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Lung adenocarcinoma (LUAD) is the most prevalent subtype of non-small cell lung

cancer (NSCLC) and is associated with high mortality rates. However, effective

methods to guide clinical therapeutic strategies for LUAD are still lacking. The goals

of this study were to analyze the relationship between an m5C/m6A-related

signature and LUAD and construct a novel model for evaluating prognosis and

predicting drug resistance and immunotherapy efficacy. We obtained data from

LUAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) datasets. Based on the differentially expressed m5C/m6A-

related genes, we identified distinct m5C/m6A-related modification subtypes in

LUAD by unsupervised clustering and compared the differences in functions and

pathways between different clusters. In addition, a riskmodelwas constructed using

multivariate Cox regression analysis based on prognostic m5C/m6A-related genes

to predict prognosis and immunotherapy response. We showed the landscape of

36 m5C/m6A regulators in TCGA-LUAD samples and identified 29 differentially

expressedm5C/m6A regulators between the normal and LUAD groups. Twom5C/

m6A-related subtypes were identified in 29 genes. Compared to cluster 2, cluster

1 had lower m5C/m6A regulator expression, higher OS (overall survival), higher

immune activity, and an abundance of infiltrating immune cells. Four m5C/m6A-

related gene signatures consisting of HNRNPA2B1, IGF2BP2, NSUN4, and ALYREF

wereused to construct a prognostic riskmodel, and thehigh-risk grouphad aworse

prognosis, higher immune checkpoint expression, and tumor mutational burden

(TMB). In patients treated with immunotherapy, samples with high-risk scores had

higher expression of immune checkpoint genes and better immunotherapeutic

efficacy than those with low-risk scores. We concluded that the m5C/m6A

regulator-related risk model could serve as an effective prognostic biomarker

and predict the therapeutic sensitivity of chemotherapy and immunotherapy.
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Introduction

Lung cancer is the most prevalent cause of cancer-related

death worldwide, with non-small cell lung cancer (NSCLC)

accounting for approximately 85% of all cases (Jin et al.,

2019). As the most common subtype of NSCLC, lung

adenocarcinoma (LUAD) has a 5-year survival rate of 15%–

20% because of the migration and invasion of cancer cells (Kim

et al., 2019; Cai et al., 2020). Although targeted therapy and

immunotherapy have made progress (Santarpia et al., 2020),

some LUAD patients still have poor therapeutic effects, which

lead to relapse and progression of cancer. Therefore, it is essential

to develop an appraisal procedure to evaluate the prognosis and

guide personalized treatment strategies for LUAD.

Immunotherapeutic treatment is becoming a novel strategy for

modern tumor treatment. As a promising immunotherapy

modality, immune checkpoint inhibitors (ICI) such as

PD1 blockade have shown clinical benefits for LUAD and other

cancer types (Steven et al., 2016; Suresh et al., 2018; Li et al., 2019a).

Anti-PD1 and anti-PDL1 agents are expected to become effective

treatment options for advanced-stage LUAD. Some indicators,

such as genomic demethylation, microsatellite instability,

mismatch repair deficiency, and tumor mutational burden

(TMB), have been demonstrated to have a predictive potential

for patients with cancer (Benayed et al., 2019; Jung et al., 2019;

Fujimoto et al., 2020). However, a reliable biomarker for predicting

immunotherapy response is still lacking in clinical practice.

Since RNA modification was first discovered, more than

100 different RNA modifications have been identified in

eukaryotes, including N6-methyladenosine (m6A), 5-

methylcytidine (m5C), and N1-methyladenosine (m1A) (Lorenz

et al., 2020). M6A and m5C were the most prevalent mRNA

modification patterns (Thomas et al., 2019). M6A is a universal

methylated modification pattern that exerts gene expression by

regulatory proteins acting as writers, erasers, and readers (Dai

et al., 2021). Recent studies have shown that m6A is involved in the

progression of obesity (Wang et al., 2020), periodontitis (Zhang

et al., 2021), and renal fibrogenesis (Liu et al., 2020a). With its high

abundance in eukaryotes, m5C also plays a crucial role in

regulating gene expression (Yang et al., 2020). Previous studies

have revealed that RNAmodification regulators are closely related

to the progression of human cancers, such as lung, breast, and

brain cancers (Deng et al., 2018; Li et al., 2019b).Moreover, a study

showed that four types of RNA modification writers might play a

vital role in the tumormicroenvironment (TME), targeted therapy,

and immunotherapy in colorectal cancer (Chen et al., 2021a).

However, the functional importance of the m5C/m6A-related

genes in LUAD remains unclear.

With the development of genome sequencing and screening

techniques, gene expression profiles have been used to identify

prognostic genes as novel biomarkers for different types of

cancer. In this study, we showed the expression levels,

correlations, and mutation profiles of m5C/m6A-related genes

and identified distinct m5C/m6A-related subtypes in The Cancer

Genome Atlas (TCGA)-LUAD cohort. Using univariate Cox

regression, lasso regression, and multivariate Cox regression,

four prognostic factors were screened out, and risk models

were constructed using these genes and validated using

GSE30219. The predictive immunotherapy value of the risk

score was evaluated using the IMvigor210 dataset (the whole

process of data analysis was described in Figure 1). In conclusion,

the m5C/m6A-related risk score was a significant prognostic

factor in LUAD and a potential biomarker for stratifying LUAD

patients benefiting from immunotherapy.

Materials and methods

Data collection and preprocessing

We collected publicly available gene expression data for LUAD

cohorts and corresponding clinical information from TCGA and

Gene Expression Omnibus (GEO) databases. Patients with LUAD

with complete survival information were included in further

analyses (Supplementary Table S1). The RNA sequencing data

on 497 TCGA-LUAD samples were downloaded using the R

package TCGAbiolinks (Colaprico et al., 2016) as the training

set. Masked somatic mutation and copy number variation (CNV)

data on TCGA-LUAD samples were downloaded from TCGA.

The expression profiles of 85 cases from GSE30219 were

downloaded as the test set. Immune checkpoint inhibitor

treatment in patients with available expression data was also

used in our research study. The IMvigor210 dataset, in which

advanced urothelial cancer patients were treated with anti-PD-

L1 agents, was also applied for analyses evaluating immunotherapy

response. RNA-seq data and clinical details from the

IMvigor210 dataset were acquired using the R package

IMvigor210CoreBiologies (Mariathasan et al., 2018).

Unsupervised consensus clustering for
m5C/m6A subtypes

We collected m5C/m6A-related genes from previous studies

on RNAmodifications (Zhang et al., 2021; He et al., 2022). These

23 m6A-related and 13 m5C-related genes are listed in Table 1.

We then analyzed the differences in expression between normal

and LUAD samples using the Wilcoxon rank-sum test. The

protein–protein interaction (PPI) network was constructed

using m5C/m6A-related genes in the STRING database and

visualized by Cytoscape software (Mering et al., 2003;

Shannon et al., 2003). Consensus clustering was utilized to

identify m5C/m6A subtypes with differentially expressed

m5C/m6A regulators. The process was completed with a

clustering algorithm in the ConsensusClusterPlus R package

(Wilkerson and Hayes, 2010). We used t-distributed stochastic
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neighbor embedding (t-SNE) to show the distribution of

different m5C/m6A subtypes using the R package Rtsne

(Linderman and Steinerberger, 2019).

Evaluation of infiltrating immune cells,
immune functions, and immune
checkpoints

Based on the markers of the 28 types of immune cells

(Supplementary Table S2), we used single-sample gene set

enrichment analysis (ssGSEA) to calculate immune cell scores

using the R package GSVA (Hänzelmann et al., 2013). We also

analyzed the LUAD gene expression matrix using the R package

CIBERSORT and obtained the abundance of 22 types of

immunocytes (Newman et al., 2015). We downloaded an

immunologically relevant gene list (Supplementary Table S3)

from the ImmPort database (https://www.immport.org/

resources). The immune function scores of LUAD samples

were calculated using the ssGSEA algorithm. The differences

in the expression of 30 immune checkpoint genes in the different

groups were also analyzed in our study (Wang et al., 2021a).

Construction and validation of the m5C/
m6a-related prognostic risk model

The Wilcoxon rank-sum test was used to identify

differentially expressed m5C/m6a-related genes between the

normal and LUAD groups. To distinguish the m5C/m6a-

related genes related to LUAD prognosis, univariate Cox

regression was used to analyze the relationships between the

differentially expressed genes and overall survival and filtering

genes with a p-value < 0.1. Least absolute shrinkage and selection

operator (LASSO) was performed to compress the number of

genes and remove collinearity using the R package glmnet

(Simon et al., 2011). Finally, we screened out prognostic m5C/

m6a-related genes by multivariate Cox regression analysis and

constructed a prognostic model. The risk score was calculated as

follows: risk score = (coef-Gene1 × exp-Gene1)+(coef-Gene2 ×

exp-Gene2)+. . .+(coef-Gene × exp-Gene) (exp: gene expression

level, coef: coefficients). We divided LUAD samples into low-risk

and high-risk groups based on the median risk score and

analyzed the difference in OS between the two groups in

training and testing sets using Kaplan–Meier (KM) plots. The

area under the curve (AUC) of the ROC curves was calculated to

evaluate the predictive accuracy of the risk score (Blanche et al.,

2013).

Univariate and multivariate Cox regression analyses were

used to identify factors (risk score, clinicopathological stage, sex,

age, and TMB) correlated with prognosis. Factors with

corresponding hazard ratios and p-values are shown in the

forest plot. A nomogram was established with independent

prognostic factors by multivariate Cox regression analysis

(p < 0.05).

Pathway and functional enrichment
analyses

To explore the functional and pathway differences between

the low-risk and high-risk groups, DEGs were identified using

the DESeq2 package (Love et al., 2014) (|log2FC| > 1 and padj <
0.05) and Gene Ontology (GO) and Kyoto Encyclopedia of Genes

TABLE 1 Genes related with m6A and m5C.

Gene RNA methylation Type

METTL3 m6A Writer

METTL14 m6A Writer

WTAP m6A Writer

VIRMA m6A Writer

RBM15 m6A Writer

RBM15B m6A Writer

CBLL1 m6A Writer

ZC3H13 m6A Writer

FTO m6A Eraser

ALKBH5 m6A Eraser

YTHDF1 m6A Reader

YTHDF2 m6A Reader

YTHDF3 m6A Reader

YTHDC1 m6A Reader

YTHDC2 m6A Reader

HNRNPC m6A Reader

HNRNPA2B1 m6A Reader

IGF2BP1 m6A Reader

IGF2BP2 m6A Reader

IGF2BP3 m6A Reader

FMR1 m6A Reader

ELAVL1 m6A Reader

LRPPRC m6A Reader

TRDMT1 m5C Writer

NSUN2 m5C Writer

NSUN3 m5C Writer

NSUN4 m5C Writer

NSUN5 m5C Writer

NSUN6 m5C Writer

NSUN7 m5C Writer

DNMT1 m5C Writer

DNMT3A m5C Writer

DNMT3B m5C Writer

YBX1 m5C Eraser

TET2 m5C Eraser

ALYREF m5C Reader

Frontiers in Genetics frontiersin.org03

Ma et al. 10.3389/fgene.2022.990623

https://www.immport.org/resources
https://www.immport.org/resources
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.990623


and Genomes (KEGG) enrichment analyses of the DEGs. GSEA

was applied to analyze pathway enrichment analysis using the

c2.cp.kegg gene set from MSigDB (Liberzon et al., 2015).

Enrichment was performed using the clusterProfiler R

package. Additionally, gene set variation analysis (GSVA) was

used to estimate other pathway differences between the two

groups, based on the c2.cp.kegg and hallmark gene sets from

MSigDB (Yu et al., 2012).

Drug sensitivity analysis

To investigate the association between the risk score and

sensitivity to chemotherapeutics, we estimated the half-maximal

inhibitory concentration (IC50) of anti-tumor agents using the

pRRophetic package (Geeleher et al., 2014). Transcriptome and

chemotherapy response data from the CellMiner database were

downloaded and used to identify the correlations between drug

sensitivity and expression levels of key m5C/m6A-related genes

(Zheng et al., 2021).

Statistical analyses

The statistical significance of the continuous variables in

the two groups was estimated by the Wilcoxon rank-sum

test. The Kruskal–Wallis test was used to estimate the

statistical significance of continuous variables in two or

more groups. The Fisher test was used to analyze the

differences between the two groups of classified variables.

KM curves were used to compare the differences in OS

between the groups.

FIGURE 1
Flowchart.
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FIGURE 2
Landscapes of m5c/m6a-related genes in LUAD. (A) Boxplot illustrates the expression levels of 36m5a/m6a-related genes in normal and LUAD
tissues. (B) Chromosome locations of 36 m5a/m6a-related genes. (C) PPI network of m5a/m6a regulators. The color of nodes represents log2FC,
and the size of nodes represents |log2FC| (log2FC was obtained as the result of difference analysis between TCGA normal samples and LUAD
samples by DEseq2.) Red: log2FC >0; blue: log2FC < 0. (D)Waterfall diagrams show themutation frequency ofm5a/m6a-related genes. (E)CNV
frequency of m5a/m6a-related genes. Red bars: CNV gain; blue bars: CNV loss. (*: p < 0.05, **: p < 0.01, and ***: p < 0.001).
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Results

Landscape of m5C/m6A-related genes in
LUAD

First, we determined the expression levels of 36 m5C/m6A

regulators in normal LUAD samples and the boxplot, and

29 regulators showed significant differences (Figure 2A).

The chromosomal locations of m5C/m6A regulators are

shown in Figure 2B. The PPI network plotted the m5C/m6A

regulators with an interaction score of 0.7 (Figure 2C). Red

nodes, such as IGF2BP1, IGF2BP3, and DNMT3B, were

notably upregulated in LUAD. Blue nodes, such as FTO,

TRDMT1, and ZC3H13, indicate genes notably downregulated

in LUAD. In TCGA-LUAD cohort, 146 samples (29.92%) had

m5C/m6A-related gene alterations (Figure 2D). ZC3H13 and

FIGURE 3
Identification of m5c/m6a modification subtypes in LUAD. (A) CDF for k = 2–5. (B) Heatmap of TCGA LUAD when k = 2. (C) t-SNE analysis for
consensus clustering. (D) Expression of m5c/m6a-related genes in distinct m5c/m6a subtypes. (E) Survival analysis of LUAD patients for two
subtypes. (F) Boxplots illustrating the expression differences of m5c/m6a-related genes between the two m5c/m6a subtypes.
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DNMT3A showed the highest alteration frequencies (4%).

HNRNPA2B1, NSUN2, IGF2BP3, RBM15, LRPPRC,

DNMT3B, and IGF2BP1 showed alteration frequencies

ranging from 2% to 3%. The gene alteration frequency of the

other genes ranged from 0% to 1%. CNV gain and loss of

differentially expressed regulators are shown in Figure 2E.

NSUN2, YTHDF1, ALYREF, and VIRMA showed prominent

alterations in CNV gain.

Characterization of m5C/m6A subtypes

According to the 29 differentially expressed m5C/m6A

regulators, LUAD samples were divided into clusters (k =

2–5) by consensus cluster analysis (Figure 3A,B). Two

subtypes were identified: 332 samples in cluster1 and

165 samples in cluster2. In the t-SNE plot, LUAD samples

from cluster1 and cluster2 were distinguished by the

expression of m5C/m6A-related genes (Figure 3C). The two

clusters revealed marked differences in the expression levels of

m5C/m6A-related genes, with cluster2 having a higher overall

expression than cluster1 (Figure 3D). In addition, age and

survival status were significantly different between the two

clusters (p < 0.05). As shown in Figure 3E, cluster1 patients

had a longer survival time than cluster2 patients (Figure 3E).

Among the 29 m5C/m6A-related genes, 28 regulators showed

significant differences between cluster1 and cluster2, which

indicated that distinct m5C/m6A modification subtypes

existed in LUAD.

To identify differences in function and pathways between

m5C/m6A subtypes, we performed GSEA. Metabolism-related

pathways, such as drug metabolism–cytochrome p450, drug

metabolism–other enzymes, and ascorbate and aldarate

metabolism, were enriched in cluster1 (Figure 4A). Immune-

related pathways such as the cytokine–cytokine receptor

interaction, leukocyte transendothelial migration, chemokine

signaling pathway, and intestinal immune network for IGA

production were significantly enriched in cluster1 (Figure 4B).

We used two algorithms to analyze the association between

immune cells and m5C/m6A modification subtypes and

visualized the results using heat maps (Figure 4C). In general,

cluster1 had higher levels of infiltrating immunocytes than

cluster2. As for the ssGSEA score of immune functions

(Figure 4D), antigen processing and presentation,

antimicrobials, the BCR signaling pathway, chemokines,

chemokine receptors, cytokines, cytokine receptors, interferon

receptor, interleukins, interleukin receptors, natural killer cell

cytotoxicity, TGFb family member, TGFb family member

receptors, TNF family members, and TNF family members

were enhanced in cluster1. Interferon scores were higher in

cluster2 than those in cluster1. Additionally, we noticed that

15 immune checkpoints were significantly different between

different m5C/m6A subtypes (Figure 4E). CD276, TNFRSF18,

CD274 (PD-L1), IDO1, LAG3, and TNFSF4 were highly

expressed in cluster2. NT5E, HHLA2, HAVCR2, VSIR, CD27,

NCR3, BTLA, CD40LG, and TNFSF14 were highly expressed in

cluster1.

Construction and evaluation of the m5C/
m6A regulator-related prognostic model

We used univariate Cox regression analysis to screen out

prognostic m5C/m6A regulators based on TCGA-LUAD and

GSE30219 datasets (p < 0.1) (Supplementary Table S4). The

genes (HNRNPA2B1, IGF2BP2, ELAVL1, NSUN4, and

ALYREF) were analyzed using LASSO-Cox regression

(Figure 5A,B). We then performed a multivariate Cox

regression analysis and obtained four prognostic m5C/m6A-

related genes (Table 2). The m5C/m6a-related risk score =

exp-HNRNPA2B1*0.383+ exp-IGF2BP2* 0.0548- exp-

NSUN4*0.595+ exp-ALYREF*0.113. We divided the LUAD

samples into high- and low-risk groups using the median risk

score. In both the training and testing sets, the high-risk groups

had a significantly lower OS than the low-risk groups (p < 0.05)

(Figure 5C,E). The 1-year, 2-year, and 3-year AUCs in the

training set were 0.64, 0.62, and 0.62, respectively (Figure 5D).

The 1-year, 2-year, and 3-year AUCs in the testing set were 0.88,

0.72, and 0.75, respectively (Figure 5F). The correlation chord

plot illustrates the correlation between HNRNPA2B1, IGF2BP2,

NSUN4, and ALYREF and the risk score. The correlation

coefficients between HNRNPA2B1, IGF2BP2, NSUN4, and

ALYREF and the risk score were 0.498, 0.52, −0.569, and

0.586, respectively (p < 0.05). In addition, the four genes were

not remarkably correlated (|cor| < 0.4) (Figure 5G). The

expression levels of HNRNPA2B1, IGF2BP2, NSUN4, and

ALYREF in the training and testing sets are illustrated in the

heatmaps (Figure 5H,I). The expression of the four m5C/m6A

genes in LUAD and normal tissues is shown in the Human

Protein Atlas (HPA) database (Supplementary Figure S1).

Pathway, function, and immune-related
analyses of the risk score

To further explore the differences in functions and pathways

between the high- and low-risk groups, KEGG and GO

enrichment analyses were performed based on 882 DEGs

(Supplementary Tables S5, S6). GO terms related to immunity

and metabolism were significantly enriched, including the

humoral immune response, catecholamine metabolic process,

leukotriene B4 metabolic process, retinoic acid metabolic

process, and antimicrobial humoral response (p < 0.05)

(Figure 6A). KEGG pathways, such as addiction signaling

cytochrome p450, maturity-onset diabetes, complement

coagulation cascades, renin-angiotensin system, and pathways
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regulating pluripotency cells were enriched (p < 0.05)

(Figure 6B). The enriched pathways (hsa00982 and hsa00980)

are shown in pathway plots, and the related genes are labeled

(Figure 6C,D).

To further investigate the pathways related to the risk score,

GSVA was performed using C2 and hallmark gene sets.

Compared to that in the low-risk group, the cell cycle, oocyte

meiosis, DNA replication, and nucleotide excision repair were

significantly enriched in the high-risk group. Metabolism-related

pathways, such as drug metabolism, cytochrome p450, and fatty

acid metabolism, were enriched in the low-risk group

(Figure 7A). Among the hallmark gene sets, those related to

the cell cycle, such as PI3K-AKTmTor, E2F, mitotic spindle, and

DNA repair, were enriched in the high-risk group (Figure 7B).

The P53 pathway, KRAS signaling (down), and fatty acid

metabolism were enriched in the low-risk group. In addition,

16 immune checkpoint genes showed significant differences

between the high- and low-risk groups. Among these were

13 immune checkpoints, namely, CD70, CD276, TNFRSF18,

CD274, IDO1, CTLA4, PDCD1, LAG3, SIGLEC15, TNFSF4,

TNFRSF9, TMIGD2, and TNFRSF4, which were highly

expressed in the high-risk group (Figure 7C). The high-risk

group had higher immune infiltration levels of CD4 memory-

activated T cells, follicular helper T cells, Tregs, M0macrophages,

and M1 macrophages. The low-risk group showed higher

immune infiltration levels of memory B cells, resting memory

CD4 T cells, monocytes, M2 macrophages, resting dendritic cells,

and resting mast cells (Figure 7D).

FIGURE 4
GSEA and immune landscape of distinct m5c/m6a modification subtypes. (A,B) GSEA of pathways related to different subtypes based on the
C2 gene set. (C) Immune cell landscape of two m5c/m6a subtypes. (D) Boxplots comparing the ssGSEA scores of different molecular subtypes. (E)
Boxplots comparing immune checkpoint gene expression of different molecular subtypes. (*: p < 0.05, **: p < 0.01, and ***: p < 0.001).

Frontiers in Genetics frontiersin.org08

Ma et al. 10.3389/fgene.2022.990623

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.990623


Mutation landscapes of low- and high-risk
groups

The GSVA results showed that DNA repair and mismatch

repair pathways significantly differed between the low- and high-

risk groups. DNA repair and mismatch repair pathways critically

impact genemutations in tumors. Therefore, we further compared

the mutation profiles of samples in the low- and high-risk groups.

First, we calculated the TMB of the two groups and found that the

high-risk group had a higher TMB than the low-risk group (Figure 7E).

A total of 20 genes with the highest mutation rates in the two groups

were plotted using waterfall diagrams (Figure 8A,B). In general, the

mutation rates of the 20 genes were higher in the high-risk group than

in the low-risk group. In the forest plot, 17 genes with higher mutation

rates in the high-risk groupwereTP53,TTN,CSMD3,RYR3,PCDH15,

MUC16, ZFHX4, USH2A, XIRP2, RYR2, COL11A1, ZNF536, LRP1B,

ANK2, MUC17, FLG, and FAT3 (p < 0.05) (Figure 8C). Moreover,

apparent co-occurrences were observed in 17 genes (Figure 8D).

Clinical prediction model based on the
m5C/m6A-related risk score

Considering the predictive ability of the m5C/m6A-related risk

score for LUADprognosis, we attempted to identify whether the risk

score could be an independent prognostic factor together with the

pathological stage, T stage, N stage, M stage, age, sex, and TMB. The

results of univariate Cox regression analysis illustrated the

relationships between the factors and prognosis, and factors with

p < 0.1 were incorporated into multivariate Cox regression analysis.

FIGURE 5
Construction and validation of m5C/m6A regulator-related prognostic model. (A,B) LASSO-Cox regression model by 10-fold cross-validation
for OS in LUAD. (C) KM curves for the OS of high-risk and low-risk groups in TCGA training set. (D) Time ROC for OS in TCGA training set. (E) KM
curves for the OS of high- and low-risk groups in the GEO testing set. (F) Time ROC for OS in the GEO training set. (G) Correlation chord plot of
HNRNPA2B1, IGF2BP2, NSUN4, ALYREF, and risk score. (H,I) Heatmaps of expression levels of HNRNPA2B1, IGF2BP2, NSUN4, and ALYREF in
the high-risk and low-risk groups of the training and testing sets.

TABLE 2 Multivariate Cox regression analysis.

Gene HR HR.95L HR.95H p-value

HNRNPA2B1 1.47 1.02 2.10 0.037

IGF2BP2 1.06 0.94 1.19 0.36

NSUN4 0.55 0.36 0.84 0.0053

ALYREF 1.12 0.87 1.44 0.38
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The risk score, T stage, and N stage were independent prognostic

factors for patients with LUAD (Figure 9A,B). A nomogram was

constructedwith independent prognostic factors for predicting 1-, 2-

, and 3-year OS (Figure 9C). The C-index of the model was 0.72.

Figure 9D–F showed the 1-, 2-, and 3-year calibration curves,

respectively, which fitted well with ideal curves.

Predictive potential of a risk score for
immunotherapy response and
chemotherapy sensitivity

As the m5C/m6A-related risk score was closely correlated

with immune-related functions and checkpoints, we further

investigated its relationship with the immunotherapy

response. In the IMvigor210 dataset, patients with progressive

disease (PD) or stable disease (SD) had lower risk scores than

those with partial response (PR) and complete response (CR)

(p = 0.0076) (Figure 10A). According to the median risk score,

298 patients from IMvigor210 with complete clinical data were

divided into low- and high-risk groups. The proportion of SD or

PD was higher in the low-risk group than in the high-risk group

(p = 0.0084 and p = 0.029, respectively) (Figure 10B,C). To

estimate the predictive efficacy of the risk score for

immunotherapy response, we performed a 2-year ROC curve,

and the AUC was 0.73 (Figure 10D). In total, the expression of

17 immune checkpoint genes differed between the low-risk and

high-risk groups, and 16 immune checkpoints were higher in the

high-risk group (Figure 10E). In the analyses of drug sensitivity

between the two groups, patients in the high-risk group had

lower sensitivity to bexarotene (p = 3.57e-02), imatinib (p =

3.31e-02), metformin (p = 9.86e-06), and AKT inhibitors (p =

2.47e-04) (Figure 10F–I). Additionally, we also analyzed the

correlations between the m5C/m6A-related genes and the

sensitivity of anti-tumor drugs using the CellMiner database

and identified the 20 most correlated drugs (|Cor| > 0.4)

(Supplementary Figure S2). ALYREF was positively correlated

with the sensitivity of 5−fluorodeoxyuridine, floxuridine,

FIGURE 6
Functions and pathways associated with the risk score. (A) GO enrichment analysis of DEGs between high-risk and low-risk groups. (B) KEGG
enrichment analysis of DEGs between high-risk and low-risk groups. (C,D) Signal pathway plots of hsa00982 and hsa00980.
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irinotecan, nelarabine, triethylenemelamine, thiotepa, and

LMP−400. IGF2BP2 was negatively correlated with sensitivity

to dexrazoxane, SR16157, etoposide, teniposide, raloxifene,

XK−469, idarubicin, bendamustine, and fulvestrant.

NSUN4 expression was negatively correlated with sensitivity

to vorinostat. HNRNPA2B1 was positively correlated with the

sensitivity to ifosfamide, nelarabine, and chelerythrine.

Discussion

As a crucial epigenetic modification, methylation plays a role

in the modulation of gene expression and affects various diseases.

Previous studies have found that RNA modification of m5C and

m6A can affect malignant biological processes by regulating the

proliferation and migration of tumor cells. In a previous study,

different lung cancer subtypes clustered by the signature of

13 m6A regulators showed significant differences in prognosis

and pathological stage (Liu et al., 2020b). In gastric cancer,

decreased methylation levels can augment the PI3K-AKT

pathway and promote the invasion and proliferation of gastric

cells. ALKBH5 acts as a pivotal m6A eraser and promotes the

proliferation and invasion of LUAD cells (Chao et al., 2020).

m5c-related genes are involved in eukaryotic growth and

evolution, and m5c regulators are associated with the tumor

microenvironment and prognosis of patients with LUAD (Chen

et al., 2021b). The m5C writer NSUN2 was demonstrated to

enhance the progression of squamous cell carcinoma by

FIGURE 7
Biological characteristics, pathways, and immune-related analyses between high- and low-risk groups. (A,B) Heatmaps of GSVA between the
different risk groups with C2 and hallmark gene sets. (C) Boxplots illustrating expression of immune checkpoints of the high- and low-risk groups. (D)
Boxplots illustrating abundance of immune cells in the high- and low-risk groups. Red boxes: high-risk group; blue boxes: low-risk group. (*: p <
0.05, **: p < 0.01, and ***: p < 0.001). (E) High-risk group had higher TMB than the low-risk group (p = 1e-11).
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stabilizing LIN28B-dependent GRB2, which could activate the

AKT and RTK signaling pathways (Su et al., 2021). However, the

cellular and biological mechanisms of m5C/m6A-related genes in

developing and treating LUAD remain unclear. Based on the

results of previous studies, we sought to construct a robust risk

model to guide clinical decision-making for patients with LUAD.

We collected 36 m5C/m6A-related genes from previous

studies in this study. The expression levels and mutation

profiles of 36 m5C/m6A-related genes were analyzed, and

29 differentially expressed m5C/m6A regulators were

identified. Based on the differentially expressed m5C/m6A-

related genes, we identified distinct m5C/m6A-related

modification subtypes in LUAD by unsupervised clustering

and compared the differences in functions and pathways

between different clusters. Using univariate Cox regression,

LASSO regression, and multivariate Cox regression,

prognostic m5C/m6A regulators were identified, and a

prognostic risk model was constructed and validated using

GSE30219. We found that cluster1 had lower m5C/m6A

regulator expression, higher OS, higher immune activity, and

an abundance of infiltrating immune cells than cluster2. Using

multiple enrichment analysis methods, the risk score was

demonstrated to be closely correlated with immune and

metabolic pathways. High-risk LUAD patients had a worse

prognosis, higher immune checkpoint expression, and higher

TMB than low-risk LUAD patients. The predictive value of the

FIGURE 8
Mutation landscapes of low- and high- risk groups. (A,B)Waterfall diagrams displaying 20 genes with the highest mutation rates in the low- and
high-risk groups. (C) Seventeen genes mutating differently in the two groups. (D) Correlations of 17 differently mutating genes. Red represents co-
occurrence, and blue represents mutually exclusive.
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risk score for immunotherapy response and drug sensitivity was

also illustrated. We concluded that the m5C/m6A-related risk

score could be a crucial marker for predicting prognosis and

immunotherapeutic response, which might improve

personalized treatment for patients with LUAD.

The complexity of immune cell infiltration in the tumor

microenvironment is one of the leading causes of LUAD

treatment efficacy. According to bioinformatics analysis

studies, m6A regulators are correlated with tumor prognosis

and the immunemicroenvironment (Fan et al., 2022; Xiong et al.,

2022). Two m5C modification patterns had different immune

cell-infiltrating subtypes, illustrating that m5Cmight regulate the

LUAD immune microenvironment (Chen et al., 2021b).

Intratumor immune cells play a crucial role in the TME and

affect the prognosis and pathogenesis of LUAD (Jiang et al.,

2020).

Therefore, it is crucial to explore the linkage between m5C/

m6A regulators, infiltration of immune cells, and treatment of

LUAD. We found that 29 m5C/m6A regulators (METTL3,

METTL14, WTAP, VIRMA, RBM15, RBM15B, CBLL1,

ZC3H13, FTO, YTHDF1, YTHDF2, YTHDF3, HNRNPC,

HNRNPA2B1, IGF2BP1, IGF2BP2, IGF2BP3, ELAVL1,

LRPPRC, TRDMT1, NSUN2, NSUN4, NSUN5, NSUN6,

NSUN7, DNMT1, DNMT3A, DNMT3B, and ALYREF) were

significantly different between the LUAD and normal samples.

The two m5C/m6A subtypes identified based on these genes by

unsupervised clustering were used to define the immune activity

status of LUAD. Cluster1, with a lower expression of m5C/m6A

regulators, had higher immune function scores and degrees of

infiltrating immune cells than cluster2. Immune cell infiltration

plays a vital role in immunotherapy. Patients with different

immune infiltration conditions show differing clinical and

immunotherapeutic benefits (Zeng et al., 2019; Lebid et al.,

2020). The two m5C/m6A modification subtypes,

accompanied by distinct immune phenotypes, improve our

understanding of the immune microenvironment for the

precise application of immunotherapy.

The risk score model was constructed with HNRNPA2B1,

IGF2BP2, NSUN4, and ALYREF, and the high-risk group was

closely related to the high expression of immune checkpoint

genes and high TMB in TCGA-LUAD samples. In total,

13 checkpoint genes were upregulated in the high-risk group,

including CTLA4, LAG3, (PD1) PDCD1, and (PDL1) CD274, as

markers of T-cell exhaustion. In addition, the proportion of

patients who benefited from the PD-L1 blockade was higher in

the high-risk group than that in the low-risk group. Immune

checkpoint genes resist elimination mediated by immunity,

which is the main reason for the immune escape from lung

cancer (Cheng et al., 2017). ICIs as novel anti-tumor drugs have

shown promising therapeutic efficacy in some cancers, such as

FIGURE 9
Clinical predictingmodel based on the risk score. (A,B)Univariate andmultivariate Cox regression analyses for the risk score and clinical factors.
The risk score, T stage, and N stage were independent prognostic factors for TCGA-LUAD patients. (C) Nomogram predicting for 1-, 2-, and 3-year
OS with the independent prognostic factors. (D–F) 1 year, 2 years, and 3 years of calibration plots for the clinical predictive model.
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melanoma, non-small cell lung cancer, and urinary system

cancers (Hamid et al., 2013; Sharma and Allison, 2015). In

addition, studies have revealed that the efficiency of ICIs for

NSCLC ranges from 15% to 20% (Wu et al., 2018). From a

clinical perspective, increased expression of immune checkpoints

and high TMB are significant indicators of immunotherapy.

Patients with high TMB or expression levels of checkpoint

genes benefit more from immunotherapeutic agents in

multiple types of cancers (Cinausero et al., 2019). Mismatch

repair deficiency is a reliable predictor of response to anti-PDL1

agents in patients with malignancies (Wang et al., 2018). These

findings are consistent with those of the present study. As for

differentially mutated genes between the low- and high-risk

groups, 19 genes were highly mutated in the high-risk

group. The mutation frequency of the tumor suppressor

TP53 was significantly higher in the high-risk. Dong et al.

(2017) indicated that mutations in TP53 and KRAS, especially

co-occurring mutations, enhance the expression of immune

checkpoints and are remarkable factors for ICIs in patients

with LUAD. In summary, based on the differences in

mutation profiles, immune checkpoints, and responses to

immunotherapy between the low- and high-risk groups, we

suggest that the risk score could be an effective tool for

predicting immunotherapy efficacy.

FIGURE 10
Analyses of risk scores for predicting immunotherapy efficacy and drug sensitivity. (A)Distribution of the risk score between patients with PD/SD
and patients with PR/CR in the IMvigor210 dataset. (B,C) Proportion of patients with different immunotherapy responses in different risk groups. (D)
Two-year ROC curve for estimating the predictive efficacy of the risk score. (E) Differences in expression levels of immune checkpoints between
different risk groups. (F–I) Drug sensitivity differences of bexarotene, imatinib, metformin, and AKT inhibitor in the two groups.
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We also found that the low-risk group had greater infiltration of

M2 macrophages and fewer M1 macrophages. Macrophages have

twomajor phenotypes: pro-inflammatoryM1 and tumor-promoting

M2 macrophages. However, a study by Mehrdad et al. showed that

the infiltration of CD204 M2 macrophages improved the prognosis

of patients with NSCLC (Rakaee et al., 2019). In another study on the

immune microenvironment of LUAD, M2 macrophages were

enriched in patients with prolonged survival and lower mutation

load(Wu et al., 2021). These findings are consistent with our research,

and the relationship between macrophage phenotypes and LUAD

prognosis requires further exploration. Enrichment analyses revealed

that mismatch repair, humoral immune response, drug

metabolism–cytochrome p450, leukotriene B4 metabolic process,

PI3K-AKT, mitotic spindle, and DNA repair were significantly

different among the different risk groups. We inferred that

prognostic m5C/m6A regulators, including HNRNPA2B1,

IGF2BP2, NSUN4, and ALYREF, might be involved in immune-,

metabolic-, and proliferation-related functions in LUAD. Among the

prognostic RNA modification regulators, HNRNPA2B1 and

NSUN4 were considered independent prognostic factors for

LUAD. It has been reported that nuclear

HNRNPA2B1 augmentation can induce an innate immune

response by amplifying IFN-α/β production (Wang et al., 2019).

In an experimental study, HNRNPA2B1, regulated by CACNA1G-

AS1, increased the epithelial–mesenchymal transition of NSCLC cells

(Yu et al., 2018). ALYREF may act as a poor prognosis biomarker in

patients with bladder cancer and is involved in glycolysis and cell

proliferation by regulating PKM2 (Wang et al., 2021b). In addition,

NSUN4 is upregulated in hepatocellular cancer and shows excellent

performance as a biomarker for the prognosis of hepatocellular

carcinoma (Cui et al., 2021). Several cancer-promoting and

inflammation-related functions have been proposed for IGF2BP2,

including the promotion of tumor growth and induction of

macrophage polarization (Wang et al., 2021c; Wang et al., 2021d).

Further studies are warranted to investigate the immune- and

metabolism-related functions of the four prognostic m5C/m6A

regulators in LUAD.

In contrast to previous studies on the m5C signature or m6A

signature in LUAD, we first investigated the integration of m5C

and m6A regulators and assessed significant parameters for

immunotherapy, including TMB, 30 common immune

checkpoints, and immune cell infiltration. In the present

study, high-risk patients had high TMB, increased expression

of immune checkpoints, and high sensitivity to immunotherapy,

suggesting that the risk score formula could predict

immunotherapy in LUAD. Understanding the mechanisms of

the metabolic processes and immune responses mediated by

m5C/m6A regulators may enhance the therapeutic effects of

LUAD. The results of our research provide an m5C/m6A risk

model with excellent clinical significance. Additionally, high-risk

patients were found to have an observably low OS and poor

therapeutic sensitivity to imatinib and AKT inhibitors, indicating

that it is necessary to pay more attention to disease progression

and drug resistance in high-risk LUAD patients. Future research

needs to focus more on the role of m5C and m6a in immunity

and drug resistance in LUAD.

Our study has some limitations. First, more comprehensive

clinical factors should be included to determine whether the risk

score is an independent prognostic factor for LUAD. Second,

LUAD cohorts receiving immunotherapy were required to verify

the accuracy and stability of the risk score in our study. Third, the

study lacked experimental validation. Therefore, we are

collecting clinical samples of LUAD, and further in vitro and

in vivo experiments may be used to investigate the biological

functions of prognostic m5C/m6A-related genes.

In summary, we identified two m5C/m6A modification

subtypes associated with different immune phenotypes and

demonstrated the value of the m5C/m6A-related risk score for

estimating prognosis, drug resistance, and immunotherapy

efficacy. The proposed m5C/m6A-related risk score model

may assist in prognosis evaluation and improve treatment

efficacy for patients with LUAD.
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