scars to determine HRD

(Watkins et al., 2014; Telli et al., 2016). 2) Due to the

limitation of targeted panel sequencing, only LOH can be

obtained, and obtaining other genomic scars information is

difficult. Therefore, most methods are developed for WGS or

WES but not targeted panel sequencing data.

3 Materials and methods

We proposed a newmethod to estimate HRD status based on

a multiple instance learning framework. It is not reasonable that

the existing ML model often adopts an aggressive strategy to

obtain the training data (Davies et al., 2017; Miller et al., 2020):

For an HRD-positive patient, assign all LOH (or LST, TAI) calls

of this patient’s positive labels from a medical view. Meanwhile,

the false-positive genomic scars can also affect the accuracy of

this strategy (Miller et al., 2020). The latest research now suggests

that there must be an association between LOHs and assessment

of HRD status (Miller et al., 2020), which means it is certain that

the presence of one or more LOHs makes the sample positive for

HRD, but precisely what that association is not yet clear. Our

research has two main steps to estimate HRD status based on a

multiple instance learning framework. One step is identifying the

potential association pattern between the LOHs and HRD status

during training. Another step is to calculate the HRD score based

on the association between the LOHs and the clusters in the

sample to be estimated. This way, we can estimate the HRD status

without giving the LOH label.

3.1 Identifying the potential association
pattern between the LOHs and HRD status

In our research, we can’t get the label of LOH for estimating

the HRD status. Therefore, we adopt the MIL (Maron and

Lozano-P\’rez, 1997), which does not need category labels of

instances, and the training package has category labels. Here, we

set every sample as a package and each LOH status in every

package as an instance. The core idea of the multi-instance

learning method was that if one instance in the package were

close enough to the calculated target concept point, it would be

considered positive. However, due to the difference and

complexity of the individual samples, the complexity and

diversity of LOH, or the inaccuracy of the detection results,

we modified multi-instance learning by proposing k target

concept points (LOHs cluster) for detecting HRD. The input

of HRD-MILN is a LOH file (TSV format), which is the result file

of FACETS (Shen and Seshan, 2016) detection LOH. The output

of our model is the HRD score, which is the prediction of the

HRD status by HRD-MILN for a cancer sample. We collected 56-

panel capture and 44 whole-exome sequencing samples to

develop our model. All these samples are labeled with HRD

status.

3.1.1 Features selection for LOH
The initial feature dimension of LOH is 14. However,

redundant features may affect the performance of the models.

Therefore, we also performed feature selection for HRD-MILN.

Due to MIL being different fromMI, we used two steps (Ablation

studying and Calculating the importance of each feature) for

feature selection for LOH. First, the number of maximum

practical features is calculated by Ablation studying. Then, the

valuable features of LOH are selected by Calculating the feature’s

importance.

3.1.2 Ablation studying
To the candidate the adequate number of features, we adopt

the strategy of ablation experiment based on MILBoost (Viola

et al., 2007). MILBoost is a feature selection method for MIL,

which focuses on feature selection through the boosting

framework. In our ablation experiments, we first fix random
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seeds and then observe and analyze the change in model

performance as the number of features decreases. In each

number-of-features experiment, i.e., when the number of

features is fixed, we randomly select different features and

perform 50 experiments, taking the mean value as a result.

For each number of features, we served 100 experiments and

finally took the mean value as the final result. We use the default

parameters of MILBoost. Our experimental results show that the

number of practical features of LOH is 9 (Supplemental Figure

S1), so the default number of LOH features in HRD-MILN is 9.

Of course, the reader can candidate the most effective number of

LOHs according to their data type.

3.1.3 Calculating the importance of the feature
The initial features of LOH are (chrom, num. mark, nhet,

cnlr. median, mafR, segcl, cnlr. median.clust, mafR.clust, start,

end, cf. em, tcn. em, lcn. em). We used MILBoost to calculate

each LOH feature’s importance for developing the model

(Figure 1). Combining the adequate number of features and

Figure 1, we finally selected the following nine features,

including (nhet, cnlr. median, mafR, mafR.clust, start, end,

cf. em, tcn. em, and lcn. em) (Table 1), as well as the adequate

number of features and the feature importance of LOH. On

the other hand, as a machine learning framework, although we

have prior knowledge of some features, these features of LOH

may not directly imply HRD-positive susceptibility. Here, we

analyzed these features according to the training data. We

believe that more biological or medical research will explain

the potential susceptibility in the future. Next, the min-max

normalization is used on the feature attributes. We scaled the

attribute data with a significant difference, which would fall

into a small interval to improve the algorithm’s convergence

speed and detection accuracy.

3.1.4 The LOHs cluster for estimating HRD status

As shown in Figure 2, the LOH instance was regarded as a

point, and one sample package had multiple LOH instances.

The trajectories of these LOHs were treated as a manifold. For

example, in point A, this intersection should satisfy every

positive package passed through this point, and no negative

sample package passed through it (It may be a target LOH).

LOH instances and sample packages were subjected to a

particular probability distribution. The diversity density

(DD) (Maron and Lozano-P\’rez, 1997) function value of a

LOH instance was this point’s probability value, satisfying the

potential positive or negative sample package distribution.

One LOH instance had a DD value to find the max DD

value as the target concept LOH. Then we used this target

concept LOH as a reference to calculate the distance between

every LOH and this LOH and then determine the HRD status

of this sample through whether the minimum distance was

within the threshold. Based on the complexity of our research

content, we propose a strategy of multiple target concept

LOHs and gather them into a cluster (named the LOHs

cluster). Finally, the LOHs in the samples to be estimated

are clustered with the LOHs cluster, and this process can filter

the false-positive LOHs and LOHs that are not related to HRD

status.

FIGURE 1
The importance of LOH features.
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3.1.5 Identifying the association between the LOHs

cluster and HRD status

The influence of every characteristic on the label could be

modeled in the DD algorithm by associating an unknown factor.

The target concept LOH, which means hot spot LOH, consisted

of two values the ideal attribute value and the scale value. T �
{t1, t2,/, tK} represented the target concept LOHs,

tk � {tk1, tk2,/, tkm}, tnd represented dth feature of tk, m is the

dimension of the feature, and label(Bi|T) represented the

prediction of Bi with T. Bi+ represented the ith HRD positive

sample, Bij+ represented the jth LOH instance in the ith HRD

positive sample. Bijd+ described the dth feature of LOH in the jth

LOH instance of the ithHRD positive sample. The same as the Bi-,

Bij-, Bijd-.

Pr(t � tk
∣∣∣∣Bij) � exp

⎧⎨⎩ −∑m

d�1(sd(Bijd − tkd))2⎫⎬⎭ (1)

Pr is denoted as the probability of the LOH becoming a

potential target concept point, defined as the distance between

the LOH and the target concept point. The similarity between

FIGURE 2
The schematic diagram of the target point. Showed in the figure, an instance was regarded as a point, and one package had multiple instances.
The trajectories of these instances were treated as a manifold. For example, in point A, this intersection should satisfy that every positive package
passed through this point, and no negative package passed through this point. So, point A may be a target point.

TABLE 1 The specific meaning of every feature attribution.

Feature Specific meaning

chrom The No. of chromosome

seg ID number in this segment started from 1

num.mark Detection intervals contained in this segment

nhet Heterozygous SNP included in this segment

cnlr.median The median of the copy number log ratio in this segment

segclust This segment cluster was based on tcn and icn

cnlr.median.clust The median of the copy number log ratio in this cluster

start The start position

end The end position

mafR The summary statistic of log odd-ratio as described

mafR.clust The summary statistic of log odd-ratio as described in this cluster

cf.em The em value of the cell content in this segment

tcn.em The em value of the total copy number in this segment

lcn.em The em value of the less copy number in this segment
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the conformation and the ideal shape increased, and the

bending strength decreased exponentially. Eq. 1 was used

to determine if T is a real target concept of LOH. Since

some of the features may be uncorrelated or need a higher

weight, thus we used the weighted Euclidean distance

(Ungerboeck, 2006) to measure the distance between LOHs,

and sd represented the weight of the dth feature. The initial

default value of sd is 1. Readers can set it according to their

own data.

3.2 Efficiently solving the model by
modifying the EMDD algorithm

A single target concept LOH was used in the traditional

experiment using the multi-instance learning method (Zhang

and Goldman, 2001) algorithm (e.g., EMDD) to detect HRD

status. However, the prediction of the category of the package

would bed unsatisfactory. EMDD is a very typical and widely

used multi-instance learning method. Thus, we choose EMDD as

the research object and improve it to verify the effectiveness of

our proposed multiple target concept points in detecting HRD.

Our model processes a standard TSV file containing LOH and

outputs a regular TSV file. To ensure that the relationship

between K target LOHs is low, we used the weighted

Euclidean distance to measure the distance among points. So,

our strategy is suitable to solve the hot spots and randomness

problems of LOH for HRD detection. The main steps are as

follows.

E-step: We selected several initial LOH instances that were

most likely to be labeled, different from the traditional EMDD

algorithm. Then we used the current hypothetical target t to

estimate the most probable label LOH in each training package

(here means sample), and these LOH instances represented their

respective packages. The Pro was used as the threshold of reliable

candidate target LOH instances.

label(Bi|T) � ∑K
i�kp

p
k

K
, pp

k >Pro, pp
k ∈ Pr(Bij

∣∣∣∣t � tk) (2)

NNLDD(T,D) � ∑K
k�1∑n

i�1( − logPr(li∣∣∣∣t′k, Bi))
K

(3)
t′ � {t1′, t2′,/, t′k},∏Pr(li∣∣∣∣t′k)>Pro, k ∈ K (4)

Here, Label(Bi|T) or li represented the candidate label of Bi.

pi* meant the possibility of candidate label of Bi with the target

point i. K represented the number of target points. NNLDD

represented DD values of K target points. t’ represented the new

concept point.

M-step: According to the above Eq. 2 Eq. 3 Eq. 4, we used the

gradient ascent method to obtain the K new concept points t’ for

these training examples. Then we used the t’ to replace the t in the

E-step. Repeat E-step andM-step until the difference between the

adjacent t values converges.

3.3 Calculating the HRD score to estimate
HRD status

By the above steps, we can get the LOHs in the sample to be

estimated similar to the LOHs cluster. Then, according to these

LOHs, calculate the HRD score. Briefly as below: Bi represented

the ith sample to be expected, Bij represented the jth LOH

instance in the ith sample to be predicted. Bijk described the

kth feature of LOH in the jth LOH instance of the ith sample.

Next, we can calculate the probability of it being LOH instance

positive (the HRD score) by Eq. 6. Then we can determine

whether the LOH to be tested is a LOH instance positive by Eq.

5, Eq. 7. As long as there was a LOH instance positive in a

sample, the sample was labeled positive HRD status, otherwise

negative HRD status.

fHRD−MILN(Bi) �
⎧⎨⎩ +1,∃f(Bij) � +1

−1,∃f(Bij) � −1 , (1≤ i≤ n, 1≤ j≤ n) (5)

Pro(Bij) �
∑K

k�1exp{ − ∑n
d�1(sd(Bijd − tkd))2}
K

(6)

f(Bij) � ⎧⎨⎩ � +1, Pro(Bij)≥NNLDDp
thre

� −1, Pro(Bij)≤NNLDDp
thre

(7)

Here, fHRD-MILN(Bi) means the prediction of the HRD

status of HRD-MILN. NNLDDthre* means the sample’s

probability threshold is HRD positive, trained by E-step

and M-step.

3.4 Data collection and bioinformatics
pipeline

3.4.1 Targeted panel sequencing samples
We had panel capture sequencing data of 56 cancer samples

with knownHRD status, including 28 HRD positive and 28 HRD

negative samples. And these samples were provided by Gene+,

Inc. We worked with the BAM files, which were obtained from

https://db.cngb.org/.

3.4.2 Whole-exome sequencing samples
3.4.2.1 Study design and patients

In the meantime, subjects recruited for this study included a

subset of clinically diagnosed breast cancer (25 individuals) and

ovarian cancer (19 individuals) patients in the Department of

Oncology, the Second Affiliated Hospital of Xi’an Jiaotong

University (Approval No. 2022038). The institutional review

and privacy boards reviewed this trial at all sites. All patients

provided written informed consent.

3.4.2.2 WES and LOH analysis

This cohort’s available tumor tissues from 44 patients

underwent whole-exome sequencing (WES). Genomic DNA
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was obtained from formalin-fixed, paraffin-embedded (FFPE), or

aspirated biopsy tumor specimens and blood samples QIAamp

DNA FFPE Tissue Kit and DNeasy Blood Tissue Kit (Qiagen,

United States), respectively, and analyzed using the dsDNA HS

detection kit (ThermoFisher Scientific, United States). All

samples were sequenced on an Illumina Hiseq4000 instrument

using the 150 PE protocol (Illumina, United States). The quality

control of FASTQ files is dealt with by Trimmomaticc (Bolger

et al., 2014). Paired-end reads were then mapped to the human

reference genome (hg19) using BWA-MEM (v.0.7.15) (Li and

Durbin, 2009). Duplicate reads were marked by the

MarkDuplicates tool in Picard. GATK3 was used to process

the resulting BAM files to correct mapping and base quality

score recalibration (Van der Auwera et al., 2013). We used

ContEst (Broad Institute, contamination rate <0.02) to

estimate Cross-sample (Cibulskis et al., 2011). We used

Mutect (Cibulskis et al., 2013) and Scalpel (Fang et al., 2016)

to call Somatic Single Nucleotide Variant and insertion/deletions.

We used Snp-pileup (Shen and Seshan, 2016) to generate a CSV

file containing SNV information on each chromosome from each

dataset’s Bam file (BamN and BamT). Then, we used Facets

(Shen and Seshan, 2016) to generate a *_cncf. TSV file containing

copy number variations from the results of the Snp-pileup.

4 Results

To evaluate the performance of HRD-MILN, we conduct

experiments on real datasets, which contain panel capture

sequencing data of 56 cancer samples with known HRD status

(28 HRD positive samples and 28 HRD negative samples), and a

subset of WES samples of clinically diagnosed breast cancer

(25 individuals) and ovarian cancer (19 individuals) patients.

First, we did multiple experiments to demonstrate that multiple

target LOHs affect the algorithm’s accuracy in detecting HRD.

We also did several experiments to compare the proposed

method and the original algorithm (EMDD). Finally, we also

did several experiments to compare the performance of detecting

HRD between HRD-MILN and the existing algorithm (SigMA)

(Gulhan et al., 2019). In addition, the performance of the above

methods is quantified by Precision, Sensitivity, and f1-score,

where precision = TP/(TP + FP), sensitivity = TP/(TP + FN),

and f1-score is the harmonic mean between the Precision and

Sensitivity. TP is the number of true positive HRD samples, FP

denotes the number of false positive HRD samples, and FN

represents the number of false negative HRD samples. Their

default parameters are used to compare our method with existing

ones fairly.

4.1 Application of HRD-MILN to targeted
panel sequencing samples

Prediction of HRD status was a binary classification

problem (Ledermann et al., 2016). Due to the small

samples, the experiment used the 10-fold cross-validation

method and Nested cross-validation. To select an

appropriate target concept point and the appropriate Pro

threshold, 500 sets of experiments were done. Through

multiple sets of pre-experiments, we set the default Pro

threshold of candidate target concept points to 0.9

(Table.2). Meanwhile, to verify the necessity of the HRD-

MILN method to predict the HRD status based on the panel

sequencing data, a total of 500 sets of experiments were also

done. The variance of the 10-fold cross-validation is 0.00084.

Nested cross-validation is very suitable for small-sample

machine learning modeling. Varma et al. (Varma and

Simon, 2006) show in their paper that the test set error

obtained using nested cross-validation is almost the correct

error. Comparing the scores of nested cross-validation with

the regular procedure (Supplemental Figure S2) shows that

the average difference is 0.000522 with std. dev. of 0.000920, it

is again demonstrated that our proposed method is still valid

in the case of small samples. The specific accuracy of the

different targets model is shown in Table.3. From Table.3, it

could be seen that the candidate target was 3, the average scores of

Precision, Sensitivity, and f-score were all of the best, and the

accuracy of each group was not fluctuate much. Note that the

difference between our model and EMDD is that the number of

target points is different (k vs. 1), and the number of the target

point of EMDD is 1. According to the particularity of the HRD

samples, it was necessary to improve the EMDD algorithm and

propose constructing a multiple target concept point to assist

decision-making in improving the accuracy of HRD detection. On

the other hand, due to the particularity and complexity of HRD,

introducing too many targets may introduce time complexity and

background noise, which would affect the final experimental

results.

Due to the difference and complexity of the individual

samples, the complexity and diversity of LOH, or the

inaccuracy of the detection results, it is hard for the EMDD

algorithm (a single target concept in general) to detect HRD.

Therefore, according to the characteristics of our study

content, the EM was improved to help us better determine

the HRD status of tumor samples more accurately. We

compared the results tested by the two methods (Table.4;

Figure 3). The improved HRD-MILN (the average Precision is

TABLE 2 Results under different Pro thresholds for selecting target
points. Abbreviations: h: hour. Pro: the threshold of reliable
candidate target points.

Pro 0.85 0.90 0.95 0.97

Average Targets 4 3 2 1

Average Time 2 h 1 h 0.5 h 0.3 h
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0.88, Sensitivity is 0.87, F1-score is 0.87) is significantly better

than EMDD (the average Precision is 0.72, Sensitivity is 0.68,

F1-score is 0.70) in detecting HRD. To verify the effectiveness

and necessity of the HRD-MILN method for panel sequencing

data, we compared HRD-MILN with SigMA, the best model

for detecting HRD based on panel sequencing data (Figure 3).

HRD-MILN had higher scores (with a precision of 0.88,

sensitivity 0.87, F1-score 0.87) than SigMA (with precision

0.76, sensitivity 0.63, F1-score 0.62) on each Evaluation

indicators. This also proved the validity, accuracy, and

necessity of HRD-MILN.

At the same time, we also compared HRD-MILN with ML

for detecting HRD based on panel sequencing data (Figure 4).

HRD-MILN had higher scores (with a Precision of 0.88, the

Sensitivity of 0.87, F1-score 0.87) than machine learnings

(MLS) (the best ML scores are precision 0.81, sensitivity

0.65, F1-score 0.72) on each Evaluation indicators. This

TABLE 3 Model accuracy in different targets on the panel sequencing
data.

Groups Average Targets Precision Sensitivity F1-score

Group 1 1 0.25 0.5 0.33

2 0.74 0.73 0.73

3 0.89 0.88 0.88

4 0.80 0.79 0.79

Group 2 1 0.76 0.54 0.63

2 0.80 0.77 0.78

3 0.87 0.86 0.86

4 0.84 0.80 0.82

Group 3 1 0.76 0.54 0.63

2 0.75 0.73 0.74

3 0.85 0.85 0.85

4 0.76 0.73 0.74

Group 4 1 0.52 1 0.68

2 0.88 0.88 0.88

3 0.91 0.91 0.91

4 0.92 0.91 0.91

Group 5 1 0.82 0.71 0.76

2 0.78 0.70 0.73

3 0.79 0.75 0.77

4 0.77 0.68 0.72

Group 6 1 0.76 0.54 0.63

2 0.84 0.80 0.82

3 0.90 0.89 0.89

4 0.89 0.88 0.88

Group 7 1 0.76 0.54 0.63

2 0.75 0.70 0.72

3 0.89 0.89 0.89

4 0.88 0.84 0.86

Group 8 1 0.81 0.80 0.80

2 0.85 0.82 0.83

3 0.88 0.87 0.87

4 0.81 0.80 0.80

Group 9 1 0.90 0.88 0.89

2 0.83 0.73 0.78

3 0.91 0.90 0.90

4 0.86 0.86 0.86

Group 10 1 0.83 0.75 0.79

2 0.79 0.62 0.69

3 0.86 0.85 0.85

4 0.74 0.68 0.71

TABLE 4 HRD-MILN vs. EMDD. We compared various aspects of HRD
detection performance of HRD-MILN and EMDD on the panel
sequencing data. Abbreviations: HRD: Homologous recombination
deficiency.

Methods Precision Sensitivity F1-score

Group 1 EMDD 0.25 0.5 0.33

HRD-MILN 0.89 0.88 0.88

Group 2 EMDD 0.76 0.54 0.63

HRD-MILN 0.87 0.86 0.86

Group 3 EMDD 0.76 0.54 0.63

HRD-MILN 0.85 0.85 0.85

Group 4 EMDD 0.52 1 0.68

HRD-MILN 0.91 0.91 0.91

Group 5 EMDD 0.82 0.71 0.76

HRD-MILN 0.79 0.75 0.74

Group 6 EMDD 0.76 0.54 0.63

HRD-MILN 0.90 0.89 0.89

Group 7 EMDD 0.76 0.54 0.63

HRD-MILN 0.89 0.89 0.89

Group 8 EMDD 0.81 0.80 0.80

HRD-MILN 0.88 0.87 0.87

Group 9 EMDD 0.90 0.88 0.88

HRD-MILN 0.91 0.90 0.90

Group 10 EMDD 0.83 0.75 0.79

HRD-MILN 0.86 0.85 0.85
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FIGURE 3
The performances of SigMA, EMDD, and HRD-MILN in panel sequencing samples. HRD-MILN had the highest scores (precision 0.88, sensitivity
0.87, F1-score 0.87) than SigMA and EMDD on each Evaluation indicator.

FIGURE 4
The performances of MILS and HRD-MILN in panel sequencing samples. HRD-MILN had the highest scores (precision 0.88, sensitivity 0.87, F1-
score 0.87) thanMILS on each Evaluation indicator. Abbreviations: MLS:machine learnings, dt: DecisionTree. rf: Random Forest. svm: Support Vector
Machine. nbrs: KNeighbors. nb: GaussianNB.
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also proves that ML is not suitable for detecting HRD. The

MLS compared in our experiments are DecisionTree (dt)

(Quinlan, 1986), Random Forest (rf) (Breiman, 2001),

Support Vector Machine (svm) (Cho and Prabhu, 2002),

KNeighbors (nbrs) (Blough et al., 2006), GaussianNB (nb)

(De Moraes and Machado, 2008).

4.2 Application of HRD-MILN to whole-
exome sequencing samples

To evaluate the effectiveness of our proposedmethod, we also

chose to validate it on the WES sequencing samples. These

samples included a subset of patients diagnosed with breast

cancer (25 individuals) and ovarian cancer (19 individuals) in

the Department of Oncology, the Second Affiliated Hospital of

Xi’an Jiaotong University. For a fair comparison, we compared

HRD-MILN with SigMA and EMDD by using the default

parameters for each model.

First, we tested the effect of different numbers of target

points on the performance of HRD-MILN. Through multiple

sets of pre-experiments, we set the default Pro threshold of

candidate target concept points to 0.9 (Table.2). Meanwhile, to

verify the necessity of the HRD-MILN method to predict the

HRD status based on the WES sequencing data by

bootstrapping (sampling 500 random sets of real samples

with replacement). Here we show only four sets of

experimental results. The specific accuracy of the different

targets model is shown in Table.5. From Table.5, it could be

seen that the candidate target was 3. The average scores of

Precision, Sensitivity, and f1-score were all of the best (0.86,

0.93, 0.89) compared with (0.73, 0.81, 0.77) for 4 targets, the

second-best performer. The accuracy of each group did not

fluctuate much. This result was the same as the panel

TABLE 5 Model accuracy in different targets on the WES data.

Groups Average Targets Precision Sensitivity F1-score

Group 1 1 0.76 0.54 0.63

2 0.62 0.62 0.62

3 0.85 0.92 0.88

4 0.63 0.57 0.6

Group 2 1 0.67 1 0.8

2 0.7 0.73 0.71

3 0.85 0.93 0.89

4 0.73 0.86 0.79

Group 3 1 0.73 0.66 0.69

2 0.67 0.73 0.7

3 0.85 0.93 0.89

4 0.72 0.96 0.82

Group 4 1 0.69 0.71 0.7

2 0.81 0.87 0.84

3 0.88 0.93 0.9

4 0.84 0.86 0.85

FIGURE 5
The performances of SigMA, EMDD, and HRD-MILN in whole-exome sequencing samples. HRD-MILN had the highest scores (precision 0.86,
sensitivity 0.93, F1-score 0.89) than SigMA and EMDD on each Evaluation indicator.
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sequencing data. It again justifies our improvement strategy of

using multiple target concept points to detect the status of

HRD for cancer samples. Next, we compared the HRD-MILN

with SigMA and EMDD on the WES sequencing samples. The

results (Figure 5) show that HRD-MILN achieved the best

average Precision of 0.86, Sensitivity of 0.93, and F1-score of

0.89 on the WES sequencing. SigMA is the second-best

performer (0.87, 0.90, 0.88). From Figure 3, HRD-MILN

was significantly better than SigMA and EMDD. Each

method had relatively balanced scores on each Evaluation

metric. The performance of EMDD is worse than HRD-

MILN. This demonstrates that the improved approach is

more effective for detecting HRD. Meanwhile, we compared

HRD-MILN with ML for detecting HRD based on whole-

exome sequencing data (Figure 6). HRD-MILN had higher

scores than MLS (the best ML scores are precision 0.78,

sensitivity 0.74, F1-score 0.76) on each Evaluation

indicators. This also proves that ML is not suitable for

detecting HRD on WES.

5 Discussion and conclusion

Accurately estimating HRD status is a challenging

computational problem in cancer genomics and is also a

bottleneck preventing from identifying potential benefits to

patients. The mutational events on the HRR pathway and

genomic scars (LOH, LST, TAI) suggest HRD estimation

biomarkers. The existing ML model often adopts an

aggressive strategy to obtain the training data: For an

HRD-positive patient, assign all LOH (or LST, TAI) calls

of this patient’s positive labels. This strategy is not reasonable

from a medical view. There are no significant associations

between one LOH (or LST, TAI) at the genomic level and the

HRD status at the patient level. Literature suggests that those

biomarkers, many of which may be similar to passenger

somatic mutations, may randomly occur on genomes. But

another opinion considers those functional biomarkers

identical because they are induced as genomic scars. Thus,

the multi-instance learning framework seems the best

solution at present to model the complicated associations/

similarities. In this study, we incorporated multi-instance

learning in a novel way. For the training instance, a LOH has

complex genomic features. It also implies an individual

difference. The complexity of LOH leads to the design of

multiple target concept points. Thus, we selected more than

one target concept point, which improved the accuracy and

Sensitivity as expected. Thus HRD-MILN cloud solves the

key computational issue that it is hard to model the unclear/

non-significant associations between a LOH mutation on the

genomic level and the HRD status on the patient level. And

by establishing the intrinsic associations among HRD

biomarkers and HRD status, HRD-MILN is much less

sensitive to false positive mutation calls (e.g., LOHs) than

the existing methods.

Targeted panel sequencing is the most popular

sequencing strategy in clinical practices, not only because

of the high cost-performance ratio but also due to

governmental policies. It will keep the top cancer

sequencing service providers over the coming years. Thus,

it is meaningful to develop this tool for targeted panel

sequencing data and hopefully could benefit cancer

FIGURE 6
The performances of MILS and HRD-MILN in whole-exome sequencing samples. HRD-MILN had the highest scores (precision 0.86, sensitivity
0.93, F1-score 0.89) than MILS on each Evaluation indicator. Abbreviations: MLS: machine learnings, dt: DecisionTree. rf: Random Forest. svm:
Support Vector Machine. nbrs: KNeighbors. nb: GaussianNB.
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patients. In addition, the proposed method could also be used

on WES and WGS data. The experiments demonstrated that

HRD-MILN consistently outperforms the existing methods

on different sequencing data, which should be helpful for

widespread clinical applications.

In the future, we will pursue two experimental aims. First,

HRD clinical samples are challenging to collect. Although the

number of HRD samples in this study is ‘big data’ compared to

clinical studies, it is limited compared to model development.

Therefore, we will continue to collect more HRD samples to

verify the validity of the proposed method. Second, it would be

worthwhile to investigate whether other clinical computing

problems with HRD could benefit from HRD-MILN.
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