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Single cell RNA sequencing (scRNA-seq) is today a common and powerful

technology in biomedical research settings, allowing to profile the whole

transcriptome of a very large number of individual cells and reveal the

heterogeneity of complex clinical samples. Traditionally, cells have been

classified by their morphology or by expression of certain proteins in

functionally distinct settings. The advent of next generation sequencing

(NGS) technologies paved the way for the detection and quantitative analysis

of cellular content. In this context, transcriptome quantification techniques

made their advent, starting from the bulk RNA sequencing, unable to dissect the

heterogeneity of a sample, andmoving to the first single cell techniques capable

of analyzing a small number of cells (1–100), arriving at the current single cell

techniques able to generate hundreds of thousands of cells. As experimental

protocols have improved rapidly, computational workflows for processing the

data have also been refined, opening up to novel methods capable of scaling

computational times more favorably with the dataset size and making scRNA-

seq much better suited for biomedical research. In this perspective, we will

highlight the key technological and computational developments which have

enabled the analysis of this growing data, making the scRNA-seq a handy tool in

clinical applications.
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1 Introduction

For many years researchers have tried to comprehend the complexity of tissues,

organs and organisms (Grizzi and Chiriva-Internati, 2005). In order to gain this

understanding, many studies have focused on cell characterization, redefining the cell

as not only the structural but also the functional unit of life (Arendt et al., 2016).

Traditionally, cells have been classified by their morphology or by the expression of

certain proteins in functionally distinct settings, but the advent of NGS techniques paved

the way for the detection and quantitative analysis of cellular content (Mosmann et al.,
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1986; Orkin, 2000; Poulin et al., 2016). The high amount of data

generated in modern genomics and transcriptomics experiments

permitted to better characterize the architecture of genomes and

the complexity of the molecular mechanisms underlying cellular

activity, allowing an increasingly more accurate and in-depth

depiction of cell plasticity in dynamic processes such as

development, differentiation and disease evolution (Sedlazeck

et al., 2018; Stark et al., 2019).

Modern cellular and molecular biology knowledge is largely

derived from RNA sequencing (RNA-seq) experiments. Over the

last 20 years, the transcriptome quantification has shaped our

understanding of mechanisms responsible for phenomena, such

as the alternativeness of the mRNA splicing process, the

regulation of gene expression by non-coding and enhancer

RNAs respectively and the drug resistance in some types of

cancer, becoming a common and powerful technology suitable

for biomedical research (Wang et al., 2008; Morris and Mattick,

2014; Li et al., 2016; Marco-Puche et al., 2019).

The adaptation and evolution of RNA-seq has been driven by

technological developments and resulted in a progressive increase of

the analysis resolution. Starting from the so called “bulk” RNA-seq,

capable of measuring the average gene expression levels of ensembles

of millions of cells, we moved to the scRNA-seq that, by allowing to

profile the transcriptome of single cells, has revealed rare cellular

properties and biologically meaningful cell-to-cell variability, laying

the groundwork for heterogeneity-oriented studies (Svensson et al.,

2018; Li and Wang, 2021).

As experimental protocols have improved rapidly,

computational workflows for processing the data have also been

refined, taking into account the increased throughput of scRNA-seq

experiments (Andrews et al., 2021). The current “standard” analysis

pipeline consists of two main sections: preprocessing, including all

the steps necessary to clean the datamatrix fromunwanted sources of

information (quality control, normalization, data correction, feature

selection and dimensionality reduction) and cell- and gene-level

downstream analysis, used to extract biological insights and

describe the underlying biological system. For each of these steps,

computational biologists developed a range of methods which

perform better in different tasks and settings, making the creation

of generalizable workflows for single cell experiments analysis

challenging.

In this perspective, we will present an overview of the

computational workflow, arguing the tools available to

proceed in each step and highlighting the key technological

developments which have enabled the analysis of this ever-

increasing amount of data, making the scRNA-seq a handy

tool in biomedical research.

2 Single cell sequencing

The first studies of single cells date back to the early 90s and

were motivated by incoming discoveries which highlighted cell

plasticity in dynamic processes and the different functionality

based on localization (Eberwine et al., 1992). The advent of NGS

techniques opened up to the era of quantitative analysis of

cellular content, although first transcriptomics techniques

(bulk RNA-seq) were not able to survey the diversity of cell

types in a sample (Hong et al., 2020). The scaling of technologies

to profile large numbers of cells in parallel has been the key to

driving single cell transcriptomics forward (see Figure 1).

2.1 Technical evolution

The first example of single cell transcriptomics is the study of

a handful of mouse primordial germ cells by Tang et al. (2009).

By manual modification of cDNA amplification protocols

previously employed in microarray analyses, he captured and

quantified for the first time the full-length cDNAs for 64% of the

expressed genes of a single cell, without affecting the accuracy of

the protocol, which was however very time consuming and

limited to small numbers of atypically large cells.

In the wake of Tang et al., new different approaches were

developed including the so-called tag sequencing methods. For

instance, in 2011, Islam et al. quantified the transcriptome of

85 cells by means of single cell tagged reverse transcription

(STRT) (Islam et al., 2011). In brief, the authors settled single

cells into the wells of a 96-well PCR plate preloaded with lysis

buffer and then added reverse transcription (RT) reagents to

generate a first-strand cDNA. Next, a unique template-switching

oligo (TSO) with a specific sequence (six-base) on its 3′ end and a
universal primer sequence on the 5′ was added to each well

triggering the RT template-switching mechanism which

produces a cDNA molecule incorporating the sequence at the

3′ of the TSO.
The introduction of these “barcode” sequences allowed, for

the first time, to assay many cells in parallel via multiplexed

unbiased RNA-seq, although, in the STRT-seq method, full-

length cDNA is amplified by template-switching, but only the

5′ end fragment is captured and sequenced. To overcome

thislimitation, the full-length SMART-seq (Ramsköld et al.,

2012) and SMART-seq2 (Picelli et al., 2013) protocols were

developed by Ramsköld et al. and Picelli et al., in 2011 and

2013 respectively. Compared with existing tag based methods,

SMART-seq has improved read coverage across transcripts,

promoting a detailed analyses of alternative transcript

isoforms and identification of single-nucleotide

polymorphisms (SNP).

In sight of this, it is therefore necessary to clarify that it is

possible to profile the transcriptome through full-length

transcript analysis or by digital counting of either 3′ or 5′
ends. While the two methods carry similar levels of

reproducibility, the latter methods consist in a cost-effective

solution to quantify a high amount of transcripts at the

expense of a large loss of information for each of these,

Frontiers in Genetics frontiersin.org02

Carangelo et al. 10.3389/fgene.2022.994069

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.994069


contrary to the former which, by taking advantage of full-length

transcripts entirety, allows the detection of splice variants and

alternative transcripts, as well as genetic alterations in the

transcribed fraction but for a lower number of cells.

A further application of SMART-seq2 protocols, although

with some modifications (Egidio et al., 2014), is found also in the

work of Brennecke et al. (2013). By means of an integrated fluidic

circuit (IFC) method, implemented in the Fluidigm C1 system,

they studied 96 cells isolated into individual reaction chambers

and subjected to automatic staining, lysis, and sequencing in

extraordinarily fast times and in a “passive” manner never seen

before. In fact, the key feature of this technology is the design of

microfluidics devices (or chips) that allow the sequential delivery

of very small and precise volumes into tiny reaction chambers.

However, a major limitation derives from the number of these

chambers (96) which restrict the analysis to an equivalent

number of cells, as for Brennecke in 2013. Some following

large-scale studies made use of a large number of IFCs to

create big data sets (Zeisel et al., 2015).

In 2015, the advent of microfluidic platforms bypassed this

drawback thanks to the usage of nanoliter microreactor droplets

which can encapsulate cells with no physical, and therefore

numerical, restraints. The inDrop (Klein et al., 2015) and the

Drop-seq (Macosko et al., 2015) protocols enter the scene with

related commercial systems that allow to randomly capture cells

in beads containing lysis buffer, RT reagents and barcoded

oligonucleotide primers, so that mRNA is released from each

cell and remains trapped in the bead to be barcoded during

synthesis of cDNA. The two methods mainly differ in barcoding

strategy and amplification technique, since the inDrop protocol

uses hydrogel beads bearing poly(T) primers with defined

barcodes and, after pooling, initiates linear amplification

(IVT), contrary to Drop-seq which uses beads with random

barcodes and amplifies through PCR. The random isolation of

cells, however, comes with inherent limitations. Poisson statistics

of cell capture to ensure that mostly single cells are isolated

means there will always be large inefficiencies in terms of cell

isolation, and the pool of barcodes will always have to be

substantially larger than the number of cells captured to avoid

barcode duplication. A large number of barcodes means the

usage of very long and therefore expensive oligos. To reduce their

synthesis costs, two different strategies are adopted by both

methods: the combination of multiple shorter designed

barcodes (e.g., 8–10 bases) into longer barcodes (e.g., 8 bases

+22-base linker +10 bases = 40 bases), as for InDrop, or the

synthesis of very long (e.g., 12 bases) random barcodes, as for

DropSeq. This second procedure is simpler than the first and

does not require any synthesized oligos for the barcodes.

However, in the first approach barcodes can be designed to

avoid biases and ensure that each sequence will be distinct.

The need for a large number of oligos was mitigated in 2017,

through the advent of the combinatorial in situ barcoding

FIGURE 1
Noteworthy technologies that have allowed to profile large numbers of cells in parallel. Starting from manual isolation methods, a jump to
~100 cells was enabled by sample multiplexing and than the development of integrated fluidic circuits increased these numbers to an order of
magnitude. Next, the introduction of nanodroplet technologies increased throughput even further to hundreds of thousands of cells, as for in situ
barcoding which favoured the development of spatial methods.
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methods, when Rosenberg et al. introduced the split-pool

ligation-based transcriptome sequencing (SPLiT-seq), a low-

cost, scRNA-seq method that enables transcriptional profiling

of hundreds of thousands of fixed cells or nuclei in a single

experiment (Rosenberg et al., 2018). In brief, a suspension of

formaldehyde-fixed cells or nuclei passes through four rounds of

combinatorial barcoding. At the first round, cells are distributed

in a 96-wells plate and labelled with a specific tag. Next, cells are

pooled and subjected to another label-expanding round. So, in

the third round, another portion is added, carrying with it a

unique molecular identifier (UMI) specific for each transcript

and also used in other tag-based methods, such as STRT-seq,

InDrop and Drop-seq, to better quantify the native, unamplified

transcript levels (Islam et al., 2014; Stegle et al., 2015). Finally,

sequencing adapters are introduced by PCR and, subsequently,

each transcriptome is assembled by combining reads containing

the same four-barcode combination.

Along with SPLiT-seq, one of the most vastly used methods

makes its entry. The 10x Genomics company presents a new

system called Chromium, based on an inDrop-seq variant.

Specifically, single cells, RT reagents, Gel Beads containing

barcoded oligonucleotides, and oil are combined onto a

microfluidic chip to form reaction vesicles called Gel Beads in

Emulsion, or GEMs. GEMs are formed in parallel within the

8 microfluidic channels of the chip, allowing the user to process

hundreds to hundreds of thousands of single cells in a single 7-

min run, with a ~65% of capture efficiency (Zheng et al., 2017).

Within each GEM reaction vesicle, a single cell is lysed, the Gel

Bead is dissolved to free the identically barcoded RT

oligonucleotides into solution, and reverse transcription of

polyadenylated mRNA occurs. As a result, all cDNAs from a

single cell will have the same barcode, allowing the sequencing

reads to be mapped back to their single cells of origin. The

scalability and robustness of the system has favored the rapid

diffusion of this device and its acquisition by many research

laboratories in the medical field. Another contribution to this

field comes from the so-called spatial RNA sequencing (spRNA-

seq). Introduced in 2019 to enable the understanding of how

tumor cells can communicate with each other, escape the

immune system, develop drug resistance and metastasize, it

combines the strengths of the global transcriptional analysis of

bulk RNA-seq and in situ hybridization, providing whole

transcriptome data with spatial information. Two technologies

are currently available by 10x Genomics and Nanostring

Technologies, both using proprietary spatial gene expression

slides on which to fix fresh-frozen or Formalin-Fixed Paraffin-

Embedded (FFPE) tissue. The two technologies differ for slide

functionalization. The 10x device contains oligo capture probes,

similar to those coating the gel beads, and once the tissue is fixed,

stained and imaged, it is permeabilized to release the RNA,

captured by probes and subjected to on-slide cDNA synthesis

(Ståhl et al., 2016; Rodriques et al., 2019). The Nanostring system,

uses barcode-labeled probes and fluorescent markers to hybridize

to mRNA targets and to establish tissue “geography” respectively.

After the regions-of-interest (ROIs) are selected, the barcodes are

released via UV exposure and collected from the ROIs on the

tissue (Moses and Pachter, 2022).

The labeled RNAs, for both technologies, are then sequenced

through standard NGS procedures.

The spRNA-seq is still in its early stages and there are several

common challenges that limit its applications, including non-

single cell resolution, relatively low sensitivity, high cost and

labor-intensive process, but given its capacity to dissect

intercellular subpopulations sensitively and spatially, it will

inevitably become a fundamental area of research in both

discovery and therapeutics.

2.2 Bioinformatic analysis

2.2.1 General information and workflow
The rapid technological evolution that allowed the parallel

analysis of thousands of cells, promoting the spread of scRNA-

seq techniques, was accompanied by the development of new

data analysis pipelines capable of managing such a large amount

of data. The mathematical representation of these massive

datasets is an “expression” matrix, defined by the number of

detected genes and observed cells respectively. The process aimed

at its generation starts with the read quality check. The FastQ files

outputted from the sequencer are evaluated by means of quality

check tools, like FastQC (https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/), to undergo de-multiplexing, adapter

trimming, alignment and count. Tailored pipelines such as

Cell Ranger (Zheng et al., 2017), UMI-tools (Smith et al.,

2017), scPipe (Tian et al., 2018) and zUMIs (Parekh et al.,

2018), were developed to carry out these preliminary steps.

Alternatively, researchers can build their own workflows by

combining individual methods that address each of the

aforementioned tasks (see Table 1). For instance, the STAR

(Dobin et al., 2013) aligner implements the STARsolo

algorithm suited to trim, align and count this kind of data in

a very fast way (Brüning et al., 2022).

Moreover, if reads are UMI-tagged, only cell barcodes that

represent intact individual cells are kept. The most unambiguous

approach to assess emptiness is to calculate a dataset-specific

threshold of the minimum number of UMIs required to consider

a barcode as a cell (Zheng et al., 2017). Alternatively tools, such as

EmptyDrops (Lun et al., 2016a), identify cell barcodes that

significantly deviate from background levels of RNA present in

empty wells. The resulting cells still show unwanted biases. All

processes involved in bias removal define the so called

“preprocessing” which consists in quality control, normalization,

batch correction, feature selection and dimensionality reduction.

All these steps are preparatory for the following expression

analysis, used to extract biological insights and describe the

underlying biological system (see Figure 2).
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Also in this context, tailored pipelines and individual tools

are available to perform each operation. Toolboxes, such as

Scanpy (Wolf et al., 2018), SCell (Diaz et al., 2016), Seurat

(Hao et al., 2021) and scater (McCarthy et al., 2017) allow to

complete multiple tasks bypassing problems related to data

format conversions, making the analysis simpler. On the other

hand, it is important to remember that it is difficult for a tool with

many functions to continue to represent the state of the art in all

of them.

In this perspective, we will present an overview of the

computational workflow, arguing the tools available to

proceed in each step (see Table 2).

2.2.1.1 Quality control

Before analyzing the expression matrix, we must assess the

uniqueness of each barcode and cell viability. To this end, it is

important to keep in mind that some droplets might contain

more than 1 cell or no cell at all, making it a doublet, multiplet or

an empty droplet. Furthermore, cells can be dying or damaged

during isolation, misrepresenting the sample composition. So, we

need to filter out them.

A possible solution is to identify these cells by evaluating

three aspects of the data: the number of counts per cell/barcode

(count depth), the number of genes per cell/barcode, and the

fraction of counts from mitochondrial genes per cell/barcode.

The thresholds for these covariates are arbitrary based on the

general characteristics of the data itself, but they allow us to filter

out cells with low count depths, few detected genes and/or high

fraction of mitochondrial counts, as those are considered

damaged cells, and at the same time they allow to filter out

cells with too high counts which are indicative of doublets or

multiplets (Ilicic et al., 2016).

However, a misinterpretation of these covariates could lead to

wrong filtering, since in some cases a deviation in one of these values

may be related to a particular cell condition, such as heavy respiration

(high mitochondrial counts), quiescence (low counts, few genes) and

a larger size (high counts). Therefore, they should be considered

jointly when univariate thresholding decisions are made, and these

thresholds should be set as permissive as possible to avoid filtering

out viable cell populations unintentionally.

For doublet detection, more precise methods were developed

(Xiong et al., 2022). For instance, scrublet (Wolock et al., 2019) is

able to discern “embedded” (same cell type) from “neotypic”

(different cell types) doublets, assuming that among all observed

transcriptomes, multiplets are relatively rare events and that all

cell states contributing to doublets are also present as single cells

elsewhere in the data.

Quality control can also include a gene filtering step, since

genes expressed in few cells are non-informative of the cellular

heterogeneity. The threshold is again arbitrary, but in principle it

should scale with the number of cells in the dataset and the

intended downstream analysis, because, based on that choice, for

example, it could limiti the identification of small clusters that

might actually carry valuable information about less represented

cell population.

2.2.1.2 Normalization

Bymeans of quality control we removed sources of unwanted

and inaccurate information. However, the dataset is still affected

by multiple biases due to technical and biological variability.

Sources responsible for such events could be, for example,

capture efficiency, amplification and incomplete library

sequencing. The consequence is an alteration in the counts

which make cells incomparable (Macosko et al., 2015).

TABLE 1 Raw data processing tools.

Name Alignment QC Count CC PL References

Pipelines CellRanger x x x x R/Python Zheng et al. (2017)

UMI-tools x x x x Python Smith et al. (2017)

scPipe x x x x C++/R Tian et al. (2018)

zUMIs x x x x R/Perl Parekh et al. (2018)

dropEst x x x x C++ Petukhov et al. (2018)

Optimus x x x x Python/C++

Tools STAR x x x x C/C++ Dobin et al. (2013)

HISAT2 x - - - C/C++ Kim et al. (2015)

kallisto - - x - C/C++ Bray et al. (2016)

FastQC - x - - Java

HTSeq - x x - Python Putri et al. (2022)

featureCount - - x - C Liao et al. (2014)

EmptyDrops - - - x R Lun et al. (2019)

QC, quality check; CC, cell calling; PL, programming language.
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Normalization addresses this issue by e.g., scaling count data

to obtain correct relative gene expression abundances between

cells. Available methods can be linear or non-linear: a linear

approach involves the estimation of size factors based on a linear

regression over genes, while non-linear methods usually apply

parametric modelling on count data and correlate technical and

biological sources of variability to correct both (Lytal et al., 2020).

The most common normalization approach is the count

depth scaling by “counts per million” (CPM), which operates

by dividing gene counts by the total number of mapped reads per

sample and multiplying by 1 × 106. CPM falls within linear global

scaling normalization methods and assumes that all cells in the

dataset initially contained an equal number of mRNA molecules

(106) and count depth differences arise only due to sampling.

Variations of this method scale the size factors with different

factors of 10, or by the median count depth per cell in the dataset.

Tools such as scran (Lun et al., 2016b) and Scanpy implement

extensions of CPM approach. The former was proven to perform

better than others in order to proceed with differential expression

(DE) analysis (Vieth et al., 2019).

FIGURE 2
Overview of the workflow. The count matrix undergo preprocessing and expression analysis. Boxes are ordered according data analysis flow.
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For datasets with strong batch effects, non-linear methods

were proven to be more reliable, particularly for plate-based

scRNA-seq data, usually affected by batch effect between plates

(Svensson et al., 2017).

For full-length sequencing protocols, methods which

consider the gene length are more suitable. The most

common is “transcripts per million” method (TPM),

implemented, for example, in the bioinfokit

toolbox (http://doi.org/10.5281/zenodo.3698145) (Putri

et al., 2022).

Another crucial factor for normalization is the presence of

synthetic spike-ins or UMIs as a means to correct for

amplification bias. By adding known concentrations of

external transcripts, called spike-ins, it is possible to evaluate

the presence of technical artifacts, looking for differences

between their observed and expected expression. By

calculating a cell-specific factor that adjusts for the differences,

and by applying that factor to endogenous genes, normalized

expression estimates can be obtained. In spite of the promise,

there are many challenges in getting spike-ins to work well, which

TABLE 2 Analysis tools.

Preprocessing Expression analysis PL

Name QC N BC DR V C DE TI References

Pipelines CellRanger x x x x x x x - R/Python Zheng et al. (2017)

Scanpy x x x x x x x x Python Wolf et al. (2018)

Seurat x x x x x x x - R Hao et al. (2021)

SCell x x x x x x x x Matlab Diaz et al. (2016)

scater x x x x x x x x R McCarthy et al. (2017)

Pagoda2 x x x x x x x - R Lopez et al. (2018)

Tools Doublet Finder x - - - - - - - R McGinnis et al. (2019)

Scrublet x - - - - - - - Python Wolock et al. (2019)

scds x - - - - - - - R Bais and Kostka (2020)

scran x x - - - - - - R Bray et al. (2016)

SCnorm - x - - - - - - R

bioinfokit - x - - - - - - R Putri et al. (2022)

ComBat - - x - - - - - R Johnson et al. (2007)

mnnCorrect - - x - - - - - R Haghverdi et al. (2018)

Harmony - - x - - - - - R Korsunsky et al. (2019)

BBKNN - - x - - - - - Python Polański et al. (2020)

SAUCIE - - x x x x - - Python Amodio et al. (2019)

scVI - - x x - - x - Python Boyeau et al. (2019)

PCA - - - x - - - - Python Pedregosa et al. (2011)

t-SNE - - - x x - - - Python/R Van der Maaten and
Hinton (2008)

UMAP - - - x x - - - Python/R McInnes et al. (2018)

Louvain - - - - - x - - Python/R Blondel et al. (2008)

Leiden - - - - - x - - Python/R Traag et al. (2019)

MAST - - - - - - x - R Finak et al. (2015)

scCODE - - - - - - x - R Zou et al. (2022)

Slingshot - - - - - - - x R Street et al. (2018)

DPT - - - - - - - x Python Haghverdi et al. (2016)

Whishbone - x - x x - x x Python Setty et al. (2016)

Monocle2 - x x x x x x x R Trapnell et al. (2014)

Monocle3 - x x x x x x x R Cao et al. (2019)

velocyto - x x x x x x x Python/R La Manno et al. (2018)

scVelo - x x x x x x x Python Bergen et al. (2020)

QC, quality check; N, normalization; BC, batch correction; DR, dimensionality reduction; V, visualization; C, clustering; DE, differential expression; TI, trajectory inference; PL,

programming language.
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can result in inconsistent detections (Grün et al., 2014). Contrary

to spike-ins, UMIs are easier to handle since they are attached to

individual transcripts prior to PCR, making each molecule

unique and allowing an absolute molecular count (Kivioja

et al., 2011).

Also, genes can be normalized to make them comparable

between cells. Gene counts can be scaled to have a zero mean and

a unit variance (z-score), making genes equally weighted. The

scaling is currently not a routine because sometimes it could be

useful to give genes the same weight and sometimes not, due to

the effect produced by an expression magnitude difference.

Normalized data should be log (x+1)-transformed for use

with following analysis methods that assume data are normally

distributed. Three main effects derive from this transformation:

log values represent log fold changes (unit to measure

expression), they become normally distributed, reducing the

skewness of the data and finally, the mean-variance

relationship typical of single cell data is mitigated (Brennecke

et al., 2013).

2.2.1.3 Batch Correction

Through the normalization, we mitigated the sources of

technical variability responsible for gene counts alterations.

However, the dataset may still contains unwanted signals of

technical and biological nature. In the latter category falls for e.g.,

the cell cycle effect, while in the former, the batch effect deriving

from different experimental protocols or/and different plates.

In order to get rid of these biases, it is possible to proceed with

data and batch correction. Currently, several tools can

accomplish these tasks with different approaches (Chu et al.,

2022). For example, in development-oriented studies regressing

out the cell cycle effect could uncover the desired biological

signals (Vento-Tormo et al., 2018; Büttner et al., 2019). To this

end, methods such as Scanpy and Seurat implement functions to

score the cell cycle phases and regress linearly their biological

effect. Alternatively, tailored tools based on complex models, like

f-scLVM (Buettner et al., 2017), are available. Sometimes, also the

count bias produced by differences in cell size, if not enough

corrected through normalization, could be further mitigated to

emphasize development-related signals. In this situation,

regressing both covariates at the same time could be the best

solution to account for dependence between them.

Correcting for biological biases, however, it is not always

necessary or useful, since they can be avoided through pondered

experimental design or because they can relate to the biological

process of interest. The same observation is in part valid also for those

of technical nature. In fact, even in this case a clever experimental

design allows to reduce their influence but, if present, they have no

correlationwith the biological signals, so theymust bemitigated. This

process, named batch correction, can be conducted between samples

and cells of the same experiment through linear models, or among

different datasets derived from multiple experimental settings

through non-linear models.

One of the most common linear methods is ComBat

(Johnson et al., 2007) which take into account the batch effect

on mean and variance of the dataset, performing very well in

most settings (Büttner et al., 2019).

If the differences in the datasets are more pronounced, linear

models could confound the intra- and inter-technical and

biological biases, and in this circumstances non-linear models

implemented in tools such as Canonical Correlation Analysis

(CCA) (Butler et al., 2018), Mutual Nearest Neighbors (MNN)

(Haghverdi et al., 2018), Batch balanced kNN (BBKNN)

(Polański et al., 2020) and Harmony (Korsunsky et al., 2019)

have been proved to overcome the same issue and smooth out

unwanted and misleading differences.

2.2.1.4 Imputation

The information stored in a single cell dataset has a very

sparse nature. In mathematical terms, it translates into a matrix

full of zeros. Many normalization approaches do not remove

them, assuming that they represent missing values to account in

calculations. However, reducing their number could reduce the

noise, improving the estimation of gene-gene correlations (van

Dijk et al., 2018).

Currently, many tools are available to achieve this task, and

the best performing ones are mainly based on deep learning

algorithms (Bao et al., 2022). In this category fall DeepImpute

(Arisdakessian et al., 2019) and Deep Count Autoencoder

network (DCA) (Eraslan et al., 2019). The first one uses

highly correlated genes of the target genes to impute the

missing values, while the second can capture the nonlinear

gene-gene correlation. Their application proved to improve

the performance in cell clustering, DE analysis and trajectory

inference.

However, when applying expression recovery, one should

take into consideration that no method is perfect. Thus, any

method may over- or under-correct noise in the data. Indeed,

false correlation signals have been reported as a result of

expression recovery (Andrews and Hemberg, 2018).

In light of this, it is hard to assess if imputation will succeed in

a particular application. A reasonable approach would be to

impute for visualization and avoid it to generate hypothesis

during exploratory data analysis.

2.2.1.5 Feature selection and dimensionality reduction

After proceeding with the “data cleaning” steps, a human

scRNA-seq dataset can still contain up to 15,000 genes. Such a big

and multidimensional object is, however, hard to manage and

visualize. For these reasons, it is subjected to dimensionality

reduction.

To go through this process it is important to keep in mind

that many residual genes do not represent the data variability,

which is a key feature to explore the heterogeneity of the sample,

and so that we can consider them uninformative and ignorable.

This process is called feature selection. A common way to reach
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this result is to look for highly variable genes (HVGs) by binning

them by their mean expression and preserving the ones with the

highest mean-to-variance ratio in each bin (Brennecke et al.,

2013). Methods such as Scanpy and Cell Ranger implement

functions to define the HVGs starting from log-transformed

data, while others like Seurat work on the raw counts.

Typically, between 1,000 and 5,000 HVGs are selected to

proceed with robust downstream analysis (Klein et al., 2015).

Their identification is crucial also to proceed with the

following dimensionality reduction. Indeed, common methods

like the Principal Component Analysis (PCA) (Pearson, 1901;

Pedregosa et al., 2011) benefit from using HVGs to define the

reduced components used to summarize the dataset features in a

low-dimensional space. This is possible through a linear

approach which transforms a set of correlated variables into a

smaller number of uncorrelated variables, called principal

components (PCs), preserving as much of the data’s variation

as possible. To determine the N most informative PCs, “elbow”

heuristics or the permutation-test-based jackstraw method can

be used (Chung and Storey, 2015; Macosko et al., 2015).

The PCA is a technique that comes from the field of linear

algebra and can be used as a data preparation technique to create

a projection of a dataset prior to fitting a model. Indeed, for

complex datasets whose structure could not be captured by two

or three PCs, non-linear combination methods such as

t-distributed stochastic neighbour embedding (t-SNE) (Van

der Maaten and Hinton, 2008) and Uniform Approximation

and Projection (UMAP) (McInnes et al., 2018) perform better,

taking advantage of PCA data.

2.2.1.6 Visualization and clustering

Non-linear methods are commonly used to create a two-

dimensional plot summarizing an scRNA-seq dataset from a

larger number of significant components. t-SNE and UMAP

are two typical solutions to achieve this task and are

implemented in almost all scRNA-seq data processing

toolbox. t-SNE takes a high dimensional data set and

reduces it to a low dimensional graph focusing on

capturing local similarity at the expense of global

structure. UMAP, instead, tends to favour fully connected

representations of the dataset using a cell-cell nearest-

neighbour network to then estimates a low dimensional

embedding of the data. The latter is largely replacing the

former, although different representations could give

different insights. In this perspective, it is good to know

that also diffusion maps and partition-based methods

exists to visualize complex data in different manners and

for different applications, e.g., diffusion maps are good to

make inferences in trajectory analyses, while partition-based

methods approximate the topology of the data using clusters

to produce a simplified “coarse-grain” visualization of the

data, useful with very large datasets.

The clustering is commonly performed with the Louvain

(Blondel et al., 2008) and the Leiden (Traag et al., 2019)

algorithms.

The aim of this step is to define groups of cells with similar

expression profiles, because these groups could represent cell

types, intermediate cell states or other interesting aspects of

the data.

Both methods are based on K-Nearest Neighbour approach

(KNN graph) where cells are represented as nodes in a graph,

each connected to its K most similar cells, obtained using

Euclidean distances on the PC-reduced expression space, so

that densely sampled regions of expression space will be

represented as densely connected regions in the plot (Zappia

and Oshlack, 2018).

Clustering can also be performed at multiple resolutions to

inspect data at different levels of detail (i.e., more clusters of

smaller dimensions). Moreover, the resulting groups can be

iteratively subclustered to allow the identification of cell states

captured within the same cluster.

2.2.1.7 Cluster annotation

Once clusters have been defined, it is time to identify the

represented cell populations. This can be done by defining their

gene signatures through the identification of marker genes. To

this end, DE testings are usually applied between two groups

representing the cluster and the rest of the dataset. Next, simple

statistical tests such as the Wilcoxon rank-sum test or the t-test

are used to rank the derived genes by their difference in

expression. The top-ranked genes from the respective test

statistic are regarded as marker genes.

Clusters can be also annotated by comparing marker genes

from the dataset with those from reference datasets via

enrichment tests, the Jaccard index or other overlap statistics.

Indeed, reference databases such as the mouse brain atlas (Zeisel

et al., 2018) or the Human Cell Atlas (HCA) (Regev et al., 2017)

are increasingly becoming available, facilitating cell identity

annotation. Also automated methods like single cell NET

(Tan and Cahan, 2019) are available to accomplish this step

and speedup the annotation process, although a manual revision

is always suggested due to the plasticity of cell states which

sometimes could be confused with others.

2.2.1.8 Trajectory analysis and metastable states

Cell clustering sometimes is not the appropriate strategy to

study a dataset. Many biological processes, characterizing a

dataset, cannot be described through discrete classification but

rather in a more continuous way (Tanay and Regev, 2017). To

achieve this result we need to apply gene dynamic models capable

of ordering cells along an axis defining the time process, also

known as pseudotime. This type of approach is commonly used

to study processes such as development and differentiation, and

it is called Trajectory analysis.
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Several methods are currently available to infer trajectories of

increasing complexity, from simple linear or bifurcating paths to

complex graphs, trees, or more intricated trajectories.

Usually, these algorithms take the reduced or corrected data

as input in order to minimize technical variation and capture

only the biological one, taking advantage also of HVGs, which are

used to define the consecutive states derived from transcriptional

distances from a root cell. None of the available methods has been

shown to overperform the others for all kinds of trajectories,

although different approaches benefit different ends, as shown in

previous comparative studies (Saelens et al., 2019).

For instance, the tool Slingshot (Street et al., 2018) proved to

perform better when inferring linear or multifurcating

trajectories, contrary to the current state-of-the-art, Monocle2

(Trapnell et al., 2014), which gives best results in more complex

and branched situations, along with its later version Monocle3

(Cao et al., 2019) and the Diffusion Pseudotimes (DPT)

implemented in Scanpy (Haghverdi et al., 2016).

The aforementioned python toolbox offers also the chance to

reconcile the information derived from clustering and trajectory

inference, by means of the Partition-based graph abstraction

(PAGA) algorithm (Wolf et al., 2019). In detail, using a statistical

model for cell cluster interactions, PAGA places an edge between

cluster nodes whose cells are more similar than expected,

generating a map representing the static and dynamic nature

of the data.

As trajectory inference deals with the way the cells in our

sample change according to a pseudotime, it becomes possible to

define the “preferential” transcriptomic states of the process

evaluating the region density. Dense regions of cells represent

the so called “metastable states” which can be visualized through

histograms.

Unfortunately, few of the aforementioned methods include

an evaluation of uncertainty in their model, so the predicted

results should be confirmed with alternative approaches to avoid

method bias (Griffiths et al., 2018). A common way to achieve

this goal is to infer time dynamics by measuring relative

abundances of exonic and intronic reads, representing spliced

and unspliced transcripts. The change of their abundance,

termed RNA velocity, allows to infer the direction in which

each cell is moving in expression space along with an estimate of

the rate of change, unlocking new ways to study cellular

dynamics by granting access to not only the descriptive state

of a cell, but also to its direction and speed of movement.

Currently, two modeling approaches exist, the originally

proposed “steady-state” model adopted by velocyto (La

Manno et al., 2018) and the subsequently extended dynamical

model implemented in scVelo (Bergen et al., 2020). The former

estimates velocities as the deviation of the observed ratio of

unspliced to spliced mRNA from an inferred steady-state ratio,

by leading sometimes to predicition errors if the central

assumptions of a common splicing rate and the observation of

the full splicing dynamics with steady-state mRNA levels are

violated. The latter overcomes these limitations by generalizing

velocity estimation to transient systems through the application

of a likelihood-based dynamical model which solves the full

transcriptional dynamics of splicing kinetics.

2.2.1.9 Gene expression analysis

Once the nature of each cluster is assessed, focusing on gene

expression can give us a much broader idea on processes and

mechanisms that differ among them. In this perspective, tools

such as DE analysis and gene set enrichment analysis (GSEA) can

help us investigate the molecular variability deriving from

different experimental (medical treatment) or biological

(different cell lines) conditions.

DE methods originate with bulk sequencing data analysis,

where a few samples were compared to understand the molecular

consequences of different experimental conditions. In single cell

settings, the variables at stake increase as the number of cells

under examination increases, due to cell-to-cell variability and

biases such as dropout (Vallejos et al., 2017; Hicks et al., 2018).

Tailored tools like MAST (Finak et al., 2015) or scCODE (Zou

et al., 2022) are available to handle these features and performDE

on large single cell datasets in reasonable times, however, bulk

DE tools, like DESeq2 (Love et al., 2014) and EdgeR (Robinson

et al., 2010), have been proved to outperform some single cell

counterparts if properly calibrated, but taking long times (Van

den Berge et al., 2018). Uncorrected data are preferred for these

applications, so it is crucial to account for confounding factors to

perform a robust estimation of differentially expressed genes.

The testing result consists in a long list of genes differentially

expressed between two or more conditions, sometimes hard to

interpret in a meaningful way. To overcome this limitation, we

can analyze them by grouping into sets based on shared

characteristics, e.g., biological process and matabolic pathway.

This approach, called GSEA, tests whether these characteristics

are overrepresented in the candidate gene list and relies on the

usage of curated databases such as the Gene Ontology

(Ashburner et al., 2000; The Gene Ontology Consortium,

2017), KEGG (Kanehisa et al., 2017), String (https://string-db.

org) and Reactome (Gillespie et al., 2022). Tools like gseapy

(https://gseapy.readthedocs.io/en/latest/) and biomaRt (Durinck

et al., 2009) are available to accomplish this task throughmultiple

tests, querying the mentioned databases. Furthermore, novel

algorithms (Vento-Tormo et al., 2018) allowed to proceed

with paired ligand-receptor analyses which inspect the

interaction between cell clusters.

2.3 Experimental design considerations

scRNA-seq has opened new avenues for the characterization

of heterogeneity in a large variety of cellular systems, allowing to

obtain transcriptome-wide data from individual cells. Although

gene-expression profiling at single cell level has revealed an
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unprecedented variety of cell types and subpopulations that were

invisible with traditional experimental techniques, it introduced

new challenges due to the intrinsic nature of the data.

Indeed, scRNA-seq datasets show increased variability,

complex expression distributions and an abundance of zeros

compared to those produced in “bulk” experiments, making

challenging to create broadly applicable experimental designs.

In light of this, each experiment requires the user to make

informed decisions before to proceed with a pondered design,

which have to satisfy three principles formalized by R. A. Fisher

in 1935: replication, randomization and blocking (Box, 1980).

To prepare an experiment, respecting such principles, it is

good to start with a balanced block design in which samples

collected from multiple conditions are evenly distributed across

plates and lanes of the sequencer in order to reduce technical

variation and not confound it with the biological one (Baran-

Gale et al., 2018). On the opposite, processing samples separately,

isolating cells from each sample onto separate plates (one for

sample) and sequencing them on separate lanes (one for sample),

produces a confounded design affected by additional sources of

technical variation associated with batch preparation of libraries

or sequencing. In this context, balanced design allow to bypass

the batch correction step in the computational analysis, reducing

computational times and user intervention on data.

Experimental design considerations will also be affected by

the various protocols and platforms available for scRNA-seq. For

instance, full-length capture or 3′ methods offer different way to

explore sample characteristics.

As example, in an observational study setting, working with

high numbers of cells could be the best solution to get insights on

the transcriptional heterogeneity of the sample. To this aim, 3′
methods represent the best solution allowing to capture higher

amounts of cells (100–1,00,000) and quantify their transcriptomes

in a more simple and precise way, thanks to the usage of UMIs. On

the other hand, to conduct more “in depth” observations or study

genetic alterations (SNPs, structural variants) in the transcribed

fraction, full-length approaches are more well suited, benefiting

from a higher capture efficiency and a more precise information,

but at cost of a minor number of cells (96–384). Therefore, more

reads will be required for more refined tasks (Pollen et al., 2014;Wu

et al., 2014), such as fully characterizing transcript structure,

estimating the expression of rare isoforms, or distinguishing cells

on the basis of subtle differences, while fewer reads but larger cell

numbers may be preferred when mapping out a large population,

searching for rare but distinct cell types, or pooling cells in silico to

obtain average gene-expression clusters. According to this, if we

design an experiment to search for a rare cell population, we have to

take into account the number of cells that need to be sequenced to

get such a population. This parameter can be estimated based on

the expected heterogeneity of all cells in a sample, the minimum

frequency expected of the rare cell type within the sample and the

minimum number of cells of each type desired in the resulting

data set.

In case no prior knowledge about the heterogeneity of the cell

population is available, a practical solution is to perform the

study with a high cell number and lower sequencing depth, and

then perform pre-purification of the interested cells by

fluorescence-activated cell sorting (FACS) with in-depth

sequencing.

Another relevant difference between the two protocols relates

to the UMIs usage. Indeed, full-length approaches make the

inclusion of UMIs difficult, as each full-length transcript is

fragmented following reverse transcription, and each fragment

would need to be linked to the single UMI for that transcript. On

the other hand, 3′ methods, like the 10x Genomics system,

include a 10/12 bp UMI in each read at the beginning of the

protocol, facilitating the molecule counting and the evaluation of

sequencing saturation through the analysis of UMI duplicates.

Moreover, the use of UMI has an impact on normalization

procedure, since they are a consistent means to correct for

amplification bias.Overall, several factors need to be

considered before choosing a method for scRNA-seq.

Whatever the design, it is always beneficial to record and

retain information on as many factors as possible to facilitate

downstream diagnostics.

3 Biomedical applications

Modern cellular and molecular biology knowledge is largely

derived from RNA-seq experiments which allowed to understand

the complexity of the dynamics responsible for metabolic

alterations, fueling much discovery and innovation in the field

of medicine over recent years.

The evolution of such techniques was driven by the

development of protocols and devices capable of extracting

transcriptomic information from an ever increasing number

of single cells, laying the groundwork for heterogeneity-

oriented studies.

The chance to dissect a sample in its composing cell lines

opened up new perspectives in clinical studies oriented to the

discovery of rare cell populations involved in the onset and

evolution of diseases such as tumors. A proof of this assertion

comes from Ramsköld et al., in 2012 and Patel et al., in 2014,

which studied, for the first time (Ramsköld et al., 2012; Patel

et al., 2014), the compositional architecture of melanoma and

glioblastoma samples at single cell level. In the wake of them, an

increasing number of studies and researchers have started

exploiting the technique to successfully characterize cell

populations in a variety of tumors (Dago et al., 2014; Ting

et al., 2014; Puram et al., 2017; Zhao et al., 2020; Pal et al.,

2021; Tian et al., 2022), defining their role into the disease process

and their identity through the assignment of gene signatures

(Young et al., 2018; Peired et al., 2020). Other contributions to

the field comes from the integration of scRNA-seq and Copy

Number Variant (CNV) detection. Tirosh et al., in 2016,
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successfully applied this technique to get new insights on intra-

and interindividual, spatial, functional and genomic

heterogeneity in melanoma cells, as well as details related to

the tumor microenvironment and the cells populating it,

validating the presence of a dormant drug-resistant population

(Tirosh et al., 2016).

Similarly, in 2018, Fan et al. took advantage of CNVs and

Loss of Heterozygosis (LOH) to identify and characterize the

transcriptional programs which drive the distinct genetic

subclones in a tumor sample (Fan et al., 2018).

Also in the neurological field, the scRNA-seq succeeded,

revealing the heterogenous nature of brain cells involved in

Alzheimer’s disease and the different outcomes related to their

different gene expression patterns (Mathys et al., 2019). In this

contest, Lodato et al. exploited single cell sequencing to identify

Single Nucleotide Variants (SNVs) in neuronal cells,

demonstrating how somatic mutations can be used to

reconstruct the developmental lineage of neurons, which live

for decades in a postmitotic state accumulating mutations

responsible for the creation of nested lineage trees and the

relative polyclonal architecture (Lodato et al., 2015).

While, for blood, liver and heart samples, the introduction of

trajectory analyses have provided new insights on differentiation

processes, allowing to trace the fate of progenitor cells revealing

the plasticity of their transcriptome through the identification of

new transitional cell states (Jia et al., 2018; Popescu et al., 2019;

Liang et al., 2022). However, the regulatory networks driving

these processes are more complex and characterized by

confounding factors like redundancy and nonlinear cross talk

between pathways, e.g., developmental and signaling factors in

the immune system. An unbiased approach to elucidate such a

circuits and their alterations are the perturbation studies, which,

by making use of the massive parallelism of single cell

technologies merged with CRISPR-mediated editing, allow to

knockout multiple target genes simultaneously producing

different cell responses useful to clarify the function of

multiple factors and their interactions in tens of thousands of

cells (Adamson et al., 2016; Dixit et al., 2016; Jaitin et al., 2016).

To extend this application to the analysis of multiple unrelated

individuals, new methods that harness natural genetic variation

were developed. Tools like demuxlet (Kang et al., 2018)

determine the sample identity of each droplet, using

genotyping data (SNPs), to characterize inter-individual

variation and cell-type-specific genetic control of gene

expression. Similarly, Van der Wijst et al. used SNP data to

characterize alterations of gene co-expression pathways, focusing

also on celltype-specific expression quantitative trait loci (eQTLs)

(van der Wijst et al., 2018), promoting a new way to identify

genetic variants that impact regulatory networks.

Another hot topic is damage recovery, since a better

understanding of these mechanisms could allow us to identify

the players involved in success or fail of such processes, offering

new hints in the development of better diagnostic tools,

prognostic biomarkers and signaling pathways amenable to

therapeutic targeting (Kirita et al., 2019; Melica et al., 2022).

4 Future perspectives and conclusion

Single cell RNA sequencing was proven to be a cutting-edge

technology in life sciences over the past decade. This field is

developing remarkably rapidly and numerous easily accessible

commercial solutions capable of characterizing hundreds of

thousands of cells in parallel in reasonable times at

competitive costs are currently available, making scRNA-seq

much better suited for biomedical research and for clinical

applications.

The spread of these devices fueled much discovery and

innovation also in the computational biology field, promoting

the development of novel approaches to extract information

from the data produced by such technologies, and algorithms

capable of analyzing them, scaling computational times more

favorably with the dataset size. Moreover, along with RNA

profiling, single cell technologies are currently employed to

acquire information about multiple types of molecules in

parallel, promoting the so-called “multimodal profiling”. In

fact, today it is possible to integrate information related to

chromatin accessibility (Cusanovich et al., 2015),

methylation state (Angermueller et al., 2016), cell-surface

proteins (Stoeckius et al., 2017), to reveal the full-scale

complexity of biological systems. Also, the developmental

trajectories can be studied in a more precise way by matching

the single cell technologies with CRISPR-Cas9 based genome

editing. Methods such as scGESTALT (Raj et al., 2018) and

LINNAEUS (Spanjaard et al., 2018) allow to simultaneously

characterize molecular identities and lineage histories of

thousands of cells during development and disease

through the analysis of lineage barcodes, generated by

genome editing.

However, high-throughput techniques come with the

expense of decreased molecule capture rates, and future

methods need to better balance cell numbers with cell

resolution. Furthermore, with the future development of new

and better bioinformatic tools, the individual tool

recommendations presented here will require updates, yet the

general considerations regarding the stages of data processing

should remain the same.

Spatial dimension of single cell transcriptomics also

represents an exciting field because, although novel and

more precise technologies are becoming available (Eng

et al., 2019), it presents several common challenges that

limit its applications, including non-single cell resolution,

relatively low sensitivity, high cost and labor-intensive

process.

In conclusion, we have presented a brief and concise

overview of single cell RNA sequencing technology and its
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applications. The continuous development of the technology will

broaden its adoption in clinical and personalized medicine.
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