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Dysregulation of epigenetic mechanisms have been depicted in several

pathological consequence such as cancer. Different modes of epigenetic

regulation (DNA methylation (hypomethylation or hypermethylation of

promotor), histone modifications, abnormal expression of microRNAs

(miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered.

Particularly, lncRNAs are known to exert pivot roles in different types of cancer

including breast cancer. LncRNAs with oncogenic and tumour suppressive

potential are reported. Differentially expressed lncRNAs contribute a

remarkable role in the development of primary and acquired resistance for

radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide

range of molecular subtype specific lncRNAs have been assessed in breast

cancer research. A number of studies have also shown that lncRNAs may be

clinically used as non-invasive diagnostic biomarkers for early detection of

breast cancer. Suchmolecular biomarkers have also been found in cancer stem

cells of breast tumours. The objectives of the present review are to summarize

the important roles of oncogenic and tumour suppressive lncRNAs for the early

diagnosis of breast cancer, metastatic potential, and chemotherapy resistance

across the molecular subtypes.
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1 Introduction

Epigenetic dysregulations have a crucial impact on the

development and progression of human cancers, including

breast cancer (DeVaux and Herschkowitz, 2018; Kumar et al.,

2019). Epigenetic modification can change the gene expression

without changing the nucleotide sequence of that respective gene

(Handy et al., 2011). In addition to gene expression,

modifications at the transcriptional and epigenetic levels also

work post-transcriptionally and can control the phenotype

expression of the protein. Till now, several modes of

epigenetic regulation such as DNA methylation

(hypomethylation and hypermethylation of gene promotor),

histone modifications (methylation or acetylation etc.) (Zaguia

et al., 2022), abnormal expression of microRNAs (miRNAs), long

non-coding RNAs, and small nucleolar RNAs, have been

discovered and documented (Ilm et al., 2016; Shanmugam

et al., 2018). Moreover, important roles of each mode have

been assessed in diverse pathological conditions (Jaenisch and

Bird, 2003; Das and Singal, 2004; Kurdistani, 2007; Goel et al.,

2017; Kashyap et al., 2018; Karir et al., 2020; Kashyap and Kaur,

2020).

Among all epigenetic controls, emerging evidence suggests

that lncRNAs can play a crucial role in all types of human

cancers, including glioma (Li et al., 2018b), liver (Huang et al.,

2020), lung (Chen et al., 2020c), pancreatic (Lv and Huang,

2019), ovarian (Oncul et al., 2020), pancreatic (Pandya et al.,

2020), liver (Chen X. et al., 2020) and breast cancer (Koboldt

et al., 2012; Kagohara et al., 2018; Kansara et al., 2020; Ghafouri-

Fard et al., 2021; Romualdo Cardoso et al., 2022) etc. LncRNAs

are one class among different non-coding RNA species

uncovered and accounted for ~80% of the total mammalian

genome (Esteller, 2008; Kagohara et al., 2018) (Figure 1).

LncRNAs with both oncogenic and tumour suppressive

functions have been reported in various human cancers. The

lncRNAs have been implicated in regulating the multiple cancer

hallmarks, and their associated relationships with apoptosis

inhibition, invasion or metastasis initiation, and angiogenesis

activation have been demonstrated (Esteller, 2008; DeVaux and

Herschkowitz, 2018; Cheng et al., 2019; Kumar et al., 2019; Ma

et al., 2019). Notably, the knockdown of oncogenic lncRNA

Loc554202 inhibited the proliferation and activated apoptosis of

breast cancer cells (Shi et al., 2014). A high expression of lncRNA

CBR3-AS1 (AUC ±SD; 0.7 ± 0.05, sensitivity; 0.9, specificity;

0.49, p = 0.003) in malignant samples could separate it breast

cancer samples from normal control (Hussen et al., 2022). It has

been reported that tumour suppressor lncRNAs can inhibit

metastasis via interacting directly with NF-κB (Liu et al.,

2015). Additionally, the presence of lncRNA MEG3 at high

levels in breast cancer cells downregulated AKT signalling and

modulated the tumour angiogenesis (Zhang C. Y. et al., 2017).

As eluded to earlier, breast cancer is the most common

malignancy diagnosed at a high rate in developed and

developing countries (Jia et al., 2016; Wang C. et al., 2018;

Kashyap et al., 2021a; Tuli et al., 2022). As expected, breast

cancer occurs primarily in women (99%) and rarely in men

(~1%–2%). According to GLOBOCAN-2018 report, 2.1 million

(11% of total cancer types) new breast cancer cases were

diagnosed in 185 countries as opposed to 1.67 million in 2012

(Bray et al., 2018; Guterres and Villanueva, 2020; Kashyap et al.,

2021b; 2022a). Despite effective improvement in diagnostic and

therapeutic strategies, breast cancer cure remains limited

(Nounou et al., 2015). Lack of prognostic and predictive

biomarkers information is one reason for failure in early

breast cancer detection and management worldwide (Feldman

and Kim, 2017; Kashyap et al., 2018; Kashyap and Kaur, 2020).

Therefore, specific, accurate, and reliable biomarkers are urgently

needed for early detection and effective breast cancer treatment.

FIGURE 1
Schematic representation of genomic proportion for coding and noncoding RNA. More than 80% of human genome is noncoding and has
genes for different population of noncoding RNA.
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Based upon the gene expression profiling and

immunohistochemistry finding, breast cancer has four

molecular subtypes; Luminal A, Luminal B, Her-2 positive

and triple negative breast cancer (Kashyap et al., 2022b). The

classification of breast cancer based on the expression of estrogen

receptor/progesterone receptor, over expression and gene

amplification of Her-2 gene (Kashyap et al., 2022b). Patients

with each subtype has distinct molecular profile and response to

the therapy. Patients with each molecular subtype undergo

different targeted therapies (Kashyap et al., 2022b).

A significant amount of data has revealed a link between

breast carcinogenesis and dysregulated expression of lncRNAs

(Li et al., 2014; Wu et al., 2017). Sophisticated techniques have

assessed the aberrant expression of lncRNAs in various breast

cancer aspects such as initiation, apoptosis inhibition,

metastasis, angiogenesis, and chemotherapy resistance

(Gutschner and Diederichs, 2012; Klinge, 2018). LncRNAs

also showed differential expression in primary and acquired

resistance for radiotherapy, endocrine therapy,

immunotherapy, and targeted therapy (Xiu et al., 2019; Du

et al., 2020). In addition, many studies have assessed a distinct

expression of the vast range of lncRNAs in breast cancer

molecular subtypes (Deva Magendhra Rao et al., 2019;

DeVaux et al., 2020). A limited number of studies also

found lncRNAs with the marked ability for an early breast

cancer diagnosis (Jiang et al., 2019; Shin et al., 2019).

Moreover, these biomolecules have also suggested to have

the capability for changing the expression of cancer stem

cell markers in breast tumour (Nie et al., 2018; Bermejo

et al., 2019). Previously, studies found polymorphism in

long noncoding RNA gene and their association with breast

cancer risk (Table 1). The present review will summarize the

features and functions of oncogenic and tumour suppressive

lncRNAs in early diagnosis of breast cancer, metastatic

potential, and underlying mechanism of therapy resistance.

In addition, the present will discussion the above-mentioned

roles of LncRNA across the different molecular subtypes of

breast cancer.

2 Overview of long non-coding RNAs

Long non-coding RNAs are endogenous non-protein coding

RNA biomolecules consisting of 200 bases and 100 kb long

(Esteller, 2011). More than 60% of lncRNAs possess a 50-

methyl cap at 3′ UTR, and a poly-A tail at 5′ UTR (Cheng

et al., 2005; Derrien et al., 2012). The various lncRNAs undergo

splicing events and bear one or two exons (Cheng et al., 2005;

Derrien et al., 2012). LncRNAs have tissue-specific expression

and occupy differential localization in the nucleus and cytoplasm

(Fang and Fullwood, 2016; Mishra et al., 2019). Some RNA-seq

studies showed that most lncRNAs are poorly conserved in the

DNA sequence, whereas other studies noted that several

lncRNAs are ultra-conserved in DNA sequence (Necsulea

et al., 2014; Fang and Fullwood, 2016). It has been estimated

that about 3% of lncRNAs originated more than 300 million

years ago and can be found in organisms ranging from Xenopus

and chicken to human (Necsulea et al., 2014). Volders et al. have

reported as many as ~60,000 lncRNAs in humans and other

mammals (Volders et al., 2019). According to the Encyclopaedia

of DNA elements (ENCODE) consortium, there are GENCODE

annotated 17,910 lncRNA genes and 48,351 lncRNA transcripts

in the human genome (Dunham et al., 2012). Available data

indicates that most lncRNAs are transcribed by RNA pol-II

(RNA polymerase II) (Kung et al., 2013; Fang and Fullwood,

2016). LncRNAs typically do not possess functional ORFs (open

reading frames). The LncRNAs could be transcribed as complex

and overlapping transcripts with protein-coding genes (Kung

et al., 2013; Fang and Fullwood, 2016). Based on their genomic

structure and origin, lncRNAs can be classified into many

TABLE 1 Polymorphism in long noncoding RNA gene and association with breast cancer risk.

Polymorphism Long non coding RNA Prognosis References

rs7158663 LncRNA MEG3 Unfavorable prognostic Ali et al. (2020)

rs1899663 LncRNA HOTAIR Unfavorable prognostic (Lin et al., 2018; Rajagopal et al., 2020)

rs7958904 LncRNA HOTAIR Unfavorable prognostic Lin et al. (2018)

rs2839698 LncRNA H19 High risk for breast cancer Safari et al. (2019) Li et al. (2022)

rs217727 LncRNA H19 High risk for breast cancer (Wang et al., 2019e; Abdelaleem et al., 2021; Li et al., 2022)

rs3741219 LncRNA H19 High risk for ER+ breast cancer Li et al. (2022)

rs1859168 LncRNA HOTTIP High risk for breast cancer Abdelaleem et al. (2021)

rs145204276 LncRNA GAS5 Protective role (Tang et al., 2019; Sharifi et al., 2020)

rs34841297 LncRNA MIR2052HG High risk for breast cancer Yang et al. (2021)

rs920778 LncRNA HOTAIR High risk for breast cancer Rajagopal et al. (2020)

rs16949649 LncRNA NME1 High risk for breast cancer Rajagopal et al. (2020)

rs3827693 LncRNA MALAT1 High risk for breast cancer Fattahi Dolatabadi et al. (2020)
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different types as shown in Figures 2A,B. These lncRNAs are

categorised as: firstly, sense lncRNAs that overlap with one or

more exons of another coding gene and transcribed in the same

coding gene. Secondly, antisense lncRNA that overlap with one

or more exons of a coding gene and are transcribed in the

opposite direction of the gene. Thirdly, intronic lncRNAs;

located within the introns of protein-coding genes. Fourthly,

long intergenic lncRNAs; derived from a genomic sequence

between the two coding genes (Kung et al., 2013; Fang and

Fullwood, 2016; Huang et al., 2019) (Figures 2, 3). Few

pseudogenes, a part of junk DNA, acquire mutations and

becomes non-coding sequences, i.e., lncRNAs (Kung et al.,

FIGURE 2
(A) Schematic representation of different genomic loci for noncoding RNAs. (B) Schematic representation of different types of long noncoding
RNAs based on their genomic locus.

FIGURE 3
Schematic representation of different types of long noncoding RNAs based on their functions.
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2013). About 20% of human transcriptomes overlap with

lncRNA coding sequences (Kung et al., 2013).

Based on the mechanism of action consideration, lncRNAs

can be further classified by their interaction with chromatin

complexes or directly binding with DNA, organize nuclear

architecture by serving as scaffolds, control intracellular

trafficking, regulate proteins activities through interplay with

cellular macromolecules such as protein complexes and other

RNAs (Mohammad et al., 2010; Aguilo et al., 2011; Kotake et al.,

2011; Moran et al., 2012; Grote et al., 2013; Kallen et al., 2013; Li

et al., 2014; Yang et al., 2014) (see Figure 3; Tables 2, 3;

Supplementary Table S1).

3 Functions of lncRNAs

LncRNAs mainly have tissue-specific expression and are

expressed at a low level compared to protein-coding genes.

LncRNAs work in a complicated way as a critical regulator of

epigenetic modulation, transcription, and translation in a

spatiotemporal manner. RNA is dynamic transcripts and can

form several secondary structures, thus leading to their binding

and interactions with a vast range of substrates. LncRNAs can

regulate gene expression interfering at pre-and post-

transcriptional levels. Based on the mode of regulation,

lncRNAs are divided into cis-acting and trans-acting

categories; cis-acting lncRNAs: regulate those genes which are

present on the same chromosome of their origin; however, trans-

acting lncRNAs: regulate a broader range of genes on

neighbouring or distant chromosomes. Various functions of

lncRNAs are summarized in Figure 4 and Figure 5.

4 Long non-coding RNAs in breast
cancer pathogenesis

4.1 Oncogenic long non-coding RNAs

Oncogenic lncRNAs express at a high-level during

carcinogenesis compared to normal conditions and execute

oncogenic functions either by interacting with miRNAs or

protein molecules. Numerous oncologist researchers and

clinicians evaluated the expression of oncogenic lncRNAs and

correlated with adverse clinical features of breast cancer patients.

For instance, an elevated expression of lncRNA UCA1 under the

influence of macrophages infiltration was measured and

correlated with the advanced breast cancer clinical stage

(Chen et al., 2015). Oncogenic lncRNA PRNCR1 had higher

expression in the advanced clinical stage and metastasis positive

breast cancer tissues. The silencing of PRNCR1 in an in-vitro

model reversed its oncogenic effect (Guo et al., 2019). For

instance, expression of lncRNA MALAT1 was found to be

significantly up-regulated in clinical breast cancer samples and

negatively correlated with overall survival in in-situ carcinoma.

Furthermore, bioinformatics prediction indicated that

MALAT1 could regulate BLCAP mRNA through binding with

miR-339-5p (Zheng L. et al., 2019). Another study assessed

lncRNA CCAT1 overexpression in lymph node metastasis

breast cancer tissues. Kaplan-Meier and multivariable analysis

correlated lncRNA CCAT1 expression with decreased OS

(overall survival) and progression-free survival (PFS) (Zhang

et al., 2015). Similarly, higher expression of lncRNA Z38 was

associated with large tumour size and lymph node metastasis.

Cox regression model predicted lncRNA Z38 as an independent

prognostic factor for OS (HR = 4.74, 95% CI 2.41–9.32) with 78%

sensitivity and 70% specificity in ROC curve analysis (Li et al.,

2018a; Nie et al., 2018), found upregulation of lncRNA

LINC00310 and c-Myc in TCGA (The Cancer Genome Atlas)

data (Li et al., 2018a). Another study found a remarkably higher

expression of lncRNA SNHG7 in breast cancer tissues compared

to adjacent normal part. The miRNA-381 considered a tumour

suppressor, was found a direct target of lncSNHG7 (Gao and

Zhou, 2019). Two lncRNAs that are up-regulated in breast cancer

are LUCAT1 (Zheng A. et al., 2019) and SPRY4-IT1 (Song et al.,

2020). These lncRNAs, respectively, block the expression of miR-

5582-3p and miR-6882-3p. TCF7L2 is upregulated when these

miRNAs are downregulated. This factor enhances the expression

of genes involved in the development of breast cancer in

conjunction with β-catenin. Fan et al. (2017) measured the

expression of lncRNA TUG1 in cancer tissue and observed its

upregulation and association with poor clinical features (large

tumour size, distant metastasis, and TNM (tumour (T), nodes

TABLE 2 Classification of long noncoding RNAs based on their physiological cellular roles.

Type of lncRNAs Functional role

Guide Interacts with active enzyme-substrate complexes and directs them to their target site

Dynamic scaffold Provide a central platform for multiple protein complexes for interactions: including cofactors that direct them to genomic location

Signalling molecule Part of specific signalling for the activation of molecular pathways

Decoy Activation and silencing of transcription factors or repressors

miRNA sponge Host gene for miRNA production

act as a competitive endogenous RNA (ceRNA) for mRNA degradation by the miRNA complex
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TABLE 3 Summary of functions, targets, and experimental models used for studying the downregulated long noncoding RNAs in different in vivo and
in vitro investigations.

LncRNA Status Target Consequences In vivo In vitro Technique Reference

LncRNA
MAGI2-AS3

↓ miR-374 Migration,Invasive — MCF-7 qRT-PCR Du et al. (2019)

MDA-MB-231

↓ FasR,FasL Migration,Invasive ER/PR/Her2 (+/-) breast
cancer tissues

MDAMB-231 qRT-PCR Yang et al.
(2018b)

MCF-7

MCF-10A

LncRNA
MALAT-1

↓ PI3K-
AKT

EMT ER/PR/Her2 (+/-) breast
cancer tissues

MDA-MB-
231 MDA-
MB-453

qRT-PCR Xu et al. (2015b)

BT549

SK-BR-3

↓ miR-
196a-5p

Poor prognosis TNBC tissues MDA-MB-
231 MDA-
MB-468

qRT-PCR Pickard and
Williams,
(2014)

MCF-7

T47D

BT474

↓ — Inhibit proliferation, & EMT, Increase
apoptosis, autophagy, ER stress, regulate
Akt/mTOR pathway, & p38 MAPK/Erk
signaling

— MCF-7 qRT-PCR Huang Y et al.
(2018)

LncRNA
EGOT

↓ — Poor prognosis ER/PR/Her2 (+/-) breast
cancer tissues

— qRT-PCR Xu et al. (2015a)

LncRNA
LINC00628

↓ — Poor prognosis Breast cancer tissue MDA-MB-231 qRT-PCR Chen et al.
(2017a)

HCC1937

LCC9

LCC2

MCF-7

LncRNA
FGF14-AS2

↓ miR-
205-5p

Poor prognosis Breast cancer tissues MDA-MB-231 qRT-PCR Yang et al.
(2019b)

SK-BR-3

LncRNA
MEG3

↓ — Increase proliferation, angiogenesis
through regulating AKT signaling

BALB/c nude mice MDA-MB-231 qRT-PCR Zhang et al.
(2017a)

MCF-7

LncRNA
TUSC8

↓ miR-
190b-5p

Increase Metastasis, & EMT TNBC tissues MDA-MB-231 qRT-PCR Zhao et al.
(2020)

MCF-7

SK-BR-3

LncRNA
CTD-
2108O9.1

↓ LIFR Suppress metastasis ER/PR/Her2 (+/−) breast
cancer tissues & female
balb/c nude

MCF-7 qRT-PCR Wang et al.
(2018c)

MDA-MB-231

LncRNA
LINC01121

↓ — Inhibit proliferation, & EMT, Increase
apoptosis, autophagy, ER stress, regulate
Akt/mTOR pathway, & p38 MAPK/Erk
signaling

— MCF-7 qRT-PCR Huang Y et al.
(2018)

LncRNA
PTTG3P

↓ — Inhibit proliferation, & EMT, Increase
apoptosis, autophagy, ER stress, regulate
Akt/mTOR pathway, & p38 MAPK/Erk
signaling

— MCF-7 qRT-PCR Huang Y et al.
(2018)

(Continued on following page)
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TABLE 3 (Continued) Summary of functions, targets, and experimental models used for studying the downregulated long noncoding RNAs in different
in vivo and in vitro investigations.

LncRNA Status Target Consequences In vivo In vitro Technique Reference

LncRNA
CASC2

↓ miR-
96-5p

Regulate expression of SYVN1 gene, &
Decrease apoptosis

Breast cancer tissue MDA-MB-231 qRT-PCR Gao et al. (2018)

MCF-7

↓ miR-
18a-5p

Paclitaxel resistance through regulating
CASC2/miR-18a-5p/CDK19 axis

Breast cancer tissue &male MDA-MB-231 qRT-PCR Zheng et al.
(2019c)

MCF-7

BALB/c nude mice

ncRNA
lncFOXO1

↓ — Bind with BRCA-1, and regulate Breast cancer tissues MDA-MB-
231 MDA-MB-
453 MDA-
MB-415

qRT-PCR Xi et al. (2017)

MCF-7

BT-549

H2A

LncRNA
00641

↓ miR-
194-5p

Increase proliferation, migration,
invasion, inhibit apoptosis

Breast cancer tissues MDA-MB-
453 UACC-812

qRT-PCR Mao et al.
(2020)

MDA-MB-231

BCAP-37

MCF-7

LncRNA
TFAP2A-AS1

↓ miR-933 Regulate cell cycle, apoptosis by miR-
933/SMAD2 axis

Breast cancer tissues MDA-MB-
231 MDA-MB-
435 MCF-10A

qRT-PCR Zhou et al.
(2019a)

MCF-7

T-47D

SKBR-3

LncRNA
FGF14-AS2

↓ miR-
370-3p

Cancer growth by regulating FGF14-
AS2/miR-370-3p/FGF14 axis

Breast cancer tissues MDA-MB-453 qRT-PCR Jin et al. (2020)

MDA-MB-231

MCF-7

HCC-1937

LncRNA
AC073284.4

↓ miR-
18b-5p

Paclitaxel resistance, and EMT by
regulating DOCK4 gene expression

Breast cancer tissues MCF-7 qRT-PCR Wang et al.
(2019h)

SKBR-3

LncRNA
LINC00968

↓ — Regulate Wnt2/β-catenin signaling
pathway

Breast cancer tissues &
Breast cancer sample data
from GSE26910 & BALB/c
nude mice

— qRT-PCR Xiu et al. (2019)

Note: ER/PR (+/−) breast cancer (luminal A), ER/PR/Her2 (+/−) (Her2 positive), TNBC (triple negative breast cancer), qRT-PCR (quantitative Real-Time PCR), ISH (In situ

hybridization), FISH (Fluorescent in situ hybridization), SSH (Suppression subtractive hybridization), TGF-β (Transforming growth factor beta), NF-κβ (Nuclear factor-κ β), IKK (Iκ β
kinase), EZH2 (Enhancer of zeste homolog 2), CDK6 (Cyclin-dependent kinase 6), Hsp90 (heat shock protein 90), PI3K (phosphatidylinositol 3 kinase)/AKT (protein kinase B), TEAD

(Transcriptional enhanced associate domain), PABPC1 (Polyadenylate-binding protein cytoplasmic 1), SRY (sex determining region Y)-box 2, IGF2 (Insulin-like growth factor 2), BTG3

(BTG Anti-Proliferation Factor 3), NONO (Non-POU Domain Containing Octamer Binding), QKI (QKI, KH Domain Containing RNA Binding, RBMX (RNA Binding Motif Protein

X-Linked), KLHDC7B (Kelch Domain Containing 7B), HMMR (Hyaluronan Mediated Motility Receptor), LIFR (LIF Receptor Subunit Alpha), SNCG (Synuclein Gamma), POSTN

(Periostin), FAT4 (FAT Atypical Cadherin 4), USP7 (Ubiquitin carboxyl-terminal hydrolase 7), HIF-1α (hypoxia-inducible factor 1 alpha), BLCAP (BLCAP Apoptosis Inducing Factor),

ABCB1 (ATP Binding Cassette Subfamily B Member 1), Nrf2 (nuclear factor erythroid 2–related factor 2), EMT (epithelial-mesenchymal transition) ER (endoplasmic reticulum stress),

MAPK (mitogen-activated protein kinase), MMP 9 (Matrix metallopeptidase-9), IL6)Interleukin-6), ERBB2 (Erb-B2 Receptor Tyrosine Kinase 2), CHST15 (carbohydrate sulfotransferase

15), Oct-4 (octamer-binding transcription factor 4), RUNX2 (Runt-related transcription factor 2), HOXB8 (Homeobox B8), SOX4 (SRY-Box Transcription Factor 4), DNMT1 (DNA

Methyltransferase 1), STAT3 (Signal transducer and activator of transcription 3), SAHH (S-adenosylhomocysteinehydrolase), DNMT3B (DNAMethyltransferase 3 Beta), KLF4 (Kruppel

Like Factor 4), ALDH1A1 (Aldehyde Dehydrogenase 1 Family Member A1), FGF7 (Fibroblast Growth Factor 7), SYVN1 (synoviolin 1), CASC2 (Cancer Susceptibility 2), EREG

(Epiregulin), CCND! (Cyclin D1 gene), BRCA1 (breast cancer 1), IGF2BP1 (Insulin-Like Growth Factor 2 MRNA Binding Protein 1), LEF1 (Lymphoid Enhancer Binding Factor 1),

CHEK2 (Checkpoint kinase 2), PTEN (Phosphatase and tensin homolog), ADAM10 (ADAMmetallopeptidase domain 10), PKM2 (Tumour M2-pyruvate kinase 2), NOD2 (Nucleotide-

binding oligomerization domain-containing protein 2), IGF1R (Insulin-Like Growth Factor 1 Receptor), KPNA2 (Karyopherin Subunit Alpha 2), SNHG22 (Small Nucleolar RNA Host

Gene 22), CCR2 (C-C Motif Chemokine Receptor 2), ZEB1 (Zinc Finger E-Box Binding Homeobox 1), FAT4 (FAT Atypical Cadherin 4), SIRT1 (Sirtuin 1), BAALC (BAALC Binder Of

MAP3K1 And KLF4), Focal adhesion kinase (FAK), Krüppel-like factor 4 (KLF4), DOCK (dedicator of cytokinesis), SCN3A (Sodium channel, voltage-gated, type III, alpha subunit),

ITGB1 (Integrin Subunit Beta 1), OTX1 (Orthodenticle Homeobox 1).
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(N), and metastases (M)) (Fan et al., 2017). LncRNA LINP1 also

appeared to have higher expression in breast cancer tissues than

in adjacent non-tumour tissues (p < 0.01) and correlated with

advanced TNM stage (p = 0.002), poorer pathological

differentiation (p = 0.004), and shorter overall survival (SOS)

and disease-free survival (DFS) (Liu et al., 2018). A meta-analysis

determined a negative relation between lncRNA

MALAT1 expression and bad prognosis or adverse

clinicopathological features. The report demonstrated that

elevation in MALAT1 expression significantly predicted

unfavourable OS (HR = 2.06, 95% CI: 1.66–2.56, p < 0.0001)

in progesterone receptor (PR) (OR = 1.47, 95% CI: 1.18–1.82)

positive cancer tissues (Wang Y. et al., 2020). Moreover, in

another meta-analysis, overexpression of lncRNA HOTTIP

predicted the worst clinical outcome (95% CI 1.72–3.03, p <
0.00001). Moreover, validation using gene expression omnibus

data sets (GSE20711, GSE16446, and GSE9195) and 100 breast

cancer patients confirmed similar results (Yang et al., 2017).

Based on the expression pattern of four lncRNAs U79277,

AK024118, BC040204, and AK000974, Meng et al. (2014)

stratified the breast cancer patients into the high-risk and

low-risk group (Meng et al., 2014). Higher expression of

lncRNA LINC00473 suppressed miR-497 in breast cancer

samples and cell lines compared to breast epithelial cells.

Multivariate logistic regression assays further suggested

LINC00473 as an independent prognostic factor (Bai et al.,

2019). Additionally, Cox regression analysis confirmed

LINC01296 as an independent prognostic in breast cancer

(Jiang M. et al., 2018). Chen et al. (2020b) validated

expression of seven lncRNAs (ST8SIA6-AS1, lnc-HIST1H2BJ-

5:1, lnc-PRICKLE2-3:2, RP1-86C11.7, RP11-15F12.1, ZNF670-

ZNF695, and lnc-STRN3-12:1) in breast cancer. Only the higher

expression of ST8SIA6-AS1 was associated with TNM staging

and Ki67 index. Hypothetically, lncRNA ST8SIA6-AS1 binds

with miR-4252 or interacts with NONO (Non-POU Domain

Containing Octamer Binding), QKI (QKI, KH Domain

Containing RNA Binding), and RBMX (RNA binding motif

protein X-linked) (Chen et al., 2020b). Further, univariate and

multivariate COX regression analyses proposed oncogenic

lncRNA BANCR as an independent risk factor of poor

prognosis (Jiang J. et al., 2018).

In addition, oncogenic lncRNAs can also regulate EMT

(Epithelial to mesenchymal transition) during cancer

progression. LncRNA HOXD-AS1 interacts with miR-421

and inhibits its expression leading to the upregulation of

SOX4, a master regulator of EMT (Li et al., 2019d).

Similarly, upregulated lncRNA linc00617 can also promote

breast cancer cell motility and EMT process by modulating the

Sox2 [(sex-determining region Y)-box 2] gene expression (Li

et al., 2017a). The study by He and Wang (2015) found higher

expression levels of lncRNA-AK058003 that promoted breast

cancer cell proliferation and EMT via the regulation of SNCG

(Synuclein Gamma) expression (He and Wang, 2015). High

expression of lncRNA NEAT1 predicted poor overall survival

in breast cancer patients, and silencing of lncRNA

NEAT1 suppressed the EMT process through upregulation

of miR-146b-5p (Li et al., 2020a). Zheng et al. (2019d) showed

that lncRNA RHPN1-AS1 silencing resulted in decreased

expression of EMT markers (Zheng S. et al., 2019). In

addition, treatment with Pterostilbene increased the

expression of the lncRNAs MEG3, TUG1, H19, and

DICER1-AS1, whereas decreased the expression of lncRNA

LINC01121, PTTG3P, and HOTAIR. Differential expression

of these lncRNAs caused inhibition of cell proliferation and

EMT (Huang Y et al., 2018). Also, higher expression of

lncRNA LINC00673 influenced NCR3LG1 (natural killer

cell cytotoxicity receptor 3 ligand 1) activity and enhanced

EMT process in breast cancer (Hou et al., 2018). Si et al. (2019)

determined upregulation of lncRNA H19 in breast cancer

patients with poor prognosis and silencing of lncRNA

H19 inhibited the tumour growth EMT (Si et al., 2019).

Further, overexpressed lncRNA FOXD2-AS1 regulated the

expression of EMT markers (N-cadherin, E-cadherin, and

FIGURE 4
Showing different functions of long noncoding RNAs.
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vimentin) via the FOXD2-AS1/miR-150-5p axis (Jiang et al.,

2019).

Further, oncogenic lncRNAs can also regulate the cell

proliferation by controlling the cell division (Rakhshan et al.,

2022). For instance, the study by Wu et al. (2017) evaluated the

high levels of lncRNA CCAT2 in breast cancer and

downregulation of lncRNA CCAT2 arrested the cells in the

G0/G1 phase and promoted apoptosis by modulating the

TGF-β signalling pathway (Wu et al., 2017). Huang et al.

(2014) demonstrated that hnRNP I formed a functional

ribonucleoprotein complex with lncRNA UCA1 and leading

to an increase in the UCA1 stability. Without lncRNA UCA1,

hnRNP I enhanced the translation of p27 and supported the

cancer proliferation (Huang et al., 2014). Microarray experiment

identified upregulation of lncRNA NONHSAT028712 in breast

cancer. LncRNA NONHSAT028712 bound with heat-shock

protein 90 (HSP90) and recruit cycle 37 (Cdc37).

Mechanistically, lncRNA NONHSAT028712/HSP90/

Cdc37 complex activated the cyclin-dependent kinase 2

(CDK2) and regulated the cell cycle (Cui et al., 2020).

Depletion of oncogenic lncRNA PRNCR1-2 in HS-578T and

MDA-MB-231 breast cancer cells markedly suppressed

proliferation rates and cell cycle progression via increasing

Checkpoint kinase 2 (CHK2) phosphorylation (Pang et al., 2019).

In addition, lncRNAs also regulate the apoptosis activation in

breast cancer cells. Breast cancer patients with low expression of

lncRNA BANCR were significantly different than patients with

higher expression of lncRNA BANCR. Western blotting revealed

that of Bax (B-cell lymphoma 2 associated X protein), PARP

(cleaved-Caspase-3 and cleaved-poly adenosine diphosphate-

ribose polymerase) had elevated expression in low expression

lncRNA BANCR group (Jiang J. et al., 2018). Liu et al. (2020)

reported that blocking the expression of lncRNA TP73-AS1 in

breast cancer cells promoted apoptosis, and inhibited

proliferation via lncRNA TP73-AS1/miR-125a/MTDH

pathway (Liu et al., 2020). Elevated levels of lncRNA

HOTAIR were positively associated with Bcl-w positivity in

clinical breast cancer samples. The results of another study

showed that HOTAIR bound with miR-206 leading to the

expression of Bcl-w (Ding et al., 2017). Further, Deng et al.

(2016) demonstrated that inhibition of lncRNA Z38 expression

by siRNAs treatment suppressed the breast cancer cell

tumourigenesis and induced cell apoptosis (Deng et al., 2016).

The expression of lncRNAs Loc554202 was significantly

increased in breast cancer tissues compared to normal

controls. On the other hand, knockdown of Loc554202 had a

reversed effect and resulted in inhibition of proliferation and

apoptosis activation (Shi et al., 2014).

It was observed that lncRNAs can also regulate several

cancers associated signalling pathways, including the

activation of transcription factors, such as nuclear factor

kappa B (NF-κB). For example, overexpressed lncRNA

NKILA bound to NF-κB/IĸB masked its phosphorylation. This

interaction prevented the over-activation of the NF-κB pathway

in inflammation stimulated breast epithelial cells (Liu et al.,

2015). According to Dong et al. (2020) overexpressed lncRNA

FIGURE 5
Showing long noncoding RNAs mediated different cancer related signaling pathways. Adapted from (Ghafouri-Fard et al., 2021).
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LOXL1-AS1 spongedmiR-708-5p and increased the levels of NF-

κB, leading to increased migration and invasion of breast cancer

cells (Dong et al., 2020). It has been documented that estrogen

receptor-α upregulates lncRNA LINC00472, which subsequently

suppresses the phosphorylation of NF-κB (Wang Z. et al., 2019).

Similarly, Cao et al. (2019) observed an enhanced expression of

lncRNA UASR1 and pAkt, pTSC2, p4EBP1, and p70S6K in

breast cancer cells, thereby suggesting that UASR1 played an

oncogenic role in breast cancer cells through activation of the

Akt/mTOR signalling pathway (Cao et al., 2019).

Bai et al. (2018) found that lncRNA EZR-AS1 interacts with

β-catenin to prevent its degradation and lncRNA EZR-AS1

knockout resulted in β-catenin downregulation and

inactivation of the Wnt/β-catenin pathway (Bai et al., 2018).

Zhao et al. (2019a) reported that lncRNA HEIH regulates miR-

200b andmay contribute to breast cancer viamodulation of miR-

200b/axis/Wnt/β-catenin pathway (Zhao et al., 2019a). LncRNA

RPPH1 overexpression promoted cell cycle and proliferation and

increased colony formation by downregulating miR-122. The

downregulation of miR-122 results in increase ADAM10

(ADAM metallopeptidase domain 10), PKM2 (Pyruvate

kinase M2), NOD2 (Nucleotide-binding oligomerization

domain-containing protein 2), and IGF1R (Insulin-like growth

factor 1 receptor) genes expression (Zhang and Tang, 2017).

Zheng et al. (2019) also observed higher expression lncRNA

LUCAT1 in breast cancer cases, whereby downstream inhibited

target TCF7L2 (transcription Factor-7-Like 2) gene and activated

Wnt/β-catenin pathway (Zheng A. et al., 2019). Upregulation of

lncRNA CRNDE inhibited miR-136, leading to upregulation of

β-catenin and the activation of the Wnt/β-catenin signalling

pathway (Zheng A. et al., 2019).

In 2018, Hou et al. suggested that overexpression of lncRNA

ROR promoted proliferation and invasion of cancer cells in nude

mice breast model through TGF-β (Transforming growth factor

beta) signalling pathway (Hou et al., 2018). Dysregulated lncRNA

HOXA-AS2 endogenously sponged miR-520c-3p and caused

downregulation of miR-520c-3p that influenced the expression

of TGF-β-R2 in breast cancer cells (Fang et al., 2017).

Additionally, lncRNA-NORAD promoted proliferation by

activation of the TGF-β/RUNX2 signalling pathway in breast

cancer cells (Zhou K. et al., 2019). Similarly, highly expressed

lncRNA DLX6-AS1 targeted miR-505-3p and subsequently

enhanced the expression of the RUNX2 (Runt-related

transcription factor 2) gene (Zhao et al., 2019b). In another

study, the overexpressed LINC01614 group activated networks of

TGF-β1 and ECM (Extracellular matrix) in HR+/HER2+ breast

cancer molecular subtype (Vishnubalaji et al., 2019).

Niu et al. (2019) demonstrated that lncRNA

LINC00473 could sequester miR-198 and regulate the MAPK1

(Mitogen-activated protein kinase 1) gene expression (Niu et al.,

2019). Overexpressed lncRNA SNHG6 inhibits miR-26a-5p and

leads to upregulation of MAPK6 (Lv et al., 2019). Furthermore,

lncRNA linc01561 caused upregulation of MMP-11

(Metalloproteinase-11) after targeting miR-145-5p in breast

cancer cells (Jiang R. et al., 2018). It was found that LncRNAs

can also control cancer cell metabolism, viz., lncRNA YIYA

regulates CDK6 (cell division protein kinase 6) dependent

phosphorylation of PFKFB3 (fructose bis-phosphatase PFK2),

and thus can convert glucose 6-phosphate (G6P) to fructose-2,6-

phosphate (Jiang R. et al., 2018).

A study by Qian et al. (2017) revealed that lncRNA

NEAT1 could promote cancer cell growth through the

upregulation of EZH2 (Enhancer of zeste homolog 2) gene by

targeting miR-101 (Qian et al., 2017). Higher expression of

lncRNA DANCR in advanced tumour grades or lymph node

metastasis cases promoted the binding of EZH2 to the promoter

region of SOCS3 (Suppressor of cytokine-3 signalling) and

inhibited SOCS3 expression (Zhang K. J. et al., 2020). A study

by Zhu et al. (2019b) demonstrated that lncRNA linc00460 target

miR-489-5p and hence regulate the expression of FGF7

(Fibroblast growth factor 7) and Akt (protein kinase B) (Zhu

et al., 2019b). Oncogenic lncRNA FGF14-AS2 suppressed miR-

370-3p expression and consequently led to the activation of

FGF14 in breast cancer cells (Jin et al., 2020).

Immunoprecipitation assays provided evidence that

lncRNA H19 regulated the expression of STAT3 (Signal

transducer and activator of transcription 3) gene in breast

cancer (Li et al., 2019a). The results of Liang et al. (2018b)

revealed that lncRNA-PRLB could regulate the

chemoresistance in breast cancer via modulating the

expression of miR-4766-5p and SIRT1 (Sirtuin 1) genes

(Liang et al., 2018b) Higher expression levels of RHPN1-

AS1 were measured by RNA FISH (fluorescent in situ

hybridization) and Western blot assays in MCF-7 and

MDA-MB-231 breast cancer cell. Luciferase reporter assay

validated that RHPN1-AS1 inhibits miR-4261 and regulates

the direct transcriptional target of c-Myc (Zhu et al., 2019a).

A number of studies have shown high levels of lncRNA

UCA1 in breast cancer tissues, which resulted in tumourigenesis

through inhibition of tumour suppressor miRNA-143 (Chen

et al., 2015; Tuo et al., 2015). Additional findings from

xenograft breast cancer model identified upregulation of

lncRNA HOTAIR and chondroitin sulfotransferase CHST15

(GalNAc4S-6ST) (Liu et al., 2019). Further, RNA FISH

revealed amplification of lncRNA ANRIL in malignant breast

cells. LncRNA amplification was positively correlated with

POSTN (periostin) expression (p = 0.0086) (Mehta-Mujoo

et al., 2019). Huang and Xue suggested the upregulation of

lncRNA FOXD2-AS1 in breast cancer cell lines and its

positive relationship with S100A1 (Calcium-binding protein

A1) gene expression. It was reported that lncRNA FOXD2-

AS1/S100A1/Hippo axis was involved in tumourigenesis of

breast cancer (Huang and Xue, 2020). Another study also

found the elevated expression of lncRNA GHSROS in the

cancer cells and its association with the cell migration in in-

vivo and invitro systems (Thomas et al., 2019). According to Li
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and co-workers, lncRNA H19 also promoted breast cancer

growth through H19/miR-152/DNMT1 axis (Li Z. et al., 2017).

Oncogenic lncRNA LINC02163 was found to be involved in

breast cancer pathogenesis by mode of LINC02163/miR-511-3p/

HMGA2 (high mobility group A proteins 2) axis (Qin et al.,

2020). The findings of another study showed that lncRNA

LINC00461 regulated KPN-α2 (Karyopherin alpha 2) gene

expression through sponging miR-144-3p in the breast cancer

(Zhang Q. et al., 2020). Upregulated lncRNA BLACAT1 was

linked with aggressive breast cancer phenotype by lncRNA

BLACAT1/miR-150-5p/CCR2 (C-C chemokine receptor type

2) axis (Hu et al., 2019).

Li and et al. found that upregulation of lncRNA ZFHX4-AS1

suppresses FAT4 and increases YAP1 (yes-associated protein 1)

and TAZ (Tafazzin) gene expression which is attributed to breast

cancer cell proliferation (Li et al., 2019b). A report by Wu et al.

indicated that high expression of lncRNA HOXA-AS2 might

modulate the expression of SCN3α (Sodium voltage gated

channel alpha subunit 3) after sponging miR-106a in breast

cancer (Li et al., 2019b). Greater expression of lncRNA

ADPGKAS1 predicted poor prognosis for breast cancer

patients mechanistically by modulating miR-3196/OTX1 axis

(Yang J. et al., 2019). Wang et al. (2019c) suggested that

lncRNA HULC in breast cancer tissues and cell lines paired

with miR-6754-5p and upregulated LYPD1 (LY6/PLAUR

domain containing 1) gene expression (Wang et al., 2019c).

Vennin et al. (2017) demonstrated that oncogenic lncRNA

91H prevents histone and DNA methylation on the maternal

allele at the H19/IGF2 (Insulin Like Growth Factor 2) locus

(Vennin et al., 2017).

4.2 Tumour suppressive long non-coding
RNAs

There are a number of lncRNA whose downregulation

contributes in breast cancer development and progression

(Ghafouri-Fard et al., 2022). A meta-analysis by Xu et al.

(2016) on two cohorts from the GEO database sets observed

favourable disease outcomes in breast cancer with higher

lncRNA EPB41L4A-AS2 expression. Patients with low

expression lncRNA EPB41L4A-AS2 had adverse clinical

outcomes (Xu et al., 2016). Lower expression of lncRNA

EGOT in breast cancerous tissues was associated with larger

tumour size (p = 0.022), lymph node metastasis (p = 0.020),

and higher Ki-67 positivity (p = 0.017). A multivariate analysis

suggested that a low level of lncRNA EGOT acts as an

independent prognostic factor for poor survival rate in

breast cancer patients (HR = 1.857, 95% CI = 1.032–3.340,

p = 0.039) (Xu et al., 2016). Furthermore, low expression of

lncFOXO1 in breast cancer tissues was associated with poorer

overall survival. Functional assays demonstrated that

lncFOXO1 modulates the BAP1 (BRCA-1-associated

protein 1) and regulates its binding at FOXO1 promoter

(Xi et al., 2017). Yang et al. (2016) demonstrated that

lncRNA FGF14-AS2 was significantly down-regulated in

cancer tissues having larger tumour size and more lymph

node metastasis. Kaplan-Meier analysis showed that low

FGF14-AS2 expression was associated with worst overall

survival (Yang et al., 2016). Low relative expression of

lncRNA LINC00628 in tumour tissues and breast cancer

cell line had significant association with the poor prognosis

and overall survival.

It has been reported that ectopic induced expression of

lncRNA MAGI2-AS3 in MDA-MB-231 and MCF-7 cell lines

inhibited the migration and invasiveness. The bioinformatics

analysis confirmed that miRNA-342a is a direct target of lncRNA

MAGI2-AS3 and its inhibition after binding with MAGI2-AS3

resulted in tumour suppressor PTEN (Phosphatase and tensin

homolog) expression. Thus, the results suggested that lncRNA

MAGI2-AS3 has the potential to serve as an anticancer

therapeutic candidate (Du et al., 2019). Tumour suppressor

lncRNA PTENP1 inhibited the proliferation and migration of

breast cancer cells via modulating expression of cyclin A2,

CDK2, p-Akt, p-p44/42 MAPK, and p-p38 MAPK cancer

signalling molecules (Du et al., 2019). Similarly, PTENP1 also

suppressed the miR-19b and modulated PI3K/Akt cancer

signalling pathway (Shi et al., 2018). LncRNA

LINC01125 exhibited an anti-proliferation effect by activation

of apoptosis through PTEN/Akt/MDM2 (mouse double minute

2 homolog)/p53 cancer signalling pathway (Wan et al., 2019).

Downregulation of LncRNA MALAT1 in both in-vivo and in-

vitro model system induced the EMT process in cancer via

regulation of PI3K (phosphatidylinositide-3 kinase)/Akt

pathways. Therefore, MALAT1 may act as a promising

therapeutic target for breast cancer metastasis via the PI3K-

Akt pathway (Xu et al., 2015b).

A study by Yang et al. (2018b) provided new insights for

treating breast cancer through the induced expression of

MAGI2-AS3 and elevation of the FasR (Fas receptor) and

FasL (Fas ligand) (Yang et al., 2018b). Overexpression of

LINC00628 suppressed breast cancer cells proliferation,

invasion and migration as well as arrested cancer cell in G0/

G1 phase, upregulated caspase-3, Bax (Bcl-2-associated X), and

downregulated Bcl-2 (Chen D. Q. et al., 2017). Upregulation of

lncRNA CASC2 inhibited the cancer cells viability and elevated

the apoptosis in cancer cells. The absence of CASC2 was related

to the high expression of miR-96-5p and the downregulation of

its target gene SYVN1 (Synoviolin). Thus, SYVN1 inhibited the

growth and metastasis through the miR-96-5p/SYVN1 axis (Gao

et al., 2018).

Similarly, the xenograft model study found downward

expression of lncRNA MALAT1, which resulted in breast

cancer metastasis suppression. Further analysis showed that

MALAT1 inhibited the pro-metastatic transcription factor

TEAD (Transcriptional enhanced associate domain) and its
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binding with co-activator YAP1, leading to reduced metastatic

ability (Kim et al., 2018). Another study identified that tumour

suppressor lncRNA-CTD-2108O9.1 inhibits metastasis by

targeting LIFR (Leukemia inhibitory factor receptor) gene

(Wang M. et al., 2018). Further, the lncRNA

LINC00641 expression level was negatively corelated with

large tumour size and lymph node metastasis. Endogenous

miR-194-5p is a direct target for LINC00641 and its

downregulation induced apoptosis in breast cancer cells

(Wang M. et al., 2018). Xiu et al. (2019) demonstrated that

induced expression of lncRNA LINC00968 negatively targeted

WNT2 through HEY1 (Hes related family BHLH transcription

factor with YRPW motif 1) gene regulation (Xiu et al., 2019).

However, lower expression of lncRNA TUSC8 was associated

with metastasis and EMT changes. The findings of another

study suggested that TUSC8 inhibited breast cancer growth

and metastasis via the miR-190b-5p/MYLIP (Myosin

regulatory light chain interacting protein) axis, thus

providing evidence for potential therapeutic targets for

breast cancer patients (Zhao et al., 2020). On the other

hand, downregulation of lncRNA FGF14-AS2 and

upregulation of its target miR-205-5p indicated poor

clinical outcomes (Yang Y. et al., 2019).

4.3 Long non-coding RNAs in early breast
cancer detection

It is well known that breast cancer detection at early stage

helps in the better management of disease with reduced exposer

to cytotoxic chemotherapy. Several studies have identified

various lncRNAs associated specifically with early breast

cancer. For example, transcriptomic studies (RNA-seq)

identified lncRNA LINC00885 expression in both normal and

ductal carcinoma in situ (DCIS) breast cells (Abba et al., 2020).

Expression of lncRNA BHLHE40-AS1 increases with disease

progression from DCIS to invasive ductal carcinoma. Also,

lncRNA BHLHE40-AS1 modulated interleukin (IL)-6/

STAT3 activity and created an immune-permissive

microenvironment (DeVaux et al., 2020). Overexpression of

lncRNA LINC00968 was also reported at the early-stage of

breast cancer. Another study demonstrated that lncRNA

LINC00968 inhibited proliferation by increasing PROX1

(Prospero homeobox 1) expression through targeting miR-

423-5p (Sun et al., 2019). Similarly, a lower expression of

lncRNA TFAP2A-AS1 was assessed in early breast cancer

patients (Zhou B. et al., 2019). Further, knockdown of

lncRNA HOXA11-AS in breast cancer cell line inhibited the

colony formation and arrested the cell cycle at the G0/G1 phase

(Su and Hu, 2017). In addition, out of 48 lncRNAs assessed, one

lncRNA (LINC01614) was highly expressed and found to have

had a stronger prognostic value in early-stage breast cancer

patients (Wang et al., 2019g).

4.4 Long non-coding RNAs in breast
cancer subtypes

4.4.1 Luminal
Gene expression profiling deciphered the breast cancer

into four distinct molecular subtypes such as Luminal, Her2+,

Her2 enriched, TNBC, and basal like. Patients with same

molecular subtype responded differently to targeted therapy

and showed diverse clinical outcomes. However, the exact

underlying mechanism for molecular heterogeneity remains to

be elucidated. Many researchers have evaluated molecular

subtype specific lncRNAs expression in breast cancers and

suggested its involvement in cancer molecular heterogeneity

(Dastmalchi et al., 2021). Computational methods using

TCGA human breast cancer data found lncRNA T-UCR

overexpression and worst clinical outcomes and short

survival in luminal A subtype (Marini et al., 2017). Zidan,

et al. (2018) reported higher lncRNA MALAT1 expression

with positive lymph node metastasis, large tumour size and

proposed MALAT1 a potential prognostic candidate (ROC;

83.7% and 81.2%, sensitivity and specificity, respectively) in

ER-positive breast tumour (Zidan et al., 2018). Gene

expression profile study on >600 ER positive breast cancer

patients, identified a set of six lncRNAs significantly correlated

with overall survival in patients (Zhong et al., 2017). Li et al.

(2018c) suggested that the aggressive proliferation of ER-

positive breast cancer cells resulted from the higher

expression of lncRNA MIAT (Li et al., 2018c).

4.4.2 Her2/neu positive
Lee et al. (2017) demonstrated that induced downregulation

of lncRNA snaR significantly inhibited proliferation as well

migration of SK-BR3 Her2 overexpressing breast cancer cells

(Lee et al., 2017). Another study showed lncRNA ES3 elevated

expression in Her2-positive breast cancer samples compared to

luminal A, B, and TNBC subtypes (Keshavarz et al., 2019). The

lncRNA TUG1 induced higher expression in HER2-enriched

invasive breast carcinoma was associated with poor survival

(Gradia et al., 2017).

4.4.3 Triple negative breast cancer
The use of anti-lncRNA ASBEL antago suppresses TNBC

growth as a result of BTG3 (B cell translocation gene 3) gene

expression restoration (Xia et al., 2017). Further, in TNBC tissues

and MDA-MB-23 cells, lncRNA TP73-AS1 inhibited miR-490-

3p and caused vasculogenic mimicry (VM) through upregulation

of TWIST1 (Tao et al., 2018). LncRNA LRRC75A-AS1 sponged

miR-380–3p and control EMT process by regulating miR-

380–3p/BAALC pathway in TNBC samples (Li et al., 2020b).

Inhibition of oncogenic lncRNA MALAT1 arrested TNBC cells

in the in-vivo and in-vitro systems (Zuo et al., 2017). Another

study found a positive correlation between lncRNAs HOST2 and

CDK6 expression TNBC tissues (Lu et al., 2018b). Greater
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expression of LncRNA TUG1 was positively related with

chemotherapy sensitivity in TNBC through inactivation WNT

signalling and upregulation of NLK (Nemo-like kinase) mediated

by inhibition of miR-197 (Tang et al., 2018). Presence of tumour

suppressor lncRNA ZEB1-AS1 promoted cell apoptosis in TNBC

tissues by stabilizing the ZEB1 mRNA via binding to ELAVL1

(Luo et al., 2020). Beltrán-Anaya et al. (2019) reported enhanced

growth of death resistant TNBC cells absent in lncRNA

KLHDC7B (Kelch domain containing 7B) (Beltrán-Anaya

et al., 2019). Higher expression of lncRNA HMMR antisense

RNA 1 in MDA-MB-231 and MDA-MB-468 breast cancer cells

enhanced the proliferation and migration significantly (Liu et al.,

2016). By assessing TCGA human breast cancer data, Mitobe

et al. (2020) evaluated the overexpression of lncRNA TMPO-AS1

in basal-like breast cancer subtype. LncRNA TMPO-AS1

modulate the TGF-β and E2F signalling pathways (Mitobe

et al., 2020). Another study depicted a higher lncRNA

SNHG22 expression in TNBC tissues and lower expression of

miR-324-3p. This observed inverse relationship caused the

higher proliferation rate in TNBC via lncRNA SNHG22/miR-

324-3p signalling pathway (Fang et al., 2020). Wang et al. showed

linc-ZNF469-3 high expression in lung-metastatic LM2-4175

TNBC cells. Elevated expression of linc-ZNF469-3 promoted

the lung metastasis of TNBC through miR-574-5p-ZEB1 (Zinc

Finger E-Box Binding Homeobox 1) signalling axis (Wang P. S.

et al., 2018). RNA immunoprecipitation confirmed the

interaction between lncRNA linc003339 and miR-377-3p

which positively affected TNBC proliferation and had negative

effect on cell cycle arrest and apoptosis inhibition. Interaction

between miR-377-3p and linc00339 mediated TNBC

proliferation HOXC6 (Homeobox protein hox-C6) expression

upregulation (Wang et al., 2019d). Further, blocking of lncRNA

sONE resulted in high expression of downstream tumour

suppressor miRNAs (miR-34a, miR-15, miR-16, and let-7a)

and slowed tumour growth (Youness et al., 2019).

Long noncoding RNAs also has capacity to regulate the

expression of cancer stem cell marker in TNBC. Oncogenic

lncRNA DANCR induced CD44, ABCG2 (ATP Binding

Cassette Subfamily G Member 2), and ALDH1 (Aldehyde

dehydrogenase 1) marker’s expression (Youness et al.,

2019). Similarly, lncRNA CCAT2 promoted expression of

Oct4, nanog, and KLF4 genes (Kruppel-like factor 4) and

growth of ALDH+ cancer stem cells in TNBC via targeting

miR-205 (Xu et al., 2020). Microarray results observed the up-

regulation of lncRNA DCST1-AS1 in TNBC tissues and cell

lines and a positive correlation with poor histopathological

grades. Further, a negative relation was established between

lncRNA DCST1-AS1 and miR-873-5p expression and

this interaction increased the expression of the

CD44 marker (Tang et al., 2020). LncRNAs

LINC01133 enhanced expression of pluripotency

determining gene KLF4 in the TNBC targeting miR-199a-

FOXP2 pathway (Tu et al., 2019).

4.5 Long non-coding RNAs in therapy
resistance

Chemotherapy resistance is the major cause of cancer related

deaths. LncRNAs have a key role in developing resistance against

radiotherapy, chemotherapy, immunotherapy, and targeted

therapy. Inhibition of lncRNA LINC02582 expression

increased radiosensitivity miR-200c/LINC02582/CHK1 in

breast cancer samples (Wang et al., 2019a). LncRNA

CASC9 induced the drug-resistant breast cancer cells through

the regulation of EZH2 (Jiang B. et al., 2018). Li et al. (2017c)

observed four-fold higher expression of lncRNA CRALA in

cisplatin poor responded breast cancer cells and its inhibition

re-sensitized the cancer cells to cisplatin (Li et al., 2017c).

4.5.1 Tamoxifen resistance
Tamoxifen drug is used for the treatment of ER positive

breast cancer, especially in postmenopausal patients (Yao et al.,

2020). Tamoxifen does two roles: first, it competes with 17β-
estradiol (E2) at the receptor site and block E2; second, it binds

with DNA after metabolic activation and inhibit carcinogenesis

(Yao et al., 2020). However, ERα downregulation in cancer causes
tamoxifen resistance. In recent years, role of non-coding RNAs in

the tamoxifen resistance have been well noted. A penal of

11 lncRNAs was negatively associated with relapse-free

survival (RFS) in ER-positive breast cancer patients receiving

tamoxifen. The study proposed that resulted RFS might be due to

deregulation of PI3K-Akt and Wnt pathway (Wang K. et al.,

2018). Increased lncRNA H19 expression induced the tamoxifen

and fulvestrant resistance in ETR cancer cells (Basak et al., 2018).

Ozeş et al. (2017) described that inhibition of lncRNA HOTAIR

sensitized the tumour cells to platinum-based chemotherapy.

Inhibition of HOTAIR blocks its binding to the EZH2 and reduce

NF-kβ activation and expression of its target genes such asMMP-

9 and IL-6 (Özeş et al., 2017). Similarly, lncRNA ROS inhibition

by use siROR sensitized breast cancer cells against tamoxifen

drug. LncRNA ROS inhibition increased autophagy markers

light chain 3, and beclin 1, thus, activated autophagy (Li et al.,

2017b). Cai et al. (2016) investigated that lncRNA

CCAT2 induced the tamoxifen resistance in MCF-7 and

T47D cells (Cai et al., 2016). Furthermore, a direct relation

was found in high lncRNA UCA1 expression and reduced

response to tamoxifen drug. LncRNA UCA1 interacts with

EZH2 and suppressed the expression of p21 through histone

methylation (H3K27me3) on the p21 gene promoter. Similarly,

Li et al. (2019e) concluded that lncRNA UCA1 regulated EZH2/

p21 axis and PI3K/Akt signalling pathway in tamoxifen-resistant

breast cancer cells (Li et al., 2019e). Additional findings revealed

that tamoxifen induced lncRNA UCA1 upregulation in ER-

positive breast cancer cells in a HIF-1α (Hypoxia-inducible

factor-1alpha) dependent manner, and thus enhanced

tamoxifen resistance (Li et al., 2016). LncRNA H19 induced

autophagy activation via the H19/SAHH/DNMT3ß (DNA
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(cytosine-5)-methyltransferase 3 beta) axis, contributed to

tamoxifen resistance in breast cancer (Wang et al., 2019b).

Downregulated lncRNA ROR supressed EMT and sensitized

MDA-MB-231 cells to tamoxifen. miR-205 is a direct target of

lncRNA ROR, which subsequently affects ZEB1 and ZEB2

(Zhang H. Y. et al., 2017).

4.5.2 Doxorubicin resistance
Doxorubicin is a Streptomyces peucetius bacterium derived

antibiotic molecule, being used as a chemotherapeutic agent since

the 1960s. It is a member of anthracycline group of

chemotherapeutic agents (Thorn et al., 2011). Doxorubicin

can inhibit cancer cell growth by following mechanism: 1)

intercalation with DNA that disrupt topoisomerase-II-

mediated DNA repair, 2) generation of free radicals which

damage cell membrane, DNA, and proteins (Thorn et al.,

2011). Still, cancer cell can overcome the anti-tumour effects

of doxorubicin. Among the other therapy resistancemechanisms,

regulation of long non-coding RNAs is one of the recently

reported mechanism. For instance, elevated lncRNA LINP1 in

breast cancer was related to doxorubicin & fluorouracil

chemoresistance and its knockout caused G1-phase cell cycle

arrest and activation of apoptosis (Liang et al., 2018a). A study by

Wang et al. found increased lncRNA H19 expression in

doxorubicin resistant breast cancer and its suppression

significantly lowered doxorubicin resistance (Wang X. et al.,

2020).

4.5.3 Trastuzumab resistance
Trastuzumab is an FDA approved humanized monoclonal

antibody used as targeted therapy in Her-2 positive breast

cancer. Mechanistically, trastuzumab binds to an

extracellular domain of ERBB2 receptor and inhibit its

homodimerization, thereby preventing ERBB2-mediated

signaling (Vu and Claret, 2012). Trastuzumab can also

degradation degrade ERBB2 receptor, mediate antibody-

dependent cellular cytotoxicity (ADCC), and interfere with

MAPK and PI3K/Akt signaling pathways (Vu and Claret,

2012). However, cancer cell can mediate the expression of

lnc RNAs and thereby survive against the cytotoxic effect of

trastuzumab. According to Dong et al., lncRNA

SNHG14 induced trastuzumab (ERBB2/HER2 antibody)

resistance in HER2+ breast cancer tissues. Mechanistically,

lncRNA SNHG14 regulated PABPC1 (Polyadenylate-binding

protein 1) gene through H3K27 acetylation and hence

activation of Nrf2 (Nuclear factor erythroid 2-related factor

2) signalling pathway (Dong et al., 2018). Zhu et al. (2018)

showed knockout lncRNA UCA1 in SKBR-3 breast cancer cell,

resulting in trastuzumab sensitivity via lncRNA UCA1/miR-

18a/YAP1 axis (Zhu et al., 2018). High expression of lncRNA

HOTAIR in SK-BR-3-TR trastuzumab-resistant breast cancer

cell line induced EMT confirmed by dysregulation of marker

i.e., TGF-β, Snail, Vimentin, and E-cadherin (Chen et al., 2019).

4.5.4 Paclitaxel resistance
Paclitaxel, is a taxane and inhibits the cancer cell growth by

regulating microtubule stabilising ability, arrests cell in the G2/

M-phase of the cell cycle, eventually push the cancer cell to

undergo apoptosis (Kampan et al., 2015). Still cancer cell acquired

the resistance against paclitaxel by controlling the expression of lnc

RNAs. For example, higher expression was found in lncRNA

FTH1P3 showing paclitaxel resistance in MCF-7/PTX and MDA-

MB-231/PTX cells. In xenograft mice, lncRNA FTH1P3 targeted

miRNA-206 and upregulated ABCB1 (ATP Binding Cassette

Subfamily B Member 1) protein (Wang R. et al., 2018). Li et al.

(2017) measured four-fold higher expression of lncRNA CRALA in

paclitaxel poor responded breast cancer cells (Li et al., 2017c).

Paclitaxel-resistant breast cancer tissue and cell line had

downregulation of lncRNA which led to upregulation of miR-

18b-5p and inhibited DOCK4 (Dedicator of cytokinesis protein 4)

(Wang Y. Y. et al., 2019). Zheng et al. reported that lncRNA

CASC2 activated paclitaxel resistance in breast cancer through

regulation of miR-18a-5p/CDK19 (Zheng P. et al., 2019).

5 Long noncoding RNA in cancer
stem cell maintenance

Stem cells population in the tumour milieu is related with

tumour maintenance and therapy failure. Several studies

determined lncRNAs can regulate the expression of stem cell

markers. Such as, lncRNA H19 upregulate the Sox4 in cancer

cell via downregulation of miR-138 (Si et al., 2019). Upregulation

of lncRNA MIAT in ER/PR+, HER2-, and TNBC samples

significantly modulated Oct4 (octamer-binding transcription

factor 4) mRNA levels (Almnaseer and Mourtada-Maarabouni,

2018). Another study showed that lncRNA ES1 upregulation in

both high-grade and p53-mutated breast tumour tissues enhanced

the Oct4/Sox2 makers by regulating the Oct4/Sox2/miR-302/miR-

106b axis (Keshavarz and Asadi, 2019). Further, overexpressed

lncRNA FOXD2-AS1 regulated the expression of stem cell

markers (Oct4, Nanog, and SOX2) via FOXD2-AS1/miR-150-5p

axis (Jiang et al., 2019). The loss-of functional study indicated that

FEZF1-AS1 knockout reduced the CD44+/CD24- rate,

mammosphere-forming ability, and stem factors i.e., Nanog,

Oct4, and SOX2 (Zhang et al., 2018). The study by Lu et al.

(2018a) also revealed that LINC00511 promoted stem factors

Oct4, Nanog, and Sox2 expression (Lu et al., 2018a). Further,

expression of lncRNA SOX2OT modulates Sox2 in ER positive

and negative breast cancer samples (Askarian-Amiri et al., 2014).

For instance, lncCUEDC1 has demonstrated as a negatively

regulator for phenotype and biological functions of breast cancer

stem cells (BCSCs) by inhibiting NANOG (Zhang F. et al., 2020).

Also, study demonstrated that MALAT-1 affects the stem cell-like

phenotypes in breast cancer cells through regulation of Sox-2 (Zeng

et al., 2018). The lncRNA NRAD1 contributed to gene expression

changes which were associated with cancer stem cell by involving
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ALDH1A3 (Vidovic et al., 2020). Another study found that

lnc030 increased cholesterol synthesis through cooperates with

poly (rC) binding protein 2 (PCBP2) and governs BCSC

stemness (Qin et al., 2021). In addition, lncRNA KB-

1980E6.3 maintains the stemness of BCSCs through lncRNA KB-

1980E6.3/IGF2BP1/c-Myc axis (Zhu et al., 2021). Moreover,

lncTHOR in TNBC compared to that in luminal A and luminal

B molecular subtype, facilitates stemness through activating ß-

catenin signaling (Wang B. et al., 2020). Also, LncCCAT2 in

TNBC through upregulating OCT4-PG1 expression and

activating Notch signaling, controlled aggressiveness of breast

cancer stem cells (Xu et al., 2020). Furthermore, LINC01133 also

determined as regulator of the pluripotency-determining gene

Kruppel-Like Factor 4 (KLF4) in TNBC (Tu et al., 2019). In an

in-vitro model, overexpression of SOX21-AS1 enhanced the

proliferation, migration and invasion of CSC-MCF-7 cells via

inhibiting the Hippo pathway (Li et al., 2021). A study

highlighted that LINC00261 can adsorb miR-550a-3p to

modulate SDPR, and thus inhibited migration and invasion of

CD44+/CD24-/low BCSCs, exerting a potential effect on therapy

(Li and Wu, 2021). Upregulation of pluripotent lncRNA ES3 was

significantly upregulated in Her-2 positive breast tumours and may

contribute to breast cancer proliferation as a downstream target of

Her-2 (Keshavarz et al., 2019). Thus, significant work established

lncRNAs signature in BCSCs and these findings assess us with

evidence to explore further functionalities of lncRNAs in BCSCs and

provide a novel therapeutic strategy for breast cancer (Ge et al.,

2020).

6 Long non-coding RNAs as non-
invasive biomarkers

Invasive biopsy procedures are painful interventions. These

procedures also induced certain anatomical and structural

deformities. Liquid biopsy is an alternative painless option

that can be used for diagnostic purposes. Liquid biopsy

includes taking different body fluids, most commonly blood

or serum for identification of diagnostic and therapeutic

biomarkers in the patients. Researchers have found different

lncRNAs in the blood or serum of breast cancer patients.

Therefore, lncRNAs may serve as non-invasive biomarkers. A

number of studies have identified the expression of lncRNA

HOTAIR in the blood of breast cancer patients where it was

associated with the high expression of ERBB2 (Receptor tyrosine-

protein kinase) (Wang Y. L. et al., 2019). Bermejo et al. (2019)

observed hypermethylated lncRNA LINC00299 in TNBC breast

cancer patients peripheral blood compared to the normal healthy

controls. Levels of lncRNA LINC00310 were significantly

enhanced in the serum of breast cancer patients. Receiver

operating characteristic (ROC) curve analysis indicated that

lncRNA LINC00310 had a powerful capability of

distinguishing breast cancer patients from healthy individuals

(area under curve 0.828) (Li et al., 2018a). Another study revealed

higher amounts of lncRNAs H19, HOTAIR, and RP11-

445H22.4 in the plasma of breast cancer patients compared to

the normal healthy controls (Jiao et al., 2018).

7 Conclusion and future perspectives

Long ncRNAs like H19 and XIST were discovered in the

pre-genomic era, but were not fully characterized and

explored until the early 2000s (Jarroux et al., 2017).

Invention and improvement in DNA sequencing or high

throughput RNA sequencing facilitated the discovery of

non-coding DNA such as lncRNAs genes sequencing with

some functional role and their involvement in the various

pathological and disease conditions. The profiling of

differential expression of lncRNAs with massive parallel

RNAseq and single-cell RNAseq technologies revealing its

significant impact on breast cancer biology. Using these

sophisticated technologies, different scientific groups

around the world discovered a range of lncRNAs genes and

profiled them in different types of disease, including cancer.

Bioinformatic tools and gene enrichment analysis correlated

these lncRNAs with different signalling pathways and

highlighted their diagnostic virtues and treatment

monitoring importance. Despite this huge information on

lncRNAs and their identification in disease conditions,

their clinical use is still limited. The main reason is the

non-reproducibility of results obtained in different labs.

Unfortunately, the results obtained from several studies do

not match even though they have been conducted on a single

disease condition. Perhaps, non-reproducibility of results is

due to the variations in sensitivity of different techniques and

protocols used in sample collection under different

conditions. The experimental and clinical evidence

provided in this comprehensive review supports the use of

lncRNAs as a prognostic and predictive biomarker in breast

cancer patients even in respective molecular subtypes of breast

cancer. Since the clinical importance of lncRNAs is now

getting established, it will help to reduce the non-

reproducibility and enhance the accuracy of results in

breast cancer patients.
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