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Background: Increasing evidence suggested the critical roles of IncRNAs in the
maintenance of genomic stability. However, the identification of genomic
instability-related IncRNA signature (GILncSig) and its role in pancreatic
cancer (PC) remains largely unexplored.

Methods: In the present study, a systematic analysis of IncCRNA expression
profiles and somatic mutation profiles was performed in PC patients from The
Cancer Genome Atlas (TCGA). We then develop a risk score model to describe
the characteristics of the model and verify its prediction accuracy. ESTIMATE
algorithm, single-sample gene set enrichment analysis (ssGSEA), and
CIBERSORT analysis were employed to reveal the correlation between
tumor immune microenvironment, immune infiltration, immune checkpoint
blockade (ICB) therapy, and GlLncSig in PC.

Results: We identified 206 GILnc, of which five were screened to develop a
prognostic GInLncSig model. Multivariate Cox regression analysis and stratified
analysis revealed that the prognostic value of the GILncSig was independent of
other clinical variables. Receiver operating characteristic (ROC) analysis
suggested that GILncSig is better than the existing IncRNA-related signatures
in predicting survival. Additionally, the prognostic performance of the GlLncSig
was also found to be favorable in patients carrying wild-type KRAS, TP53, and
SMAD4. Besides, a nomogram exhibited appreciable reliability for clinical
application in predicting the prognosis of patients. Finally, the relationship
between the GInLncSig model and the immune landscape in PC reflected its
application value in clinical immunotherapy.

Conclusion: In summary, the GILncSig identified by us may serve as novel
prognostic biomarkers, and could have a crucial role in immunotherapy
decisions for PC patients.
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Introduction

Pancreatic cancer is one of the deadliest cancers, ranking as
the fourteenth most common cancer and the seventh leading
cause of cancer mortality worldwide. Due to the lack of obvious
early symptoms, PC usually presents at an advanced stage, which
results in a 5-years survival rate as low as 6% (ranging from 2% to
9%) (McGuigan et al, 2018). Despite the great advances in
surgery, chemotherapy, and radiotherapy for PC that have
been made in the past few years, long-term survival and
prognosis remain terrible, with more than 80 percent of
patients facing recurrence after resection (Garrido-Laguna and
Hidalgo, 2015). More recently, a large number of previous studies
have analyzed the relationship between the expression of
molecular markers and clinicopathology and long-term
survival in the molecular mechanism of PC. However, their
impact on patient early diagnosis and treatment is still limited
(Garcea et al.,, 2005). Therefore, searching for new prognostic
markers that can predict the poor outcome of patients may
become the target of intervention, and provide new treatment
strategies for the treatment of PC.

Genomic instability refers to an increased tendency of the
genome to acquire mutations, which is typically conferred by
some mechanism dysfunction, such as DNA damage repair,
DNA replication, transcription, and so on. Genomic instability
is a hallmark of cancer and is related to cancer initiation and
progression (Duijf et al., 2019). In addition, genome stability
status is also associated with survival and can be used as a
prognostic marker for cancer patients (Gupta et al, 2018).
Long non-coding RNAs (IncRNAs) are arbitrarily considered
as non-protein coding transcripts over 200 nucleotides in length
(Ma et al., 2014). There is increasing evidence suggesting that
IncRNAs are involved in a variety of biological processes and play
a critical role in genome regulation (Mercer et al., 2009; Rinn and
Chang, 2012; Ma et al,, 2014). Noticeably, the dysregulation of
IncRNAs has been established to be associated with many
complex diseases, including cancers (Gibb et al., 2011; Spizzo
et al, 2012; Cheetham et al, 2013). Many IncRNAs are
abnormally expressed in tumor tissues, which have been
considered oncogenes, such as MALAT1 (Wang et al.,, 2017),
HOTAIR (Troiano et al., 2017), HI19 (Zhang et al., 1993), and
MEG3 (Braconi et al., 2011). The main function of IncRNA is to
regulate gene expression and indicate the tumor status better
than the protein-coding RNAs, so it can be used as a novel
biomarker with diagnostic and prognostic significance
(Hauptman and Glavac, 2013). Currently, several IncRNA
signatures have been developed in various cancers to predict
patient prognosis with great predictive performance, including

lung cancer (Lin et al., 2018), head and neck squamous cell
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carcinoma (Diao et al., 2019), ovarian cancer (Zhou et al., 2016)
and breast cancer (Fei et al., 2018; Tang et al., 2019). Recently, Lee
et al. (2016) analyzed a non-coding RNA activated by DNA
damage (or NORAD) and maintained genomic stability by
isolating PUMILIO protein. Hu et al. reported that
GUARDIN, as a p53-responsive IncRNA, kept genomic
integrity under both stable and exposed status (Hu et al,
2018). These results demonstrated the important role of
IncRNAs in maintaining genomic stability, but the IncRNAs
associated with genomic instability need to be further explored.

In addition, studies have shown that immune cells act as
tumor inhibitors or tumor promoters and may function as
important players in the tumor immune microenvironment
(TIME). Genomic instability has been termed as a promising
indicator for predicting responsiveness to immune checkpoint
blockade based on numerous researches.

Therefore, we constructed a GILncSig to investigate whether
the IncRNA signature could reflect the tumor immune
microenvironment, and serve as an effective prognostic
predictor for patients with PC.

Methods
Availability of data and materials

The clinical information, RNA-seq expression data, IncRNA
transcriptional profiles, and somatic mutation information of
patients with PC were obtained from TCGA project (https://
cancergenome.nih.gov/). A total of 171 TCGA PC patients with
IncRNA expression profiles somatic mutations, survival
information, and clinical features were utilized in our study.
TCGA patients with PC were divided into an 84-sample training
set and an 87-sample testing set. The training set was used to
identify the prognostic IncRNA signature and establish the
prognostic risk model, while the testing set was used to

independently validate its prognostic value.

Identification of genomic instability-
associated IncRNAs

To instability-associated IncRNAs, a
computational framework was constructed based on the IncRNAs

identify ~genomic

expression profiles and somatic mutation profiles of PC patients. As
shown in Figure 1, the cumulative number of somatic mutations per
samplewas calculated and arranged in descending order. The first 25%
of patients were defined as the genomic instability group (GU group),
and the last 25% were defined as the genomic stability group (GS
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group). Then compared the expression profiles of IncRNAs between
the GU group and GS group by the significance analysis of microarrays
(SAM) method. The differentially expressed IncRNAs screened out by
the filter of fold change and permutation correction were defined as
GILnc (fold change >1.5 or <0.67 and false discovery rate (FDR)
adjusted p < 0.05).

Functional enrichment analysis

We calculated the Pearson correlation coefficient to evaluate their
correlation by using paired IncRNA and mRNA expression profiles
and then established a IncRNA-mRNA co-expression network. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses of the co-expressed protein-coding
genes with prognostic IncRNAs were performed to predict the
biological function of the differentially expressed IncRNAs using
clusterProfiler software in R-version 3.5.2 (Yu et al.,, 2012).

Tumor immune-related analysis

To
microenvironment, the R package “ESTIMATE” was utilized to

reflect the characteristics of the tumor immune
calculate Scores of immune and stromal cells. Immune infiltration
information containing each tumor sample’s immune cell fraction
was obtained from Tumor Immune Estimation Resource (TIMER)
(https://cistrome.shinyapps.io/timer/). The correlation of tumor
immune cell infiltrating with prognostic risk signature was further
analyzed. We selected six key genes of immune checkpoint
blockade-related genes in PC to investigate the potential role of
a IncRNA-based signature in ICB therapy of PC.

Statistical analysis

We carried out a univariate regression analysis to determine
the relationship between the expression level of IncRNAs and the
overall survival of the training set. Those IncRNAs with a p-value
less than 0.05 were considered as the candidate prognostic
IncRNAs of PC whose expression levels were significantly
associated with the overall survival of PC patients. To assess
the contribution of that candidate IncRNA as an independent
prognostic factor for survival, a multivariate Cox regression
analysis was further performed. A p value less than 0.05 was
considered significant. A prognostic risk score model of GILncSig
was constructed based on the expression level of IncRNAs and
multivariate Cox regression coefficient to predict the prognosis of
patients with PC as GILncSig
YL coefficient (IncRNAi)*  expression (IncRNAi).
formula, GILncSig (patients) is the prognostic risk score for
PC patients. IncRNAi is each prognostic IncRNAs. Coefficient
(IncRNAI) the of

follows: (patients) =

In our

represents corresponding  coefficient
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FIGURE 1
Computational framework of genomic instability-associated
INncRNAs detection

multivariate Cox regression analysis, and
(IncRNAI) is the expression level of IncRNAI.

According to the above formula, the IncRNA expression-

expression

based risk scores for PC patients could be calculated and
divided patients into high-risk and low-risk groups with the
cutoff of the median risk score from the training set. Kaplan-
Meier survival curves were utilized to estimate the survival rate
of the different patient groups, and the survival differences
between the high-risk group and low-risk group were assessed
by the log-rank test. Time-dependent ROC analysis for overall
survival was used to assess the performance of the prognostic
risk model for time-dependent disease outcomes. Multivariate
Cox regression and stratified analysis were performed to
determine whether the GILncSig was independent of other
clinical variables. Hazard ratio (HR) and 95% confidence
intervals (CI) were estimated by Cox proportional hazards
regression model. A nomogram was built in the training set
to predict the 1-, 2-, and 3-years survival based on the results of
multivariate cox regression analysis by R “rms” and “survival”
package and applied to the testing set and the entire TCGA set
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FIGURE 2
Identification of genome instability-related IncRNAs in patients with pancreatic cancer. (A) Unsupervised clustering analysis of the IncRNA
expression profiles in the GU group and GS group. (B) Unsupervised clustering analysis of 171 patients with pancreatic cancer according to the
differential expression patterns of 206 GlLnc. (C) Boxplots of somatic mutations count in the GU-like group and GS-like group. (D) Boxplot of the
expression level of UBQLN4 in the GU-like group and GS-like group.

for verification. The corrected plot was used to assess the
prognostic accuracy of the nomogram. All statistical analyses
were performed using R software and Bioconductor.

Result

Identification of genome instability-
associated IncRNAs in patients with
pancreatic cancer

To detect the potential Genome instability-related IncRNAs,
the cumulative number of somatic mutations in each patient with
PC was calculated from TCGA. The first 25% (n = 43) and the last
25% (n = 40) patients were classified into the GU group and GS
group by the descending order of cumulative number. Then the
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IncRNA expression profiles in the GU group and GS group were
analyzed by unsupervised clustering, the result shows that a total
of 206 IncRNAs were found to be significantly differentially
expressed (Figure 2A). All patients with PC in TCGA were
divided into GU-like group and GS-like group by
unsupervised hierarchical clustering analysis based on the
expression levels of the 206 differentially expressed IncRNAs.
The cumulative number of somatic mutations was higher in the
GU-like group and lower in the GS-like group (Figure 2B). As
shown in Figure 2C, more mutated genes exist in the GU-like
group (p < 0.001, Mann-Whitney U'test). As the UBQLN4 gene is
one of the driving factors of gene instability, the expression level
of the UBQLN4 gene in the GU-like group and GS-like group was
compared. The results showed that there was a significant
difference in the expression level of UBQLN4 between the two
groups, and the expression level of UBQLN4 in the GU-like group
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was significantly higher than that in the GS-like group. (p < 0.001,
Mann-Whitney U test, Figure 2D).

To better understand the biological significance of the
206 differentially expressed IncRNAs, functional enrichment
analysis was performed to predict potential functions. We
selected the protein-coding genes (PCGs) most related to the
expression of each IncRNA to construct a IncRNA-mRNA co-
expression network (Figure 3A). According to the enriched
results of the IncRNA-correlated PCGs, GO biological process
(e.g., cellular component (CC), DNA binding in the molecular
function (MF), and metabolism in the biological process (BP))
and KEGG pathway (e.g, MAPK signaling pathway, cAMP
signaling pathway, Pancreatic secretion, and Endocrine
resistance) were annotated to be associated with genome
instability (Figures 3B,C). Based on the above results, it is
considered that the 206 IncRNAs were involved in the
genomic instability-related biological process, and their altered

expression may destruct the genomic stability of cells. Therefore,
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the 206 differentially expressed IncRNAs were recognized as
candidate IncRNAs with genomic instability in PC.

Acquisition of a genomic instability-
associated IncRNA prognostic
signature from the training set

To screen out the prognostic IncRNAs with independent
value, we performed a univariate Cox proportional hazard
regression analysis to analyze the relationship between
expression levels of 206 GIIncRNA and OS in the training set,
17 candidate prognostic IncRNAs were found to be significantly
associated with the prognosis of PC patients (Figure 4A).
Furthermore, —multivariate Cox  proportional  hazards
regression was used to analysis on 17 candidate prognostic
IncRNAs. Based on the multiCox model (Figure 4B), 4 of

17 candidate IncRNAs including AL121772.1, BX640514.2,
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A pvalue Hazard ratio
AC015660.1 <0.001 1.388(1.143-1.686)
BX640514.2 <0.001 1.561(1.238-1.968)
LINC00941 0.004 1.311(1.091-1.577)
AC087752.3  0.009 0.128(0.027-0.600)
AC106900.1  0.007 1.312(1.076-1.600)
AL359504.1 0.009 0.138(0.031-0.605)
SH3PXD2A-AS0.005 1.137(1.040-1.243)
LYPLAL1-AS1 0.001 1.257(1.097-1.442)
LINC01133  <0.001 1.020(1.008-1.031)
AL1217721 0.007 1.748(1.169-2.614)
AC039056.2  0.003 1.426(1.125-1.809)
AL021807.1 0.006 1.155(1.042-1.280)
SOCS2-AS1  0.007 0.161(0.042-0.611)
AC104695.4  0.003 1.137(1.044-1.238)
LINC01232 0.009 2.158(1.213-3.837)
AL021578.1 0.010 1.768(1.149-2.721)
AL451042.2  0.004 1.685(1.186-2.393)
B pvalue Hazard ratio
BX640514.2  0.005 1.470(1.125-1.922)
AC087752.3 0.053 0.200(0.039-1.022)
‘LYPLAL1-AS%0.001 1.463(1.250-1.713)
LINCO01133 0.037 1.016(1.001-1.030)
AL121772.1  0.003 1.883(1.241-2.857)
FIGURE 4
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Construction of the genomic instability-associated IncRNA prognostic signature from the training set. (A) Forest plot of 17 candidate prognostic
LncRNAs associated with pancreatic cancer patients’ overall survival based on univariate Cox regression analyses. (B) Forest plot of five candidate
prognostic LncRNAs associated with pancreatic cancer patients’ overall survival based on stepwise multivariate Cox proportional hazard regression.

LINCO01133, and LYPLAL1-AS1 were found to retain their
prognostic thus identified
independent prognostic IncRNAs (p < 0.05). All of the four
IncRNAs (AL121772.1, BX640514.2, LINC01133,and LYPLALI-
AS1) with positive coefficients tended to be prognostic risk

significance and were as

factors and their high expression were associated with shorter
One IncRNAs (AC087752.3) having negative
coefficients was shown to be a protective factor whose high

survival.

expression level was closed associated with longer survival. A
risk score model of GILncSig based on the results of the
multivariate Cox analysis regression coefficients was generated
to predict the outcome of PC patients as follows: GILncSig =
(-1.61 x expression value of AC087752.3) + (0.63 x expression
value of AL121772.1) + (0.39x expression value of BX640514.2)
+ (0.02 x expression value of LINC01133) + (0.38x expression
value of LYPLAL1-AS1). According to the GILncSig model, the
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prognostic risk score was computed for each patient in the
training set. Using the median risk score as the cutoff point,
all patients in the training set were classified into a high-risk
group (n = 38) and a low-risk group (n = 46). The Kaplan-Meier
analysis indicated that the overall survival was significantly
different between the two risk groups and patients in the low-
risk subgroup had markedly longer overall survival than those in
the high-risk group (p = 0.009, log-rank test, Figure 5A). The
time-dependent receiver operating characteristic (ROC) curves
analysis for GIIncRNA prognostic model achieved an area under
the curve (AUC) of 0.653 at 1 year of overall survival (Figure 5C).
These results demonstrated the GIIncRNA had better prognosis
prediction performance in patients with PC. Then we ranked the
risk scores of patients in the training set. Figure 5B showed the
expression pattern of the five Independent prognostic IncRNAs,
the expression level of UBQLN4, and the count of somatic
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Identification and validation of the GILncSig for outcome prediction in patients with pancreatic cancer in the training set and testing set. (A,E)
Kaplan—Meier survival curves of patients in the high- and low-risk groups are separated by the median GILncSig score in the training set (A) and
testing set (E). (B,F) LncRNA expression patterns and the distribution of somatic mutation and UBQLN4 expression with increasing GILncSig score in
the training set (B) and testing set (F). (C,G) Time-dependent ROC curves for 1-year survival prediction of the GILncSig in the training set (C) and
testing set (G). (D,H) Boxplots of comparison of the somatic mutation counts and the UBQLN4 expression between the high- and low-risk groups in

the training set (D) and testing set (H).

mutations. We found that for patients with high-risk scores, the
expression levels of four risk IncRNAs(AL121772.1, BX640514.2,
LINCO01133, LYPLALI1-AS1) were up-regulated, while one
protective IncRNA (AC087752.3) was expressed at a low level.
In contrast, these prognostic IncRNAs expressed the opposite
patterns in patients with low-risk scores. Similarly, there were
significant differences in UBQLN4 expression levels between the
high-risk group and low-risk group (p = 0.049, Mann-Whitney U
test; Figure 5D). Moreover, Figure 5D also revealed that the
number of somatic mutations in the high-risk group was slightly
higher than those in the low-risk group (p = 0.09,
Mann-Whitney U test; Figure 5D).

Validation of GlLncSig in the testing set
and entire the cancer genome atlas set

To confirm our findings, the prognostic performance of the
GILncSig was further evaluated in the testing set. Patients in the
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testing set were divided into the high-risk group (n = 43) and the
low-risk group (n = 44) by using the same GILncSig and cutoff
value deriving from the training set. Kaplan-Meier curves
showed that there was a significant difference in overall
survival between the high-risk group and the low-risk group,
and the overall survival of the high-risk group was much lower
than the low-risk group (p < 0.001, log-rank test, Figure 5E),
which were similar to those observed in the training set.
Validation of the GILncSig in the testing set of 87 patients
produced a ROC with an AUC of 0.806 at 1 year (Figure 5G).
Figure 5F shows how the expression level of GILncSig, the count
of somatic mutation, and the expression level of UBQLN4 in the
testing set change with the increasing score. The analysis
indicated that Somatic mutation counts and the expression
level of UBQLN4 were significantly higher in the high-risk
group as compared with those in the low-risk group (p =
0.0044, p = 0.00054, Mann-Whitney U test; Figure 5H).
Similar results were observed when the prognostic performance
of the GILncSig was further used to the entire TCGA set. Like the
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Predictive performance evaluation of the GILncSig in patients with pancreatic cancer in the TCGA set. (A) Kaplan—Meier survival curves of
patients in the high- and low-risk groups separated by the median GILncSig score in the TCGA set. (B) LncRNA expression patterns and the
distribution of somatic mutation and UBQLN4 expression with increasing GlLncSig score in the TCGA set. (C) Time-dependent ROC curves for 1-
year survival prediction of the GILncSig in the TCGA set. (D) Boxplots of comparison of the somatic mutation counts and the

UBQLN4 expression between the high- and low-risk groups in the TCGA set.
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The ROC analysis for 1-year survival prediction of the
GInLncSig and the other two existing signatures (SonglLncSig,
ShiLncSig), respectively.

training and testing set, the GIIncRNA was able to stratify 171 PC
patients of the entire TCGA set into the high-risk group (n = 81) and
low-risk group (n = 90) with obviously different overall survival (p <
0.001, log-rank test, Figure 6A). The AUC of time-dependent ROC
analysis for overall survival in the entire TCGA set was 0.724
(Figure 6B). The expression of GILncSig, somatic mutation
counts, and UBQLN4 expression level of PC patients in the
TCGA set was presented in Figure 6C, which were similar to
those observed in the training set and testing set. The counts of
somatic mutations in the high-risk group were significantly higher
than that in the low-risk group (p = 0.0022, Mann-Whitney U test,
Figure 6D), as was the expression level of UBQLN4 (p = 0.0001,
Mann-Whitney U test, Figure 6D).

Comparison of the GILncSig and other
IncRNA-related predictive signatures for
survival prediction

Recently, two IncRNA-related signatures were reported to
predict the prognosis of PC patients. Therefore, we further
compared the prognostic value of our GILncSig to that of
different  IncRNA-associated
outcomes: the five-IncRNA signature derived from Song’s

signatures  for  predicting
study (hereinafter referred to as SongSig) (Song et al.,, 2018)
and the three-IncRNA signature derived from Shi’s study
(hereinafter referred to as ShiSig) (Shi et al, 2018). Utilizing
the same TCGA patient set. Then we performed the time-

dependent ROC analysis and calculated the area under the
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ROC curves to compare the prediction performance between
the GILncSig and other two existing IncRNA-related signatures
in the entire TCGA set. The result demonstrated that the AUC at
1 year of overall survival for the GILncSig is 0.724, which was
significantly higher than that of SongSig (AUC = 0.642) and
ShiSig (AUC = 0.556) (Figure 7). For this reason, we believed that
the GILncSig had better prognostic power than those two
IncRNA-related signatures.

Independence of prognostic value of
the GIlncRNA from other clinical
variables

To determine whether the prognostic value of the GIIncRNA
was independent of other clinical variables. Multivariate Cox
regression analysis was performed in each patient set using
prognostic risk score, age, gender, pathological grade, and
stage. Results from multivariate Cox analysis revealed that the
GIIncRNA was significantly associated with overall survival in
each set when adjusted for age, gender, pathological grade, and
stage (Table 1). At the same time, we also observed that age,
gender, pathological grade, and stage were different in the
multivariate analysis significantly. So we further performed
data stratification analysis according to age and gender,
pathological grade, and stage. According to age, PC patients
could be stratified into an old patient group (age >65, n = 81) and
a young patient group (age <=65, n = 90). The GIIncRNA could
subdivide each age group into a high-risk group and a low-risk
group. There was significantly different overall survival between
the high-risk group and low-risk group in each age group. (log-
rank test p = 0.016 for the old patient group and log-rank test p <
0.001 for the young patient group) (Figure 8A). Next, all patients
were also stratified by gender. The overall survival of patients in
the low-risk group was significantly longer than that of patients
in the high-risk group by analysis of the results. (log-rank test p =
0.002 for the female group; log-rank test p = 0.001 for the male
group; Figure 8B). In addition, all patients in the entire TCGA set
were grouped according to tumor size, lymph node metastasis,
and distant metastasis. Each group was further separated into a
high-risk group and a low-risk group by the GIIncRNA, and the
difference in overall survival between the two groups was
compared. As shown in Figure 8, except for the metastatic
group (M1 group and TI1-2 group), there were statistically
significant differences in overall survival between the high-risk
and low-risk groups in each group (p < 0.001 for T3-4 group,
Figure 8D; p = 0.027 for NO group, p = 0.003 for N1 group,
Figure 8G; p = 0.009 for MO group, p = 0.317 for M1 group,
Figure 8C; log-rank test). Finally, the same analysis method was
applied to the pathological grade and stage of patients. The
results of the stratified analysis showed that the patients with
high grades were divided into either a high-risk group (n = 24)
with shorter survival or a low-risk group (n = 25) with longer
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TABLE 1 Univariate and Multivariate Cox regression analysis of the GILncSig and clinical features for the independent prognostic significance in

different patient datasets.

Variables Univariable model
HR HR.95L HR.95H
TCGA set
age 1.027207 1.005871 1.048994
gender 0.873723 0.577194 1.322592
grade 1.391989 1.040839 1.861608
stage 1.365182 0.936063 1.991023
riskScore 1.030134 1.014894 1.045604
Testing set
id HR HR.95L HR.95H
age 1.02934 1.000879 1.058611
gender 1.051846 0.60187 1.838237
grade 1.341221 0.926544 1.941486
stage 1.341823 0.799856 2.251018
riskScore 1.029268 0.964336 1.098572
Training set
id HR HR.95L HR.95H
age 1.026642 0.994416 1.059912
gender 0.768614 0.409857 1.4414
grade 1.454163 0.904621 2.337542
stage 1.439642 0.82667 2.507129
riskScore 1.026271 1.011035 1.041736

survival (p = 0.068, log-rank test; Figure 8E). The patients in the
low-grade group were similarly classified into two risk subgroups
with significantly different survival times (p < 0.001, log-rank
test; Figure 8E). Furthermore, patients with pathologic stage I or
IT were combined into an early-stage group (n = 161), and those
with pathologic stage III or IV were combined into a late-stage
group (i = 7). The GIIncRNA divided the early-stage group and
the late-stage group into a high-risk group and a low-risk group
respectively. The overall survival was significantly different
between the two groups in the early-stage group (p < 0.001,
log-rank test; Figure 8F). Nevertheless, the difference in overall
survival between the two groups was not significant probably due
to the limited sample size in the late group (p = 0.549, log-rank
test; Figure 8F). Taken together, these results indicated that the
GILncSig was an independent prognostic factor associated with
overall survival in PC patients.

The prognostic significance of GILncSig is
better than KRAS, TP53, and
SMAD4 mutation status

KRAS, TP53 and SMAD4 were the most frequent mutant
genes and associated with poor prognosis in PC. With this in
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p value

0.012189

Multivariable model

HR HR.95L HR.95H p value

1.023761 1.001864 1.046137 0.033272

0.523359

0.025759

1.250423 0.931461 1.678608 0.136906

0.105923

9.46E-05

pvalue

0.04324

1.02821 1.013716 1.042912 0.000123

HR
1.02934

HR.95L HR.95H pvalue

1.000879 1.058611 0.04324

0.859146

0.119783

0.265316

0.38557

pvalue

HR HR.95L HR.95H pvalue

0.106125

0.412039

0.122089

0.19794

0.000679

10

1.02934 1.000879 1.058611 0.04324

mind, these three genes were included in the training set, testing
set and TCGA set for analysis, respectively. Then further
stratified analysis was performed based on the mutation status
of KRAS, TP53 and SMAD4 by GILncSig. The analysis showed
that the proportion of patients with KRAS, TP53, and
SMAD4 mutations in the high-risk group was higher than
that in the low-risk group to varying degrees in each set. For
KRAS, 66% of the high-risk group had KRAS mutations,
significantly higher than 16% of the low-risk group in the
training set (chi-square test p < 0.001). In the testing set, 72%
of the high-risk group had KRAS mutation, which was
significantly higher than 46% of the low-risk group (chi-
square test p = 0.040). In the entire TCGA set, 69% of KRAS
mutation in the high-risk group was significantly higher than
33% in the low-risk group (chi-square test p < 0.001). These
results suggest that GILncSig is closely related to the mutation
state of the KRAS gene. Therefore, we applied GILncSig to
patients with KRAS Wild type (KRAS Wild) and KRAS
mutation type (KRAS mutation). Patients with KRAS Wild
were divided into the low-risk group (KRAS Wild/GS-like)
and high-risk group (KRAS Wild/GU-like), and patients with
KRAS mutation were divided into the low-risk group (KRAS
Wild/GS-like) and high-risk group (KRAS mutation/GU-like).
Through comparative analysis, we found that the overall survival
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of the KRAS Wild/GS-like group was significantly different from
that of the KRAS Wild/GU-like group and KRAS Wild/GU-like
group, and patients in KRAS Wild/GS-like group had better
prognosis (p = 0.01, log-rank test; Figure 9A). For TP53, as shown
in Figure 9B, 73% of TP53 mutations in the high-risk group were
significantly higher than 26% in the low-risk group in the training
set (chi-square test p < 0.001). Similarly, in the TCGA set, the
TP53 mutation in the high-risk group was higher than that in the
low-risk group (high-risk group 66% versus low-risk group 41%,
chi-square test p = 0.004). However, TP53 mutations were only
slightly higher in the high-risk group than that in the low-risk group
in the test set, and there was no significant difference between the
two groups (high-risk group 58% versus low-risk group 54%, chi-
square test p = 0.874). In consequence, we believe that TP53 status
can be predicted according to the GILncSig risk score. Then patients
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with TP53 mutation and TP53 wild type were further divided into
TP53 mutation high-risk group (TP53 mutation/GU-like),
TP53 mutation low-risk group (TP53 mutation/GS-like),
TP53 wild high-risk group (TP53 wild/GU-like), and TP53 wild
low-risk group (TP53 wild/GS-like). Survival analysis showed that
patients in the TP53 wild/GS-like group had longer survival than
those in the TP53 wild/GU-like group, and the higher risk scores
were associated with lower survival rates in TP53 wild subgroups
(p = 0.002, log-rank test; Figure 9B). For SMAD4, it has similar
results to KRAS and TP53. The patients in the training set, testing set
and TCGA set were respectively divided into high-risk group and
low-risk group by using GILncSig. In each set, the proportion of
SMAD4 mutation in the high-risk group was significantly higher
than that in the low-risk group (p = 0.228 for the training set; p =
0.028 for the testing set; p = 0.009 for TCGA set; chi-square test;
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Relationship between the GILncSig and KRAS, TP53, SMAD4 mutation. The proportion of KRAS (A), TP53 (B), and SMAD4 (C) mutation in the
high- and low-risk group in the training set, the testing set, and the TCGA set. Kaplan—Meier survival curves of overall survival for patients in groups
divided based on KRAS (A), TP53 (B), SMAD4 (C) mutation status and the GILncSig.

Figure 9C). The patients with SMAD4 mutation type and
SMAD4 wild type were further separated into SMAD4 mutation/
GU-like group, SMAD4 mutation/GS-like, SMAD4 wild/GU-like
group and SMAD4 wild/GS-like group. The results of the survival
analysis showed that the overall survival among the groups was
slightly different (p = 0.062, log-rank test; Figure 9C). Therefore, the
above findings suggested that the GILncSig is superior to KRAS,
TP53, and SMAD4 mutation status in prognosis.

Development and validation of a
nomogram for predicting survival in
patients with pancreatic cancer

To improve the clinical application of the GILncSig, we
established a prognostic nomogram model combined with the
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risk score, age, gender, pathological grade and stage to predict the
patients’ survival at 1-, 2-, and 3- years in the training set by using
“rms” and “survival” packages in software R (Figure 10A). In
Figure 10B, the C-index of the nomogram of the training set was
0.650, and the AUC values predicted for 1-, 2- and 3-years
survival is 0.806, 0.844, and 0.792, respectively. The C-index was
0.615 in the testing set and the AUCs of ROC for 1-, 2-, and 3-
years survival predictions were 0.653, 0.776, and 0.856,
respectively (Figure 10C). Likewise, the C-index was 0.618 in
the whole TCGA set and the 1-, 2-, and 3-years AUCs were 0.724,
0.814, and 0.83, respectively (Figure 10D). The calibration plots
in (Supplementary Figure 1) exhibited excellent accordance
between the nomogram prediction and the actual values in
terms of the 1-, 2- and 3-years survival rates in the three
datasets. The above results indicated that the prediction
performance of the established nomogram is improved.
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Construction and assessment of a nomogram for survival prediction of patients with pancreatic cancer based on risk score, age, gender,
pathological grade and stage. (A) The nomogram was established in a training set for predicting 1-, 2-, and 3-years survival of pancreatic cancer
patients. (B—D) ROC curve analysis for 1-, 2-, and 3-years survival prediction of the nomogram in the training set (B), testing set (C), and TCGA set (D),

respectively.

Correlation of risk score with tumor
immune environment characterization

Through the ESTIMATE evaluation method, TumorPurity,
ImmuneScore and StromalScore were calculated. These results
indicated that patients in the low-risk group have lower
TumorPurity and higher
(Figures 11A-C). To further uncover the correlation between
GILncSig and immune cell infiltration, the analysis showed that

ImmuneScore and StromalScore

patients in the low-risk group had more T cells CD8, B cells, and
T cells CD4 memory activated, while the Macrophages M0 was at a
low level (Figure 11D). To further explore the influence of GILncSig
on the TIME of PC we analyzed the correlation of risk signature with
immune cell infiltration type and level. The results indicated that the
risk signature significantly correlated with infiltrating B cells
(r = -0.38; p = 1.2e — 05), infiltrating CD4+T cells (r = —-0.34;
p = 0.00011), infiltrating plasma cells (r = -0.19; p = 0.036),
CD8 T cells (r = -0.35 p = 6.6e —05), macrophages MO (r =
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0.32; p = 0.00023), and macrophages M2 (r = 0.21; p = 0.018;
Figure 11E). Then, the ssGSEA algorithm was used to examine
whether there was a distinction of immune signatures between
groups of low/high risk. The results found that the infiltrating levels
of B cells, CD8+T cells, DCs, Neutrophils, pDCs, Tth, Th1 cells, and
Th2 cells were remarkably elevated and some immune signatures
(ie., CCR, checkpoint, inflammation-promoting, IEN response type
IT) were significantly activated in the low-risk group Figure 12A,B).

Correlation of risk score with immune
checkpoint blockade key molecules

Six key immune checkpoint inhibitor genes (PDCD1, CD274,
PDCDI1LG2, CTLA-4, HAVCR2, and IDO1) were singled out for
further research. We performed the correlation analysis of ICB key
gene expression with risk signature to investigate the potential role of
a signature in the ICB therapy of PC (Figure 12C). Correlation
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Correlation of prognostic risk score with TIME characterization (A—C) The correlation of estimate score, immune score, and tumor purity
between these two subtypes. (D) Difference of infiltrating immune cell subpopulations and levels between low-/high-risk groups. (E) Correlation

between tumor immune infiltration and GILncSig.

analysis results indicated that GILncSig had close relationship with
CD274 (r = —0.18; p = 0.018), CTLA4 (r = -0.32; p = 2e —05),
HAVCR2 (r = -0.29; p = 0.00012), PDCD1 (i = -0.4; p = 8.1e — 08),
and PDCDILG2 (r = —-0.3; p = 6e-05; Figures 12D), indicating
GILncSig might exert a nonnegligible player in ICB treatment
outcome prediction in PC. Further correlation analysis presented
that 32 of 47 CD27, IDO2,
blockade-related gene expression

(ie., etc.) immune check

levels were significantly

different between the two risk groups (Figures 13).

Discussion

PC is the most common cause of cancer death worldwide
(Siegel et al., 2020). It is characterized by high morbidity, high
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mortality, difficult early diagnosis, and poor prognosis (Sharma
et al, 2011; Peng et al., 2016). Surgical resection is effective for
patients with early PC, while palliative treatment is adopted for
patients with locally advanced, metastatic, and unresectable PC
(Li et al., 2004). In recent years, molecular research on PC has
made great progress, and the survival rate of PC patients has
improved to some extent. However, the prognosis has not been
improved (Feldmann and Maitra, 2008). As metastasis and
recurrence are the main causes of poor prognosis, it is urgent
to identify effective tumor biomarkers to evaluate the prognosis
of patients with PC accurately.

Genomic instability is an important feature of human cancer,
which is associated with poor prognosis, and metastasis
(Bakhoum and Cantley, 2018; Duijf et al., 2019). It has been
reported that genomic instability affects the prognosis of PC, and
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the pattern of genomic instability is quite heterogeneous in
metastatic PC (Campbell et al., 2010; Sahin et al., 2016). It is
known that the degree of genomic instability has diagnostic and
prognostic implications, yet measuring genomic instability is a
big challenge. Mettu et al. (2010) constructed a 12-gene signature
to assess genomic instability and predict clinical outcomes in
cancers. Zhang et al.(2014) developed a biological rationale-
driven genomic instability score to predict the prognosis of
ovarian cancer.

LncRNAs have complex biological functions and have
been proved to be closely related to the occurrence and
development of cancers (Gibb et al, 2011; Fatica and
Bozzoni, 2014). Recently, increasingly more researchers pay
attention to the clinical significance of LncRNAs in the
prognosis of cancers. For instance, the high expression of
IncRNA HOX transcript antisense RNA (HOTAIR) in lung
tumor tissues is correlated with metastasis and poor prognosis
in patients with lung cancer (Loewen et al., 2014). The IncRNA
AOC4P induces a poor prognosis in gastric cancer patients
through epithelial-mesenchymal transition (Zhang et al,
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2019). It has been found that IncRNAs play an important
role in maintaining genomic stability through continuous
exploration of the function of IncRNAs (Lee et al., 2016;
Liu, 2016; Hu et al, 2018). Although some efforts have
been made, few kinds of research have been done on GILnc
in cancers. Therefore, there is an urgent need to investigate the
prognostic value of genomic-instability associated IncRNAs in
PC patients.

In our study, we identified 40 genomic instability-associated
IncRNAs by analyzing the IncRNA expression profile and
somatic mutation profile of 171 patients with PC. Then, the
function of these IncRNAs was predicted by the IncRNA-
mRNA GO and KEGG
enrichment results suggested that the genes co-expressed

co-expression network. The

with these 206 IncRNAs were enriched at chromosomes and
nucleoplasm in the cellular component, DNA binding in the
molecular function, and the transcription and compound
synthesis and metabolism in the biological process can
promote genomic instability, which leads to cancer
eventually (Barnum and O’Connell, 2014; Friedberg, 2001).
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FIGURE 13

Comparison of 32 immune checkpoint blockade—-related gene expression levels in low-/high-risk groups.

We further divided all patients into the training set and testing
set. Cox proportional risk regression analysis was performed on
the candidate genomic instability-associated IncRNAs in the
training set, and a genomic instability-associated IncRNAs
signature  (GILncSig) consisting of 5 IncRNAs with
independent prognostic value (AL121772.1, BX640514.2,
LINCO01133, AC087752.3, LYPLAL1-ASI)
established to predict the prognosis of PC. The GILncSig can

and was
classify PC patients in the training set into the high-risk group
and low-risk group with significantly different overall survival,
which was verified in the testing set and the whole TCGA set. In
addition, we also found that patients with PC in the high-risk
group had significantly higher somatic mutation counts and
UBQLN4 expression levels, both of which are characteristics of
genomic instability. A comparison of our GILncSig and two
recently reported IncRNA-related signatures with predictive
values for PC in the same TCGA patient set suggested that the
GILncSig has better prognostic ability in predicting survival
than those two IncRNA-related signatures. Our study also
that the of other
clinicopathological gender,

found GILncSig was independent

factors, including  age,
pathological grade, and stage. Furthermore, based on the
GILncSig, of KRAS, TP53,
SMAD4 in the high-risk group were significantly higher than
those in the low-risk group. The survival time of KRAS, TP53,

and SMAD4 wild-type patients in the low-risk group was

the mutation status and

significantly longer than that of patients with mutant-type.
The above results indicated that the GILncSig may have

greater prognostic significance than KRAS, TP53 and
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SMAD4 mutation
constructed by

states. Finally, a nomogram

the
independent prognostic factors of age, gender, pathological

was
combining GInLncSig and four
grade, and stage in the training set, which further improved
the predictive performance, and was verified on the testing set
and the entire TCGA set.

What’s more, numerous researches focusing on TIME have
revealed the potential key role of IncRNAs in infiltrating immune
cells. In this study, we find that GILncSig was significantly
correlated with immune cell infiltration, ESTIMATE results
showed that GILncSig was positive with tumor purity but
negatively correlated with estimate score and immune score,
suggesting GILncSig could serve as a novel immune indicator in
PC. Besides, ssGSEA results indicated that in the low-risk group
the infiltrating immune cells were significantly increased and
immune signatures were remarkably activated. The immune-
activated condition in the low-risk group was associated with
high ICB-relevant gene expression, suggesting samples with
high-risk scores might respond to immunotherapy. Whats
more, the correlation analysis between ICB-related genes and
GILncSig indicated that our signature may possess the ability to
predict the clinical outcome of ICB therapy in PC.

Although the GILncSig identified here is reliable and
promising as a prognostic signature in the tumor immune
microenvironment of PC, there are still several limitations. In
addition to validation in the TCGA dataset, the GILncSig
requires more independent datasets to verify. Meanwhile, it is
necessary to further explore the regulatory mechanism of
GILncSig in biological function to maintain genomic instability.
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Conclusion

In summary, we have performed RNA-seq prognostic
analysis in PC patients by bioinformatics methods to develop
a genomic instability-derived IncRNA signature to predict the
prognosis of PC patients and successfully validated it on the
independent cohort. Moreover, we integrated GInLncSig with
age, gender, pathological grade and stage to construct a
nomogram to improve its prediction performance. Further
results unraveled that GILncSig was significantly correlated
with immune cell infiltration and has important significance
for genomic instability and ICB treatment of PC.
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