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Esophageal cancer (EC) remains a significant challenge globally, having the

8th highest incidence and 6th highest mortality worldwide. Esophageal

squamous cell carcinoma (ESCC) is the most common form of EC in Asia.

Crucially, more than 90% of EC cases in China are ESCC. The high mortality

rate of EC is likely due to the limited number of effective therapeutic options.

To increase patient survival, novel therapeutic strategies for EC patients must

be devised. Unfortunately, the development of novel drugs also presents its

own significant challenges as most novel drugs do not make it to market due

to lack of efficacy or safety concerns. A more time and cost-effective

strategy is to identify existing drugs, that have already been approved for

treatment of other diseases, which can be repurposed to treat EC patients,

with drug repositioning. This can be achieved by comparing the gene

expression profiles of disease-states with the effect on gene-expression

by a given drug. In our analysis, we used previously publishedmicroarray data

and identified 167 differentially expressed genes (DEGs). Using weighted key

driver analysis, 39 key driver genes were then identified. These driver genes

were then used in Overlap Analysis and Network Analysis in Pharmomics. By

extracting drugs common to both analyses, 24 drugs are predicted to

demonstrate therapeutic effect in EC patients. Several of which have

already been shown to demonstrate a therapeutic effect in EC, most

notably Doxorubicin, which is commonly used to treat EC patients, and

Ixazomib, which was recently shown to induce apoptosis and supress growth

of EC cell lines. Additionally, our analysis predicts multiple psychiatric drugs,

including Venlafaxine, as repositioned drugs. This is in line with recent

research which suggests that psychiatric drugs should be investigated for

use in gastrointestinal cancers such as EC. Our study shows that a drug

repositioning approach is a feasible strategy for identifying novel ESCC

therapies and can also improve the understanding of the mechanisms

underlying the drug targets.
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Introduction

There are two major subtypes of Esophageal cancer (EC),

esophageal squamous cell carcinoma (ESCC) and esophageal

adenocarcinoma (EAC) (Ye et al., 2021). In China, more than

90% of esophageal cancer cases are ESCC (Zhang X. et al., 2021).

EC as a whole remains a significant challenge globally, having the

8th highest incidence and the 6th highest mortality worldwide

killing over 500,000 people in 2020 (Sung et al., 2021). A major

driver of the high mortality rate is likely due to the fact that there

are very few effective therapeutic options for EC patients. In

recent years, there has been a significant increase in survival for

many cancers, largely due to the availability of targeted therapies.

For EC, however, targeted therapies are yet to make a significant

impact on patient survival. Consequently, patients are often

relying on more traditional therapies such as chemotherapy

and surgical resection. In-order-to increase patient survival,

novel therapeutic strategies for EC patients must be devised.

Unfortunately, the development of novel drugs also presents its

own significant challenges as most novel drugs do not make it to

market due to lack of efficacy or safety concerns. Therefore, it is

more time and cost effective to identify existing drugs, that have

already been approved for treatment of other diseases, which can

be repurposed to treat EC patients. This can be achieved using a

drugs gene signature, the alterations in gene expression as a result

of exposure to the drug. The gene signature of a drug indicates

the underlying biological pathways and mechanisms that are

involved in the therapeutic effect of the drug. With this

knowledge, we can then identify candidate drugs which have

gene signatures capable of reversing aberrant gene expression

patterns observed in disease-states to those observed in normal

cells. This gene signature-based approach has been adopted by

previous research to identify drugs that can be repositioned to

treat a variety of diseases including, but not limited to, cancer,

Alzheimer’s, hyperlipidaemia, hypertension, and inflammatory

disease (Corbett et al., 2012; Hall et al., 2014; Guney et al., 2016;

Subramanian et al., 2017; Cheng et al., 2018; Carvalho et al., 2021;

Wu et al., 2022). To date, drug repositioning to target gene

signatures has primarily involved identifying directly

overlapping drug genes and disease genes (herein referred to

as overlap analysis) (Subramanian et al., 2017; Wang et al., 2018;

Chen et al., 2022). More recently, network analysis has been

greatly employed in this area as it offers distinct advantages over

more traditional statistical methods. This is due to the fact that

the models that can be built with this methodology are an

excellent way to capture a molecules relationship with other

molecules. In particular, nodes can be used to represent multiple

entities such as genes, molecules, proteins, etc, and the edges can

also represent a vast array of information such as mode-of-

actions (MoAs), underlying mechanisms, or functional

similarities (Jarada et al., 2020) Hence, network-based

methods can accurately represent the biological mechanisms

which are driving diseases (Barabási et al., 2011). As a result,

network-based drug repositioning can identify drugs which

target the underlying biology of the disease. It is worth

noting, however, that other methods of computational drug

repositioning have also been adopted, such as Data Mining

and Machine Learning. An excellent review of the different

methodologies, as well as their advantages and disadvantages

has recently been published (Jarada et al., 2020). Due to the

success of drug repositioning overall, and the absence of effective

treatments for ESCC, it has been proposed that this method be

used to identify novel treatment strategies for ESCC. However,

FIGURE 1
Drug Repositioning Analysis Methodology. The initial step of
the analysis included differential gene expression on previously
published array data fromGEO (accession: GSE23400). DEGswere
then used to identify key driver genes in a weighted key driver
analysis. The key driver genes were then used as input in 2 arms;
overlap analysis and network analysis. Qualify control was
performed to filter out erroneous results and identify candidate
drugs. Drugs which were common to both arms were considered
robust and considered ESCC Repositioned Drugs.
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these studies have largely, though not completely, been limited to

testing existing cancer drugs in vitro with drug screening

methods (Xie et al., 2020; Li Y. et al., 2021). Herein, we adopt

both a network-based and overlap-based drug repositioning

methodology, to identify existing drugs that can specifically

target the aberrant expression profile of ESCC and impede

oncogenesis. To do this, we used previously published data for

in-silico drug repositioning analysis utilising the PharmOmics

webserver (Chen et al., 2022). The repositioning analysis

consisted of two arms, the ‘overlap analysis’ arm and the

‘network analysis’ arm (Figure 1), which utilise two methods

of drug repositioning.

Results

Identification of DEGs

The dataset GSE23400 was downloaded using the GEOquery

R package function getGEO. In total, 167 DEGs were identified

between ESC and normal samples (Details of the differential gene

expression analysis can be found in the methods section). Of

which, 65 were upregulated and 102 were downregulated. The

top 5 most upregulated genes are MMP1, SPP1, POSTN,

COL1A1, and JUP. The top 5 most downregulated genes are

CRISP3, MAL, CRNN, SCEL, CLCA4. The top 25 up-regulated

genes can be observed in Table 1, whereas the top 25 down-

regulated genes can be observed in Table 2.

Functional and pathway enrichment
analyses

Functional and pathway enrichment analyses were

performed used the ‘clusterProfiler’ R package. Gene Set

Enrichment Analysis (GSEA) was performed with Gene

Ontology (GO) (hereafter referred to as GSEA-GO) and

Kyoto Encyclopaedia of Genes and Genomes (KEGG)

pathway (hereafter referred to as GSEA-KEGG). GSEA-GO

analysis was performed with the gene set categories Biological

Process (BP), Cellular Component (CC), and Molecular

Function (MF), which identified 253, 36, 25 enriched gene

TABLE 1 Top 25 up-regulated genes in differential gene expression
analysis comparing cancer tissue with adjacent tissue in ESCC
patients.

Gene logFC Adj. P-value

MMP1 4.443 8.65 × 10–29

SPP1 3.187 3.38 × 10–23

POSTN 3.066 2.03 × 10–22

COL1A1 2.990 5.89 × 10–32

JUP 2.831 1.68 × 10–16

COL1A2 2.698 2.95 × 10–26

COL11A1 2.405 1.64 × 10–20

CDH11 2.370 1.14 × 10–21

MMP12 2.240 5.17 × 10–19

MAGEA6 2.226 2.40 × 10–09

PTHLH 2.213 7.27 × 10–13

MAGEA3 2.213 1.71 × 10–09

VCAN 2.204 2.11 × 10–20

SNAI2 2.202 2.62 × 10–25

MMP10 2.193 8.12 × 10–11

COL3A1 2.164 7.24 × 10–22

SULF1 2.125 1.69 × 10–22

ECT2 2.112 2.30 × 10–31

COL5A2 2.087 1.59 × 10–20

TOP2A 2.004 2.93 × 10–23

PLAU 1.994 4.17 × 10–27

CKS2 1.968 1.90 × 10–22

INHBA 1.904 2.28 × 10–15

ISG15 1.870 8.29 × 10–14

CEP55 1.846 5.48 × 10–26

TABLE 2 Top 25 down-regulated genes in differential gene expression
analysis comparing cancer tissue with adjacent tissue in ESCC
patients.

Gene logFC Adj. P-value

CRISP3 −4.247 8.53 × 10–21

MAL −3.968 8.65 × 10–20

CRNN −3.654 3.31 × 10–16

SCEL −3.496 4.16 × 10–17

CLCA4 −3.425 2.59 × 10–18

TGM3 −3.329 5.45 × 10–19

CRCT1 −3.175 2.76 × 10–15

TMPRSS11E −3.106 3.69 × 10–15

SLURP1 −2.952 1.03 × 10–17

CLIC3 −2.913 7.72 × 10–17

ENDOU −2.774 3.52 × 10–21

IL1RN −2.769 2.06 × 10–22

PPP1R3C −2.750 5.02 × 10–24

SPINK5 −2.745 8.77 × 10–17

HPGD −2.647 5.22 × 10–24

RHCG −2.628 7.00 × 10–13

KRT4 −2.606 5.59 × 10–14

FLG −2.432 2.72 × 10–15

KLK13 −2.353 1.73 × 10–20

ECM1 −2.351 8.47 × 10–17

KRT13 −2.305 3.20 × 10–10

CEACAM6 −2.291 8.44 × 10–13

ADH1B −2.288 3.47 × 10–20

PSCA −2.260 2.25 × 10–15

HOPX −2.233 7.07 × 10–15
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sets, respectively. Numerous BP gene sets identified by the

analysis are related to extracellular matrix and cell

differentiation. Ranking BP analysis by adjusted p-value, the

top 5 most enriched gene sets are cellular component

organization, cellular component organization or biogenesis,

extracellular matrix organization, extracellular structure

organization, multicellular organism development. According

to adjusted p-value, the top 5 most enriched CC category are

endoplasmic reticulum lumen, external encapsulating structure,

extracellular matrix, fibrillar collagen trimer, banded collagen

fibril. Furthermore, the top 5 categories in the MF analysis

identified extracellular matrix structural constituent,

extracellular matrix structural constituent conferring tensile

strength, protein-containing complex binding, cell adhesion

molecule binding, glycosaminoglycan binding. The full results

for BP, CC, MF can be observed in Supplementary Tables S1–S3,

respectively. Gene Set Enrichment Analysis of KEGG (GSEA-

KEGG) identified 12 enriched gene sets (Supplementary Table

S4), including those previously identified as ESCC-related, such

as Focal adhesion, ECM-receptor interaction, PI3K-Akt

signalling pathway.

Weighted key driver analysis

Weighted Key Driver Analysis (wKDA) was performed using

Mergeomics webserver. In this analysis, genes which possess a

local network neighbourhood that have a significant enrichment

of genes that are ESCC-associated are considered key drivers

(KDs) (Ding et al., 2021). The analysis identified 89 key driver

genes which were then filtered to select those which possessed an

FDR <0.05, ensuring that only the strongest KDs are used in

subsequent analyses. This resulted in 39 key driver genes

(Supplementary Table S5). The top 10 key driver genes are

NCAPG, PLG, NUSAP1, COL17A1, ASPM, TOP2A, ITGB3,

P4HB, TTK, and COL7A1.

Repositioned drugs

Drug repositioning analysis was performed using both the

Overlap Drug Repositioning and the Network Drug

Repositioning modules from PharmOmics (Chen et al., 2022).

The potential drugs from the analysis, were then filtered to

TABLE 3 ESCC repositioned drugs.

Drug Study z-score Jaccard score Odds ratio Adj. P-value Within species
rank

Erlotinib In Vitro −8.806362317 1.59 × 10–2 2.16 × 101 5.66 × 10–5 0.956

Palbociclib In Vitro −8.090451972 1.56 × 10–2 2.11 × 101 6.18 × 10–5 0.953

Doxorubicin In Vitro −7.851164741 3.41 × 10–2 5.35 × 101 5.13 × 10–9 0.993

Methotrexate PharmOmics meta −7.504929239 1.35 × 10–2 1.83 × 101 7.80 × 10–4 0.930

Crizotinib In Vitro −7.50277149 2.08 × 10–2 2.95 × 101 1.61 × 10–6 0.980

Vinblastine PharmOmics meta −6.871294272 5.14 × 10–2 9.04 × 101 2.10 × 10–17 0.998

Gemcitabine In Vitro −5.585120295 2.43 × 10–2 3.58 × 101 3.91 × 10–10 0.987

Daunorubicin In Vitro −5.155171903 2.94 × 10–2 4.53 × 101 2.07 × 10–7 0.991

Venlafaxine In Vitro −5.053770712 1.53 × 10–2 2.07 × 101 6.74 × 10–5 0.950

Ethanol PharmOmics meta −4.264304125 2.33 × 10–2 3.41 × 101 5.61 × 10–10 0.985

Tamoxifen PharmOmics meta −4.072907051 1.79 × 10–2 2.51 × 101 3.24 × 10–5 0.969

Arsenic trioxide PharmOmics meta −3.980019706 4.67 × 10–2 7.95 × 101 2.10 × 10–11 0.997

Dasatinib In Vitro −3.747277559 2.08 × 10–2 2.95 × 101 1.61 × 10–6 0.980

Ixazomib PharmOmics meta −3.730099165 5.73 × 10–2 1.07 × 102 5.33 × 10–21 0.999

Penicillamine PharmOmics meta −3.248848376 4.13 × 10–2 6.75 × 101 1.53 × 10–13 0.996

Nefazodone In Vitro −3.176922914 1.15 × 10–2 1.51 × 101 1.35 × 10–3 0.893

Leflunomide PharmOmics meta −2.888272698 4.65 × 10–2 7.91 × 101 1.83 × 10–15 0.997

Fulvestrant In Vitro −2.792994137 2.35 × 10–2 3.41 × 101 8.07 × 10–7 0.985

Azithromycin In Vitro −2.53558291 2.79 × 10–2 4.16 × 101 2.17 × 10–8 0.990

Hydrocortisone PharmOmics meta −2.37861135 3.20 × 10–2 4.89 × 101 5.37 × 10–10 0.992

Etanercept PharmOmics meta −2.333538798 1.50 × 10–2 2.32 × 101 3.88 × 10–3 0.948

Acetaminophen PharmOmics meta −2.196753074 3.65 × 10–2 5.90 × 101 2.93 × 10–14 0.994

Lapatinib In Vitro −2.141804897 2.63 × 10–2 3.93 × 101 4.09 × 10–7 0.989

Niacin PharmOmics meta −2.092485943 2.25 × 10–2 3.24 × 101 1.03 × 10–6 0.983

Anastrozole PharmOmics meta −2.073331977 3.75 × 10–2 6.08 × 101 2.19 × 10–14 0.994
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identify robust ESCC repositioned drugs. The repositioning

analysis identified 25 drugs that are strong candidates for

ESCC treatment (Table 3). The top 10 repositioned drugs are

Erlotinib, Palbociclib, Doxorubicin, Methotrexate, Crizotinib,

Vinblastine, Gemcitabine, Daunorubicin, Venlafaxine, and

Ethanol. We predicted that drugs which interact with EGFR

(Erlotinib, Crizotinib, and Lapatinib), estrogen signalling

(Tamoxifen, Fulvestrant, Hydrocortisone, and Anastrozole)

and TRAIL-mediated apoptosis (Azithromycin and

Anastrozole) pathways have potential for treating ESCC.

Drug validation

To validate our findings, we performed a literature search to

determine whether any of the drugs identified by our analysis are

currently used in ESCC treatment (Table 4). We found that 7 of

the top 10 repositioned drugs, according to z-score, are already

used to treat ESCC or have been shown to demonstrate efficacy in

clinical trials. Candidate drugs were then validated using Binding

DB (Gilson et al., 2016). Each drug was searched in the database

to ascertain whether they bind to proteins known to be involved

in ESCC. We found that 21 out of 25 repositioned drugs have a

strong binding affinity to proteins that have been associated with

ESCC in some manner previously (Table 5). Additionally, we

performed a literature search to assess whether there is any

biological evidence (in vitro or in vivo) that demonstrates

efficacy or establishes a plausible mechanism by which the

novel repositioned drugs could be beneficial for ESCC patients

(Table 6). We found that all of our novel ESCC drugs, except for

Venlafaxine, target pathways or proteins which have been

demonstrated to drive oncogenesis in several cancers,

including ESCC. Therefore, these drugs should be able to

target the underlying biological processes driving oncogenesis

TABLE 4 Current use of ESCC Repositioned Drugs.

Drug Standard treatment
for
ESCC/Clinical trial

Clinical trial remarks Reference

Erlotinib Yes Limited activity in EC overall but response was observed in ESCC (Only 2/13 participants were
ESCC)

Ilson et al. (2011)

Promising results if combined with radiotherapy Zhao et al. (2016)

Palbociclib Yes Not promising result in clinic trials. However, authors claim that the drug could be useful in
combination with other drugs

Karasic et al. (2020)

Doxorubicin Yes Used successfully in combination with other drugs (cisplatin and fluorouracil combination therapy) Honda et al. (2010)

Methotrexate Yes Used for palliative care in combination with other drugs DUSI et al. (2020)

Crizotinib No — —

Vinblastine Yes Phase 2 Clinical Trial - Promising results Conroy et al. (1996)

Gemcitabine Yes Phase 1 Clinical Trial - Promising results Oettle et al. (2002)

Daunorubicin No — —

Venlafaxine No — —

Ethanol Yes Used for palliative care. Evidence of use for unresectable in case report with combination with
chemotherapy

Wadleigh et al.
(2006)

Tamoxifen No — —

Arsenic trioxide No — —

Dasatinib No — —

Ixazomib No — —

Penicillamine No — —

Nefazodone No — —

Leflunomide No — —

Fulvestrant No — —

Azithromycin No — —

Hydrocortisone No — —

Etanercept No — —

Acetaminophen No — —

Lapatinib No — —

Niacin No — —

Anastrozole No — —
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in ESCC and inhibit proliferation and/or initiate apoptosis

in ESCC.

Discussion

ESCC is one of the most common malignancies and

possess a significant mortality rate worldwide. This is

largely due to late diagnosis and scarcity of efficacious

treatment strategies upon being diagnosed (Feng et al.,

2021). To address this, we performed a disease-based drug

repositioning analysis with previously published ESCC gene

expression data from paired patient samples. Differential gene

expression analysis data identified 167 differentially expressed

genes (DEGs) which were then used in wKDA and identified

39 key driver genes (KDGs). The genes with the highest

absolute logFC identified by our differential gene expression

analysis are MMP1, CRISP3, MAL, CRNN, SCEL. The most

upregulated gene, MMP1, encodes a protein involved in the

breakdown of the extracellular matrix (ECM) by cleaving

collagens and other molecules. The most downregulated

gene, CRISP3, encodes a protein located in the ECM and

TABLE 5 Binding DB Target Validation. Repositioned drugs were investigated using Binding DB to determinewhether the proteins that the drugs have
strong affinity to have been previously shown to be associated with ESCC.

Drug Protein binding in
homo sapiens

Binding
protein ESCC-Associated

Reference

Erlotinib Epidermal growth factor receptor (EGFR) Yes Kashyap and Abdel-Rahman, (2018)

Palbociclib CDK9 Yes Tong et al. (2017)

CDK1 Yes Zhang et al. (2021a)

CDK2 Yes Zhou et al. (2021)

CDK4 Yes Huang et al. (2021)

Doxorubicin Androgen Receptor Yes Sukocheva et al. (2015)

Methotrexate Dihydrofolate reductase Yes - Indirectly through MDM2 Maguire et al. (2008)

MMP7 Yes Tanioka et al. (2003)

Crizotinib Epidermal growth factor receptor (EGFR) Yes Kashyap and Abdel-Rahman, (2018)

FLT3 Yes Zhu et al. (2021)

Vinblastine — — —

Gemcitabine Equilibrative nucleoside transporter 1 Yes - Indirectly through mIR-1269 Xie et al. (2022)

Daunorubicin Multidrug resistance protein 1 Yes Zhang et al. (2016)

Venlafaxine Sodium-dependent dopamine transporter Yes Guo et al. (2018)

Ethanol — — —

Tamoxifen 17-beta-hydroxysteroid dehydrogenase type 3 No —

Arsenic trioxide — — —

Dasatinib Tyrosine- and threonine-specific cdc2-inhibitory kinase Yes (and also via CDK1) Zhang et al. (2019)

Ixazomib Proteasome component C5 No —

Penicillamine Bile salt export pump Yes Bernstein et al. (2009)

Nefazodone Alpha-1A adrenergic receptor Yes Zhang et al. (2018)

5-hydroxytryptamine receptor 2A Yes Wei et al. (2022)

Leflunomide matrix metalloproteinase 1 Yes Pang et al. (2016)

Dihydroorotate dehydrogenase Yes Qian et al. (2020)

Fulvestrant Estrogen receptor Yes Zhang et al. (2017)

Azithromycin Cytochrome P450 3A4 Yes Bergheim et al. (2007)

Hydrocortisone Corticosteroid-binding globulin (SERPINA6) Yes Ma et al. (2019)

Etanercept — — —

Acetaminophen Carbonic anhydrase 12 Yes Ochi et al. (2015)

Dipeptidyl peptidase 3 Yes Liu et al. (2021)

Lapatinib Epidermal growth factor receptor (EGFR) Yes Kashyap and Abdel-Rahman, (2018)

Receptor tyrosine-protein kinase erbB-2 (HER2 or ERBB2) Yes Rong et al. (2020)

Niacin Hydroxycarboxylic acid receptor 2 No —

Xanthine dehydrogenase/oxidase Yes Li et al. (2021a)

Anastrozole Cytochrome P450 19A1 Yes Bergheim et al. (2007)
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thought to be involved in cellular matrix remodelling (Ribeiro

et al., 2011). The wKDA identified 39 significant driver genes

for ESCC. Amongst the top 10 most significant KDGs,

NUSAP1, COL17A1, ITGB3 and COL7A1 are involved in

ECM maintenance. For example, the 4th most significant

key driver gene, COL17A1, encodes a protein involved in

cell-matrix adhesion (Jones et al., 2020). Taken together,

these results suggest that alterations in ECM are an

important driver of ESCC oncogenesis (Chen et al., 2016).

Furthermore, KEGG analysis found both Focal adhesion and

ECM-receptor interaction to be the 3rd and 4th most enriched

term, respectively. This is in line with previous research that

indicates higher levels of Serum human relaxin 2 (H2 RLN), a

protein involved in ECM, collagen, and matrix

metalloproteinase is associated with worse prognosis,

including higher clinical stage and poorer survival (Ren

et al., 2013; Napier et al., 2014).

Using 39 KDGs in an ESCC drug repositioning analysis, we

identified 25 drugs that are predicted to have therapeutic effect

in ESCC. Of which, 7 are either currently used in the clinic or

have been used in clinical trials and 2 have shown efficacy

in vitro or in vivo. Importantly, those which have been used in

clinical trials have demonstrated efficacy particularly when

used in combination with other drugs, such as chemotherapy.

This is not surprising, however, as combination therapy has

long been a standard practice in cancer therapy, including for

ESCC where the current first-line treatment regimen is a

combination of 5-fluorouracil and cisplatin (Hiramoto

et al., 2018; Hirano and Kato, 2019). Each repositioned

drug was validated in-silico using the drug binding database

BindingDB, to identify which drug targets have previously

been associated with ESCC (Table 5). Significantly, 21 of the

25 repositioned drugs have targets that have previously been

associated with ESCC in some manner, which demonstrate the

TABLE 6 Potential mechanism of action for novel drugs.

Drug Potential
mechanism of action

Additional remarks Citation(s)

Crizotinib Protein kinase inhibitor (inc. HGFR) Acts as an inhibitor against anaplastic lymphoma kinase. Crizotinib is
an inhibitor of c-Met and could be used to target HGF pathway

Digklia and Voutsadakis, (2013)

Daunorubicin Intercalates with DNA and interrupts cell
proliferation

— Niaki et al. (2020)

Venlafaxine — Has been used for managing hot flashes during breast cancer therapy Biglia et al. (2005)

Tamoxifen Selective estrogen receptor modulator
(SERM)/partial agonist of ER

Evidence of efficacy in cell and animal models. Preliminary evidence in
adenocarcinoma of enhancing chemo therapy effect

Due et al., (2016); Huang et al.,
2019; Wang et al., 2020

Arsenic trioxide Induces programmed cell death Evidence of DNA damage-mediated cyclin D1 degradation in ESCC
cell lines

Zhu et al. (2020)

Dasatinib Tyrosine kinase inhibitor Dasatinib increases ESCC cell lines sensitivity to cisplatin Chen et al. (2015)

Ixazomib Inhibits the protein proteasome subunit
beta type-5 (PSMB5)

Supresses proliferation in Esophageal squamous cell carcinoma in cell
lines through c-Myc/NOXA pathway. In vivo evidence of efficacy in
non-small cell lung cancer

Chattopadhyay et al., 2015; Wang
et al., 2021b

Penicillamine Radio-chemo-sensitisation involving
H2O2-mediated oxidative stress

Enhances breast and lung cancer response to radiation and carboplatin
via H2O2-mediated oxidative stress

Sciegienka et al. (2017)

Nefazodone Disrupts mitochondrial function Demonstrates anticancer properties in multiple cell lines Varalda et al. (2020)

Leflunomide Dihydroorotase dehydrogenase (DHODH)
and/or Tyrosine kinase inhibition

Potential anticancer drug through disruption of pyrimidine synthesis
and EGFR signalling. In vitro and in vivo evidence for inducing
apoptosis in neuroblastoma

Zhu et al., 2013; Zhang and Chu,
(2018)

Fulvestrant Estrogen receptor antagonist Results in complete inhibition of estrogen signalling through the ER Nathan and Schmid, (2017)

Azithromycin Apoptosis induction via TRAIL Efficacy in vitro and in vivo in colon cancer by TRAIL autophagy Qiao et al. (2018)

Hydrocortisone Binds glucocorticoid receptor to inhibit
inflammatory transcription factors

Evidence to suggest BRCA1 downregulation in breast cancer Antonova and Mueller, (2008)

Etanercept Tumour necrosis factor (TNF) inhibitor Prolonged disease stabilisation was observed in EC used in
combination with chemotherapy

Monk et al., 2006;
Shirmohammadi et al., 2020

Acetaminophen Apoptosis induction Promising results used in combination with chemotherapy in lung
cancer

Lee et al. (2019)

Lapatinib tyrosine kinase inhibitor/EGFR/HER1 and
HER2 receptors

ESCC cell and patient-derived xenograft model HOU et al., 2013; Saito et al., 2015

Niacin Modulation of NAD + levels Evidence of TRAIL mediated autophagy in colon cancer Kim et al. (2015)

Anastrozole Aromatase Inhibition Has been used with Anti-Fibroblast growth factor receptor 1 (FGFR1)
drug in breast cancer. Evidence that FGFR1 can be used as a
independent prognosis marker in ESCC and anti-FGFR1 decreases
proliferation via MEK-ERK downstream pathways

Milani et al., 2009; Chen et al., 2017
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robustness of our findings. To further validate our findings, we

performed a literature search on the novel repositioned drugs

to examine whether there is an underlying biological

mechanism which would justify the drugs appearance in the

results (Table 6). We found that almost all of the repositioned

drugs have been shown to demonstrate anti-cancer effects in

multiple cancers, most notably breast cancers and non-small

cell lung carcinoma (NSCLC). Interestingly, many of the

repositioned drugs target specific pathways; EGFR

(Erlotinib, Crizotinib, and Lapatinib), estrogen signalling

(Tamoxifen, Fulvestrant, Hydrocortisone, and Anastrozole)

and TRAIL-mediated apoptosis (Azithromycin and

Anastrozole) pathways, suggesting that these pathways are

key drivers of ESCC. This is in line with previous research

which identified the EGFR AND ER pathways as drivers of

ESCC oncogenesis and metastasis and have also been

associated with patient outcome (Maron et al., 2020).

Crucially, some of these drugs have been shown to have

therapeutic potential in vitro. For example, Lapatinib,

which acts through EGFR and HER2 has been shown to be

efficacious in ESCC patient-derived xenografts (Rong et al.,

2020). The potential mechanisms by which novel drugs

identified by our study can be observed in Table 6. It is

also worth noting that there are 2 anti-depressants present

in our results, Venlafaxine and Nefazodone. These results are

particularly interesting as it has recently been shown that

psychiatric drugs offer potential as anti-cancer therapeutics

(Loehr et al., 2021). Moreover, a recent review has specifically

addressed the need to investigate psychiatric drugs for

treatment of gastrointestinal cancers (Avendaño-Félix et al.,

2020). We hypothesise that Crizotinib, Lapatinib, and

Dasatinib are amongst the drugs with the most potential.

Particularly Crizotinib and Lapatinib are of note as they

target the EGFR pathway which is already targeted in ESCC

treatment with Erlotinib. Dasatinib also has high potential due

to targeting Tyrosine- and threonine-specific cdc2-inhibitory

kinase and CDK1, proteins known to be involved in ESCC, and

also due to displaying efficacy in cell lines (Chen et al., 2015;

Zhang et al., 2019).

There are several limitations to our study, however, most

notably that due to limited data availability, the sample size of

patient samples was relatively small. We were unable to stratify

patients according to subtype of ESCC. This means that the

analysis is focussed on ESCC as whole and does not take into

consideration specific subtypes. Moreover, as multiple drugs

identified in our study are more efficacious when in

combination with another drug, it would be beneficial to

know what other drugs should be used in combination with

the novel therapeutics identified. However, this analysis does not

predict drug combinations that would be effective in

treating ESCC.

On the other hand, our study has several strengths. To our

knowledge, this is the first study to adopt a primarily

computational approach to perform drug repositioning

analysis in ESCC. Particularly, there are studies that have a

computational component, but they do not use patient

samples to identify drugs based on network analysis of

differentially expressed genes (Li et al., 2022). Moreover,

this is also the first to adopt Pharmomics unique network

analysis to perform the analysis on ESCC. Furthermore, as

Pharmomics contains >18000 species/tissue-specific gene

signatures for 941 drugs and chemicals, it provides a larger

scope of potential drugs compared to other studies in ESCC.

Another strength of the study is that we used a two armed

approach to ensure robust findings as each repositioning

methodology has its own strengths. The overlap-based

repositioning allows us to identify drugs which target the

KDGs whereas the network-based repositioning allows for

insights into the molecular and mechanistic therapeutic

effects of the drugs. As this specific form of network-based

repositioning is unique to PharmOmics, our study can

provide valuable insights into the underlying molecular

mechanisms driving ESCC. Another strength of our study is

the consistency of our results with previously published

literature. DEGs which displayed the highest absolute

logFC were consistent with previously published literature

including MMP1, SPP1, COL1A2, and COL1A1 amongst

the top upregulated genes and CRISPR3, MAL,

TMPRSS11E, and CRNN amongst the top downregulated

genes (Feng et al., 2021; Song et al., 2021). Indeed, the gene

with the highest absolute logFC,MMP1, is already known to be

associated with ESCC oncogenesis (Chen et al., 2016).

Additionally, higher MMP1 is associated with poorer

prognosis (Feng et al., 2021). Moreover, the most

significant key driver genes (KDGs) identified by our

wKDA are consistent with previously published studies (Li

et al., 2020; Yu-jing et al., 2020; Wang M. et al., 2021).

Significantly, multiple drugs identified by our analysis target

key pathways known to be involved in ESCC oncogenesis and

metastasis.

Conclusion

Herein we utilised in silico disease-based drug

repositioning to identify novel therapeutics for esophageal

squamous cell carcinoma. Amongst 25 potential

repositioned drugs identified in our study, 9 are currently

used in the clinic or have shown promising results in clinical

trials in combination with other treatments. Crucially, we

identified 16 novel therapeutic strategies which possess

a strong biological rationale for use in ESCC patients.

Our study shows that drug repositioning approach

is a feasible strategy in ESCC therapies and can

improve the understanding of the mechanisms of the drug

targets.
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Materials and methodology

Data acquisition and identification of
DEGs

Dataset was acquired from the Gene Expression Omnibus

under accession code GSE23400 using the GEOquery R package

function getGEO. The dataset consists of 53 paired patient

samples from Esophageal squamous cell carcinoma (ESCC)

patients. Additionally, 14,335 genes were in the dataset.

Differentially expressed genes (DEGs) between paired tumour

and non-tumour samples were identified using the limma

package. The log-fold change (logFC) was calculated for

DEGs. Genes with absolute logFC >1.5 and adjusted p-value <
0.01 were considered significant and used in subsequent analyses.

Functional and pathway enrichment
analyses

The DEGs identified above were analysed using the

clusterProfiler R package in order to identify biological

annotations from the Gene ontology (GO) functional

enrichment and Kyoto Encyclopaedia of Genes and Genomes

(KEGG). The GO analysis was performed for biological process

(BP), cellular component (CC) and molecular function (MF). An

adjusted p-value < 0.05 was considered as statically significant for

all analyses.

Weighted key driver analysis

Weighted key driver analysis (wKDA) was performed on

DEGs using Mergeomics webserver to identify key driver genes

(KDGs). wKDA has higher accuracy than standard key driver

analysis as it considers edge weight information. The network

used in the analysis was STRING PPI Network and default

parameters were used (Search depth of 1, Undirected Edges,

Min Hub Overlap of 0.33, and edge factor of 0.0). Genes which

had an FDR <0.05 were considered as significant KDGs and used
in subsequent analyses.

Drug repositioning analysis

By the Pharmomics webserver, Drug Repositioning Analyses

was performed using genes obtained from the wKDA analysis.

The analysis consisted of two arms: the Overlap Drug

Repositioning and ADR Analysis (Overlap-DR) arm and the

Meta-Signature Network Drug Repositioning and ADR Analysis

(Meta-Net-DR) arm. The network analysis adopted by

Pharmomics uses a network proximity measure between drug

DEGs and disease-related genes that has been adopted previously

for protein-network-based analysis. Specifically, tissue-specific

Bayesian gene regulatory networks (BNs) are used and then the

mean shortest distance between drug DEGs and disease genes are

tested. Hence, it combines species and tissue specific in vivo drug

signatures with gene networks to identify connections between

disease genes and known drug targets. On the other hand,

overlap analysis adopted by Pharmomics is largely similar to

that which has been adopted previously, and assesses direct

overlap between input genes and drug gene signatures. To do

so, the Jaccard score, gene overlap fold enrichment, and Fisher’s

exact test p values as measures of direct gene overlap are

calculated. This analysis is based upon the premise that if

disease and drug signatures target similar pathways then they

would more than likely have gene overlaps and/or connect

extensively in a gene network. Meta-Signature Network

Drug Repositioning and ADR Analysis was performed using

the multi-tissue network. In Overlap-DR, Jaccard score was

used to measure the similarity between the 39 KDG’s gene

networks and the drug target gene networks. In Meta-Net-DR,

the connectivity of the gene network between drug signatures

from PharmOmics and the KDs is used. The z-score of

each drug is calculated which represents the distance

between the KD network and the PharmOmics drug

network. The smaller the z-score, the closer the distance

between the networks. The output from these analyses were

considered as possible repositioned drugs and were then filtered

in Drug Candidate Selection to identify ESCC repositioned

drugs.

Drug candidate selection

Repositioned drugs from both Pharmomics analyses were

used as candidates to identify potential drugs for ESCC.

Candidate drugs from Overlap-DR results were filtered to

keep drugs with an adjusted P-value < 0.05, species equal to

Homo sapiens, and a within species rank >0. The mean Jaccard

score was then calculated and drugs with a Jaccard score less than

the mean were removed. Subsequently, the drugs were sorted

according to ‘Drug Name’, ‘Within Species Rank’, ‘Jaccard Score’,

and ‘P-value’ and duplicate drugs were removed, keeping only

the highest-ranking occurrence of each drug. Candidate drugs

from Meta-Net-DR were filtered to keep drugs with adjusted

p-value < 0.05. Candidate drugs were then sorted according to

‘Drug Name’ and ‘Rank’ and then duplicate drugs were removed,

keeping only the highest-ranking occurrence of each drug. The

filtered results from Overlap-DR and Meta-Net-DR were then

compared to extract candidate drugs common to both arms of

analysis. Drugs common to both arms were considered ESCC

Repositioned Drugs. ‘Study’, ‘Jaccard Score’, ‘Odds Ratio’, ‘Adj.

P-Value’, ‘Within Species Rank’ data from the Overlap-DR

analysis and ‘z-score’ from Meta-Net-DR was used to

construct the final ESCC Repositioned Drugs table. ESCC
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Repositioned Drugs were then sorted according to z-score

(Table 3).

Drug candidate validation

In order to validate the repositioned drugs that were

identified by the analysis, we performed a literature search to

ascertain whether the drugs have previously been used in ESCC

treatment (Table 4). Each drug was then investigated using the

drug binding database Binding DB. For each ESCC Repositioned

Drug, we identified which proteins they display a high binding

affinity to. We then performed a literature search on these

proteins, using Google Scholar and PubMed, to ascertain

whether or not they have previously been shown to be ESCC-

related in vitro or in vivo (Table 5). Finally, we performed a

literature search on novel drugs identified by our analysis to

elucidate the underlying biological processes and causal

mechanisms which would explain why it is predicted to have

therapeutic utility (Table 6).
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