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Celiac disease (CeD) is one of the most common intestinal inflammatory
diseases, and its incidence and prevalence have increased over time. CeD
affects multiple organs and systems in the body, and environmental factors
play a key role in its complex pathogenesis. Although gluten exposure is known
to be the causative agent, many unknown environmental factors can trigger or
exacerbate CeD. In this study, we investigated the influence of genetic and
environmental factors on CeD. Data from a CeD genome-wide association
study thatincluded 12,041 CeD cases and 12,228 controls were used to conduct
a transcriptome-wide association study (TWAS) using FUSION software. Gene
expression reference data were obtained for the small intestine, whole blood,
peripheral blood, and lymphocytes. We performed Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes enrichment analyses using the significant
genes identified by the TWAS and conducted a protein—protein interaction
network analysis based on the STRING database to detect the function of
TWAS-identified genes for CeD. We also performed a chemical-related gene
set enrichment analysis (CGSEA) using the TWAS-identified genes to test the
relationships between chemicals and CeD. The TWAS identified 8,692 genes,
including 101 significant genes (p aqusted < 0.05). The CGSEA identified
2,559 chemicals, including 178 chemicals that were significantly correlated
with CeD. This study performed a TWAS (for genetic factors) and CGSEA (for
environmental factors) and identified several CeD-associated genes and
chemicals. The findings expand our understanding of the genetic and
environmental factors related to immune-mediated diseases.
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Introduction

Celiac disease (CeD) is one of the most common intestinal
inflammatory diseases, and it is characterized by small intestine
crypt  hyperplasia,
2018). CeD is
worldwide, and its prevalence varies by continent, with cases

inflammation, villous and

atrophy,
malabsorption (Kahaly et al, present
occurring in Northern and Western Europe, South America
(1.3%), and Asia (1.8%) (Lebwohl and Rubio-Tapia, 2021). In
addition, the incidence and prevalence of CeD have increased
over time (King et al., 2020). The key factors underlying the
pathogenesis of CeD include environmental triggers (gluten,
olmesartan, gut bacteria, etc.), genetic predisposition (HLA-
DQ2 or HLA-DQ8), autoantigens (TG2), adaptive immune
response activation (CD4" T and B cells), and gluten-induced
alterations in the intestinal epithelium after intraepithelial
cytotoxic lymphocyte activation (Verdu and Schuppan, 2021).
The clinical presentation of CeD is divided into intestinal and
extraintestinal manifestations. The intestinal form of CeD is
more commonly detected in pediatric patients and is
characterized by diarrhea, loss of appetite, and growth
limitation (Caio et al., 2019). With the development of
diagnostic technology, novel features of CeD are being
revealed. CeD affects multiple organs and systems throughout
the body, including the skin (dermatitis), musculoskeletal joints
(myositis and arthritis), blood (anemia), spleen, endocrine
glands, lungs, and heart, and it can lead to gynecological
(infertility and abortion), neurological, and psychiatric
(lymphoma
adenocarcinoma). CeD can be successfully treated with a

problems, as well as malignancy and
gluten-free diet (GFD); however, this treatment strategy may
considerably affect the quality of life (Vriezinga et al.,, 2015).
Thus, biomarkers must be identified to determine the risk factors
and develop potential interventions for high-risk groups
(Auricchio and Troncone, 2021).

In recent years, the most common single nucleotide
polymorphisms (SNPs) have been assessed in genome-wide
association studies (GWASs) to identify statistical associations
with various complex traits (Frazer et al, 2009). The SNPs
identified through GWASs may provide strongly predictive
identify
pharmacological implications (Manolio, 2013). Therefore,

and  prognostic  information  or important
GWASs could lead to a better understanding of diseases and
treatments (Hirschhorn and Daly, 2005). GWASs have been used
to reveal the polygenetic basis of common diseases, especially
autoimmune diseases (Inshaw et al., 2018), such as multiple
sclerosis, inflammatory bowel disease (Yang et al, 2021),
lupus erythematosus (Lu et 2021),
rheumatoid arthritis (Ha et al., 2021).

However, the reliability of GWASs for assessing the risk of

systemic al,, and

complex diseases is limited because most SNPs identified by
GWASs are located in noncoding regions of the disease genome
(Xu et al., 2021). Genetic loci cause variations in human traits,
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including growth, fitness, and disease; therefore, studies on the
genetics of gene expression have emerged as a key tool for linking
DNA sequence variations to phenotypes (Albert and Kruglyak,
2015). (TWASs)
represent an effective method of identifying significant

Transcriptome-wide —association studies
expression-trait associations, and this method substantially
outperforms its cis-expression quantitative trait locus (eQTL)
analog, both in imputing the expression and associations with a
trait (Gusev et al., 2016). A recent study performed a TWAS for
inflammatory bowel disease (IBD) and identified 78 novel
susceptibility genes associated with IBD (Diez-Obrero et al,
2022). Gastrointestinal autoimmune disorders, including CeD,
IBD, autoimmune pancreatitis, and autoimmune liver disease,
are caused by the complex interplay between genetic and
environmental factors (Rossi et al., 2022). Therefore, TWAS is
a good method for investigating gene expression in different
tissues.

The present study aimed to investigate the influence of
genetic factors on CeD by performing a TWAS based on a
GWAS dataset that includes gene expression data for the
blood, blood,
lymphocytes. We also reevaluated the expression of genes

small intestine, whole peripheral and
identified by the TWAS, performed a gene function analysis,
and identified CeD-associated chemicals. This study expands our
understanding of the genetic and environmental factors affecting

CeD (Figure 1).

Methods
CeD GWAS summary data

We used published GWAS summary data for CeD (Trynka
et al.,, 2011). The analyzed data included 12,041 celiac disease
cases and 12,228 controls, and the data were from 7 countries,
including the UK (NCeliac cases = 7,728, NControls = 8,274),
the Netherlands (NCeliac cases = 1,123, NControls = 1,147),
Poland (NCeliac cases = 505, NControls = 533), Spanish
Consortium for the Genetics of Celiac Disease (NCeliac
545, NControls = 308), Spain (Madrid) (NCeliac
cases = 537, NControls = 320), Italy (Rome, Milan, and
Naples) (NCeliac cases = 1,374, NControls = 1,255), and
India (Punjab) (NCeliac cases = 229, NControls = 391).
This study included large resequencing sample sizes from

cases =

cases and controls after stringent data quality control as
indicated in the Online Methods (ncbi.nlm.nih.gov/pmc/
articles/PMC3242065/4SD5).
and stepwise conditional association analyses have been

Dense genotyping strategy
performed to identify the complex architecture of multiple
common and rare genetic risk variants. Although Gosia
Trynka et al. localized signals at many loci, more detailed
functional studies are required to demonstrate which gene
variants might be causal.
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FIGURE 1
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Flow chart. CeD: Celiac disease; GWAS: Genome-wide association studies; TWAS: Transcriptome-wide association studies; GTEx: Genotype-
Tissue Expression Project Database; CTD: Comparative Toxicogenomics Database; CGSEA: Chemical-related gene set enrichment analysis.

TWAS of CeD

TWAS is a powerful method that integrates gene expression
with GWAS to identify genes that are associated with certain
The TWAS approach is better than a linkage
disequilibrium-based (LD-based) estimate of local genetic

traits.

correlation; therefore, it is appropriate for the study of the
genetic etiology of multiple phenotypes (Gusev et al., 2016).
To measure significant SNP-trait associations, all genome-wide
testing burdens have been corrected to ensure that the TWAS
false positive rate is well-controlled. The software program
FUSION (default settings) was used for the TWAS and joint
analyses of regions containing multiple significant associations
(Pain et al., 2019). The most popular TWAS methods, such as
PrediXcan, TWAS-Fusion, and SMR, test causal relationships
between gene-expression levels and complex traits (Zhang et al.,
2020), among which, the TWAS-Fusion method is used more
often. Briefly, Bayesian sparse linear-mixed models (Zhou et al.,
2013) were used to calculate SNP expression weights for specific
genes at the 1-Mb cis position and estimate the association of
predicted expression levels with CeD using the following
formula: Ztwas = w + Z/(wx[Lw]1/2) (Gusev et al.,, 2016),
where w denotes the weight, Z denotes the Z-score, and L
denotes the SNP correlation matrix (definition, LD). Each
feature expanded in 100,000 bp was defined contiguous. The
Minium p-value to include feature in the joint model was 0.05.
Features with r* greater than 0.9 would be considered identical.
And Features with r* less than 0.008 would be considered
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independent. The diagnosis of CeD relies on serological tests,
small bowel endoscopy, and pathological biopsy. Thus, we used
the gene expression weights for the small intestine, whole blood,
peripheral blood, and lymphocytes as references, and they can be
downloaded from the FUSION website (http://gusevlab.org/
projects/fusion/). All p values are then subjected to multiple
testing correction using the Benjamini-Hochberg procedure to
gather Q values, which represent the minimum false discovery
rate (FDR) threshold at which the contact is deemed significant.

TWAS-based functional exploration
analysis

We constructed a Venn plot to identify the common and
tissue-specific genes that were expressed among the small
intestine, whole blood, peripheral blood, and lymphocytes.
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000) and Gene Ontology (GO) (Hill
et al., 2002) enrichment analyses were performed to identify
and confirm related biological processes. The Venn plot and
KEGG and GO enrichment were performed using the R
packages “ggplot2,” “org.Hs.eg.db,” and “clusterProfiler” (R
Foundation for Statistical Computing, Vienna, Austria.
We generated a
protein-protein interaction (PPI) network using the
STRING vl11.5 database (STRING, https://string-db.org),
which required a confidence score of 0.15 and “active

https://www.R-project.org/).
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interaction sources,” based on a previous study (Jensen et al.,
2009). We used Cytoscape to visualize all the interaction
networks (Shannon et al., 2003) and the plugin Molecular
Complex Detection (MCODE) for the module analysis (Bader
and Hogue, 2003).

Gene expression profiles of CeD

We downloaded gene profiles (GSE72625) from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). This study examined the gene expression
profile in pars descendens of duodenum in celiac disease
patients (n = 10, Marsh grade 3a or above) and healthy
controls (n = 17) by gene expression microarray. We
further analyzed the differential gene expression of small
intestinal genes, and details on the samples can be found in
the original article (Jorgensen et al., 2016). GSE72625 was
downloaded from the GEO database through the GEOquery
package. If probes corresponding to multiple molecules were
removed, and if probes corresponding to the same molecule
were encountered, only the probe with the largest signal value
was retained. Statistical analysis and visualization were
performed using the R packages “GEOquery” (Davis and
Meltzer, 2007), “limma” (Smyth and Gentleman, 2005),
(Gu et al, 2016), and “ggplot2.”
Differentially expressed genes (DEGs) were identified based
on |log2FC|>1 and adjusted p-values<0.05. Further analyses

“ComplexHeatmap”

for DEGs were performed using the R packages “org.Hs.eg.db”
and “clusterProfiler.”

Chemical-related gene set enrichment
analysis

The chemical gene expression annotation dataset used in this
study was downloaded from the Comparative Toxicology
Genomics Database (CTD) (http://ctdbase.org/downloads/).
The CTD provides four datasets, namely, chemical gene
interaction function, chemical disease association, genetic
disease association, and chemical element phenotypic
association, and it integrates the four datasets to automatically
construct a hypothetical chemical gene phenotypic disease
network to illustrate the molecular mechanisms underlying
diseases that are affected by the environment (Mattingly et al.,
2004). Cheng et al. downloaded and used 1,788,149 chemical-
gene pair annotation terms driven by humans and mice and
generated 11,190 chemical substance-related gene sets (Cheng
et al, 2020a). The CGSEA is a flexible tool for assessing
associations between chemicals and complex diseases, and the
detailed analysis method is provided in the original article
(Cheng et al, 2020a). In the present study, we performed

10,000 permutations to obtain the empirical distribution of
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the GSEA statistical data (Mooney and Wilmot, 2015) for
each chemical, and then calculated the p-value of each
chemical based on the empirical distribution of the CGSEA
data. Based on previous studies (Cheng et al, 2020b), we
excluded gene sets containing less than 10 or more than
200 genes to control for the influence of gene set size on the
results.

Results

TWAS of CeD

The TWAS identified a total of 675 unduplicated genes were
identified (Prwas < 0.05, MODELCV. R* > 0.01; Figure 2),
including 208, 289, 134, and 184 genes for the small intestine,
whole blood, peripheral blood, and lymphocytes, respectively
(Supplementary Table S1).

Tissues have unique gene expression profiles. Thus, we
performed an overlap analysis of the 675 TWAS-identified
genes in different tissues to identify the representatively
expressed genes and commonly expressed genes. Figure 1E
illustrates the resulting Venn diagram, which indicates the
number of genes expressed in one or more tissues. Seven
significant TWAS-identified commonly expressed genes were
associated with CeD in the small intestine, whole blood,
blood, These 7 CeD-
susceptibility genes identified by TWAS were TCFI9
19; chromosome 6), HLA-DQAI
(major Histocompatibility Complex, class II, DQ alpha I;
chromosome 6), MICB (MHC class I Polypeptide-related
AP3S2 (Adaptor-related
protein complex 3 Subunit sigma 2; chromosome 15),
HEATR3 (HEAT Repeat Containing 3; chromosome 16),
GSDMB (Gasdermin B; chromosome 17), and POLI (DNA
Polymerase Iota; chromosome 18). Table 1 presents detailed

peripheral and lymphocytes.

(Transcription Factor

sequence B; chromosome 6),

information on the 7 genes, including the rsID of the most
significant GWAS SNPs at the locus (i.e., BEST. GWAS.ID)
and the TWAS p-values (i.e., p TWAS).

Functional exploration of TWAS-identified
significant CeD-susceptibility genes

97 TWAS-identified significant CeD-susceptibility genes
among four tissues were identified by FDR multiple
comparison correction (Prpr < 0.05, MODELCV. R2 >
0.01; S2). We subjected the
101 TWAS-identified significant CeD-susceptibility genes to
molecular function studies based on KEGG and GO analyses

Supplementary Table

(Figure 3). There were eight KEGG categories including
Antigen processing and presentation, Type I diabetes
Asthma, thyroid disease,

mellitus, Autoimmune
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Manhattan plots of association results from the CeD transcriptome-wide association study and functional exploration of seven novel TWAS-
identified CeD-susceptibility genes. Each dot represents the genetically predicted expression of one specific gene for the small intestine, whole
blood, peripheral blood, and lymphocytes tissues prediction models. The x axis represents the genomic position of the corresponding gene, and the
y axis represents the negative logarithm of the association p-value. (A) Gene expression weights for the small intestine. (B) Gene expression
weights for whole blood. (C) Gene expression weights for peripheral blood. (D) Gene expression weights for lymphocytes. (E) Venn diagram reveals
the overlap of TWAS-identified genes in different tissues. Blue, small intestine; red, whole blood; green, peripheral blood; purple, lymphocytes.

TABLE 1 TWAS-identified expressed CeD-susceptibility genes in four tissues.

Gene BEST.GWAS.ID P Twas
Small intestine Whole blood Peripheral blood Lymphocytes

TCF19 153130923 9.07E-04 1.05E-16 5.50E-10 1.90E-02
HLA-DQAI 152854275 5.77E-04 3.40E-93 2.63E-67 3.06E-06
MICB 15497309 5.08E-29 2.81E-10 2.35E-02 5.30E-15
AP3S2 156496609 3.85E-02 4.46E-02 9.39E-03 2.58E-02
HEATR3 156500249 3.45E-02 1.69E-02 2.03E-03 2.71E-02
GSDMB 159916158 2.38E-02 2.99E-02 3.87E-02 2.63E-02
POLI 15508218 1.59E-02 1.39E-02 8.23E-03 2.70E-02
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Inflammatory bowel disease, Systemic lupus erythematosus,
Rheumatoid arthritis, and Estrogen signaling pathway. Six
enriched GO terms belonged to the biological process
category, including antigen processing and presentation of
peptide processing

response interferon-gamma,

exogenous antigen, antigen and

presentation, to positive
regulation of lymphocyte mediated immunity, ceramide

metabolic process, and sphingolipid biosynthetic process.
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onal analysis.

Four significantly enriched GO terms belonged to the

cellular component category, including MHC protein

MHC IT
component of endoplasmic

complex, class protein complex, integral

reticulum membrane, and

phagocytic cup. In terms of the molecular function
category, the enriched GO terms involved MHC class II
protein complex binding, MHC class I protein binding,

ATPase activity, peptide binding, and amide binding.
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PPI network and significant modules. Red and blue circles indicate upregulated and downregulated TWAS-identified genes. (A) PPI network of
the TWAS-identified significant genes. (B) Significant Molecular Complex Detection (MCODE) algorithm of the PPI network. (C) Functional

exploration of MCODE.

PPl network of the TWAS-identified
significant genes

We used 97 TWAS-identified significant CeD-susceptibility
genes for a PPI analysis and successfully transformed 87 protein-
coding genes (Figure 4A). To effectively identify densely
connected regions of the PPI network, we formed six
MCODE clusters with PPI network genes (Figure 4B). The
hub genes identified by the MCODE plugin were further
analyzed  for  functional exploration  (Figure  4C).
MCODE1 was characterized by MHC class II protein
complex. MCODE3 were related to ER-Phagosome pathway
and antigen processing. MCODE4 associated with leukocyte
activation.

Common genes shared by TWAS and
MRNA expression profiling

To verify the reliability of the TWAS-identified significant
CeD-susceptibility genes, we selected and analyzed GEO
dataset (GSE72625). GSE72625 dataset were normalized
5A). GSE72625 5B)
contained 209, respectively, and an enrichment analysis

and corrected (Figure (Figure
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suggested that the DEGs were associated with immune-
related pathways, such as the MHC protein complex,
response to tumor necrosis factor, response to interferon-
gamma, and proliferation
(Figure 5C).

We compared the genes identified by the TWAS with the
DEGs identified in the two selected datasets. We detected
7 common genes among the DEGs from the TWAS and
GSE72625 (Figure 5D). The common genes are listed in
Table 2.

regulation of lymphocyte

CGSEA of the TWAS-identified genes

We performed a CGSEA to investigate the environmental
factors influencing CeD, and it revealed 2,559 chemicals,
178 with  CeD
(Supplementary Table S3). Our constructed network of

including chemicals  correlated
chemicals and their target genes based on the TWAS-
identified genes is illustrated in Figure 6. The absolute
value of the normalized enrichment score (NES) > 1 is
considered significantly enriched according to the GSEA,
and 25 significantly enriched chemicals were identified,

with [NES|>1 and p-value<0.05 (Table 3).
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FIGURE 5

Gene expression profiles of CeD. (A) Normalized bar plot of the GSE72625 dataset. (B) Vocanol plot of the GSE72625 dataset. Gene expression
analysis of the GSE113469 dataset. (C) Circle diagrams of Kyoto Encyclopedia of Genes and Genomes functional analysis. (D) Venn diagram reveals
the overlap of differentially expressed genes of GSE72625 and TWAS-identified genes.

TABLE 2 Common genes identified by TWAS with GSE 72625 mRNA expression profiles.

Gene P adjusted log2FC Chromosome BEST.GWAS.ID
ASAH2 1.04E-04 -1.20 10 1510821669

HCP5 1.20E-11 1.65 6 15497309

HLA-B 1.63E-06 1.03 6 153115672
HLA-DQBI 5.80E-03 1.09 6 152854275

PSMBS 3.05E-13 1.37 6 152854275

PSMB9 4.72E-05 1.45 6 152854275

TAPI 6.32E-11 1.95 6 152854275
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FIGURE 6
CGSEA analysis results. Network of chemicals and their target genes based on the TWAS-identified genes. Red and blue circles indicate
chemicals (p crsea < 0.05) and TWAS-identified genes, respectively. The size of the circle indicates the value degree with other points.

Discussion

CeD occurs in approximately 1% of people in most
populations globally, and the true incidence rate is rising
(Lebwohl et al, 2018). CeD is a multisystem disorder that
commonly affects the digestive system, although it can also
affect  the
musculoskeletal, endocrine, and reproductive systems (Rubin

dermatologic,  hematologic,  neurologic,

and Crowe, 2020). CeD is diagnosed based on serological tests

Frontiers in Genetics

and gastrointestinal biopsies; therefore, studying changes in gene
expression in the digestive tract and blood can help provide new
information for identifying biomarkers and understanding the
etiology of CeD.

We performed a comprehensive TWAS to predict the
relationship between CeD and significant genes found in the
small intestine, whole blood, peripheral blood, and lymphocytes.
Of particular interest were the seven significant TWAS-identified
common genes associated with CeD found in all four tissues,
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TABLE 3 Significantly enriched chemicals identified by the CGSEA for
TWAS-identified significantly expressed genes associated
with CeD.

Chemicals ID Chemical name P crsea NES
D005996 Nitroglycerin 3.00E-04 34.45
C045934 4-Hydroxy-2-hexenal 4.00E-03 3.98
D053778 Thiazolidines 3.60E-03 3.97
C042720 Mercuric bromide 1.22E-02 332
D010713 Phosphatidylcholines 6.80E-03 3.30
D002995 Clofibric Acid 1.76E-02 3.00
C100187 Chloropicrin 2.21E-02 2.61
DO017255 Acitretin 8.40E-03 2.19
C500085 Muraglitazar 8.50E-03 2.08
C004363 Alantolactone 7.30E-03 1.98
D002922 Ciguatoxins 2.62E-02 1.92
D002235 Carbofuran 2.30E-03 1.83
C017558 Nickel sulfide 3.20E-03 1.71
D012906 Smoke 5.00E-02 1.54
C459559 Vaticanol C 5.00E-03 1.52
D020123 Sirolimus 9.60E-03 1.43
C098468 Copper histidine 7.50E-03 1.34
D019287 Zinc sulfate 4.02E-02 1.32
D002996 Clomiphene 1.19E-02 1.28
C007734 Flunisolide 4.90E-03 127
D045424 Complex mixtures 3.80E-03 123
D020355 Cholates 7.00E-04 1.20
C087123 Romidepsin 1.82E-02 1.19
D000077235 Vinorelbine 1.22E-02 1.15
C040424 Destruxin B 1.15E-02 1.02

which included five novel genes (TCFI19, AP3S2, HEATRS,
GSDMB, and POLI) and two genes within previously GWAS-
identified CeD loci (HLA-DQA1 (Coleman et al., 2016) and
MICB (Gonzélez et al, 2004)). ASAH2 is a new gene
associated with CeD, which identified by TWAS and mRNA
expression profiles. Neurodegenerative diseases occur more
frequently in patients with inflammatory gastrointestinal
diseases including IBD or CeD, while ASAH2 has been
discovered in Parkinson’s disease (Blokhin et al., 2022) and
2007). Thus,
ASAH2 might play a key role in the gut-brain axis of CeD
patients. We subjected the 97 TWAS-identified significant
CeD-susceptibility genes to enrichment analyses and found

Alzheimer’s disease (Avramopoulos et al,

that they were associated with the MHC protein complex and
immune processes, which is similar to the findings of a recent
study (Hoydahl et al.,, 2019). Our PPI analysis of 87 protein-
coding genes also provided further support for these findings. In
addition, our study also identified an association with the
estrogen signaling pathway and proteins, which may partially
explain the fertility problems caused by CeD and provide new
directions for the treatment of CeD complications. Therefore,
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our study provides new information that improves our
understanding of the genetics and etiology of CeD.
Environmental factors play a key role in the complex
pathogenesis of CeD. Although gluten exposure is known to
be a causative agent, many unknown environmental factors may
trigger or exacerbate CeD (Leonard et al., 2020). We extended the
classic GSEA approach to detect the association between
environmental chemicals and CeD from the published GWAS
summary datasets and identified 178 chemicals, including
25 significantly enriched chemicals. Patients with untreated
CeD may develop cardiovascular problems, including
cardiovascular risk, stroke, thrombosis, atherosclerosis, arterial
function, and ischemic heart disease (Ciaccio et al., 2017). One
possible reason for these findings is that endothelial dysfunction
in patients with CeD is accompanied by lower flow-mediated
vasodilation, which corresponds to the positive nitroglycerin-
dependent dilation test in patients with CeD (Sari et al., 2012).
Nitroglycerin was the most significantly enriched chemical based
on the CGSEA, which further supports the theory that
cardiovascular complications often occur along with CeD. 4-
Hydroxy-2-hexenal is a lipid peroxide, and its content increases
in a time- and temperature-dependent manner during seafood
baking (Hu et al.,, 2022); moreover, it is an environmental factor
that affects microbiota distributions (Zhang et al., 2021). Studies
have shown that CeD is influenced by the intestinal microbiota
(Lamas et al., 2020), and the associated GFD treatment also
affects the composition of the intestinal microbiota and its
metabolites (Zafeiropoulou et al, 2020). A GFD treatment
requires the strict abstinence from foods containing wheat
gluten and promotes the intake of vegetables, meat, nuts, and
seafood. As seafood intake increases, the intake of 4-hydroxy-2-
hexenal is likely to increase as well; thus, whether 4-hydroxy-2-
hexenal may affect the course and treatment of CeD would be
worth investigating. Our study also showed that CeD is
associated with certain heavy metals, which may be related to
the association between a GFD and heavy metal accumulation. A
population-based, cross-sectional study showed that fish and rice
products are suspected sources of heavy metals and people
following a GFD had markedly higher levels of heavy metals
in their urine and blood compared with the controls (Raehsler
et al,, 2018). In the present study, we identified a few energy
metabolic pathways and lipid metabolic pathways via enrichment
analyses and revealed several chemicals related to lipid
metabolism, such as thiazolidines, clofibric acid, muraglitazar,
sirolimus, and flunisolide. These results are in line with those of
previous studies. Research suggests that a GFD may correspond
to a high energy and fat load (Forchielli et al., 2015), which means
that such a diet may lead to lipid and protein overload as well as
fiber, iron, and calcium deficiencies (Valitutti et al., 2017).
Children with CeD may have significant lipid abnormalities
(Salardi et al, 2017), while adults with CeD are at an
increased risk for metabolic syndrome (Tortora et al., 2015).
The prevalence of CeD is higher in women than in men, and
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women may experience decreased fertility for up to 2 years before
diagnosis (McAllister et al., 2019). A large cohort study suggested
that compared to women without CD, women (aged 25-29 years)
diagnosed with CD had a 40% relative increase in fertility
problems, which corresponded to an absolute excess risk of
0.5% (Dhalwani et al, 2014). Clomiphene was identified by
the CGSEA analysis, which suggested that this drug may be
an effective agent for enhancing fertility in female patients with
CeD. Cohort studies have shown that immune-mediated diseases
are strongly associated with an increased risk of cancers (He et al.,
2021). The nationwide cohort also suggested that patients with
CeD have an increased risk of small bowel adenocarcinoma and
adenomas (Emilsson et al, 2020). We found that certain
chemicals associated with cancer were enriched, including
alantolactone, vaticanol C, romidepsin, vinorelbine, and
destruxin B. These results support the association between
immune-mediated diseases and cancers. CeD is associated
with several autoimmune diseases and asthma (Krishna et al.,
2019), and numerous studies have shown that cigarette exposure
is associated with the development of allergies and asthma
(Murrison et al., 2019). Studies have also shown that cigarette
smoke is a risk factor for RA (Heluany et al., 2021), IBD (van der
Sloot et al., 2020), and colorectal tumors (van der Sloot et al,,
2022). A meta-analysis of seven studies with 307,924 participants
suggested that current smokers presented a markedly decreased
risk of CeD compared with never-smokers (Wijarnpreecha et al.,
2018). The relationship between smoking and CeD remains to be
studied; however, our findings highlight the importance of
studying the effects of smoking on CeD.

This study had several limitations. First, the pooled GWAS
data are predominantly from European and Indian
populations. Therefore, our results should be used with
caution when studying other populations. Additionally, a
few significant genes related to CeD obtained from the
analysis have not been verified via molecular biology
experiments, which should be performed in future studies.
Further, certain chemicals identified in our study were
previously demonstrated to play a role in other immune-
mediated diseases, while others have not yet been validated,
which will require additional clinical observations and cohort
studies. However, to the best of our knowledge, this is the first
large study that applied a CGSEA analysis to identify
candidate chemicals related to CeD. TWAS can detect
genes associated with CeD at the DNA level, and the
CGSEA extended the classic GSEA approach to detect the

association between environmental chemicals and CeD.

Conclusion

This study aimed to determine the influence of genetic and
environmental factors on CeD. The TWAS and CGSEA
performed in this work revealed multiple CeD-associated
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genes and chemicals. This study expands our understanding
of the genetic and environmental factors affecting CeD.
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