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The Reference Transcriptomic Dataset (RTD) is an accurate and comprehensive

collection of transcripts originating from a given organism. It holds the key to

precise transcript quantification and downstream analysis of differential

expressions and regulations. Currently, transcriptome annotations for most

crop plants are far from complete. For example, Oryza sativa indica (O. sativa

indica) is reported to have 40,759 transcripts in the Ensembl database without

alternative transcript isoforms and alternative splicing (AS) events. To generate a

high-quality RTD, we conducted RNA sequencing of rice leaf samples collected

at various time points during Rhizoctonia solani infection. The obtained reads

were analyzed by adopting the recently developed computational analysis

pipeline to assemble the RTD with increased transcript and AS diversity for

O. sativa indica (IndicaRTD). After stringent quality filtering, the newly

constructed transcriptome annotation was comprised of 122,968 non-

redundant transcripts from 53,695 genes. This study identified many novel

transcripts compared to Ensembl deposited data that are important for

regulating molecular and physiological processes in the plant system.

Currently, the assembled IndicaRTD must allow fast quantification of

transcript and gene expression with high precision.
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1 Introduction

Rice is an essential food crop with more than 90% of the world’s rice grown and

consumed in the Asia-Pacific region (Papademetriou et al., 2000). Moreover, global rice

demand is anticipated to rise by more than 700 million tons by 2025 (Papademetriou

et al., 2000). Because of the rise in the world’s population, there is a great demand for a

stable food supply. Other challenging factors include pressure on the rice farmlands from

urbanization, climate change, and competition from other high-value agriculture that

does not enhance rice productivity. Therefore, this global demand needs to be met by

increasing rice production in proportion to the growth of the population.
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Recently, alternative splicing (AS) emerged as one of the key

regulatory mechanisms in the eukaryotic system (Wang S. et al.,

2022; Wright et al., 2022). AS plays a significant role in the

development and response to biotic and abiotic stressors in

plants and therefore provides key revenue to exploit and

increase rice production (Calixto et al., 2018; Filichkin et al.,

2018; James et al., 2018; Laloum et al., 2018; Zhang G. et al., 2019;

Dantas et al., 2019; Qin et al., 2020).

AS allows the production of multiple transcripts from a single

genomic locus, which increases transcriptome and proteome

diversity (Syed et al., 2012). Events such as exon skipping,

intron-retention (IR), alternative donor sites or acceptor sites

or their combinations impact the final transcript structure

(Reddy et al., 2013; Zhang et al., 2017a). Additionally, an

alternative transcription start site (TSS) or polyadenylation

(poly-A) site (PAS) may result in either an additional

transcript or premature termination generating transcript

variants (Sherstnev et al., 2012; Morton et al., 2014). Thus, all

variant transcripts may not be functional mRNAs. Even though

all of the transcript variants may not encode a functional protein,

there should be differential expression at the cellular level. Varied

expression of AS transcript variants may influence molecular

events by acting as miRNAs sponges, through protein

sequestration, or by producing anti-sense RNAs. Another

possibility is that AS variants may be subjected to non-sense-

mediated mRNA decay (Kalyna et al., 2012; Schweingruber et al.,

2013; Hug et al., 2016; Rigo et al., 2019; Raxwal et al., 2020).

Considering the possible role in the molecular event, it has been

shown that AS impacts various developments and responses to

biotic stresses. Recent studies show a massive and rapid AS

change that governs the physiological and survival response of

plants in response to low temperatures (James et al., 2012; Calixto

et al., 2018; James et al., 2018). AS regulations are likely also

involved in responses to biotic stresses (Zhang H. et al., 2019; Qin

et al., 2020). In the O. sativa indica variety, it was found that the

OsGBF1 splice variant is upregulated upon salinity stress

(Ashwini et al., 2018). AS transcripts of tissue-specific Ser/

Arg-rich (SR) genes show varied expression levels in different

hormones and stress treatments (Zhang et al., 2013).

OsNPF6.5 nitrate-transporter gene splice variant NRT1.1B is

also associated with a higher nitrate uptake mechanism (Hu et al.,

2015), and OsFe-SOD isoforms are upregulated in both

vegetative and reproductive tissues by light induction (Feng

et al., 2006).

Advancements in the sequencing technology and tool

development have helped construct high-quality, more

diverse, and high-confidence transcript references in

Arabidopsis thaliana, AtRTD, and AtRTD2 (Zhang et al.,

2015; Brown et al., 2017; Zhang et al., 2017b). The pipeline

for the construction of AtRTD2 includes stringent filtering

and quality control measures not only based on plant intron

and splicing characteristics to reduce the number of

transcripts with false splice junctions (SJs), but also

addressing issues such as redundancy, fragmentation, and

misannotations at the 5′ and 3′ end. A similar approach

was followed for barley for high-quality reference

transcriptome data, which achieved improved

quantification accuracy through experimental validations

(Rapazote-Flores et al., 2019).

The existing and available public transcriptome annotations

for two major rice varieties, Oryza sativa ssp. japonica and O.

sativa indica, have been deposited with 45,722 and

42,031 transcripts, respectively. The Transcriptome

ENcyclopedia Of Rice database (TENOR-db) is part of the

rice annotation project (rap-db), which is an actively updated

source for the japonica variety deposited with 23,943 full-length

protein-coding cDNAs and 9336 partial protein-coding cDNAs

(Ohyanagi et al., 2006; Kawahara et al., 2016). A total of

3.5 billion single-end sequencing raw reads with a 76 bp read

length were used to construct the TENOR-db.

TOPHAT2 sequence aligner (Ghosh and Chan, 2016) and

Cufflinks reference transcriptome assembly tools were used

for assembling the reads. The Ensembl deposited

transcriptome annotation for the indica variety was created

with publicly available sequence tagged sites (STSs), full-

length cDNAs, and expressed sequence tags (ESTs) (Yu et al.,

2002; Cunningham et al., 2019). However, studies have reported

AS transcripts in the indica and japonica varieties, which do not

mention the high-quality transcriptome data (Lu et al., 2010;

Zhang et al., 2010; Zhang G. et al., 2019; Schaarschmidt et al.,

2020;Wang X. et al., 2022; Hasan et al., 2022; He et al., 2022). The

approximate size of the rice diploid genome is 500 MB compared

to the 135 MB of A. thaliana, which recently reported

82,190 non-redundant transcripts from 34,212 genes in the

AtRTD2 database (db) (Brown et al., 2017; Zhang et al., 2015,

2017). These statistics show that many splicing events could be

missing in rice transcriptome datasets. By employing the novel

pipeline used for AtRTD2 construction based on the reference

genome and taking advantage of paired-end sequencing of

greater length and depth, we constructed IndicaRTD and

generated 122,968 non-redundant transcripts from

53,695 genes, which represents a significant improvement to

the current Ensembl annotation.

2 Methods

2.1 Plant material collection, RNA
extraction, and sequencing

RNA-seq data (paired-end 2 × 100 bp) were generated for

leaf tissue of O. sativa indica infected with R. solani

(BioProject ID: PRJNA725331). All plants were grown in

the greenhouse at 32 °C for 40 days before infection. Leaf

samples were collected at 12 h intervals up to 72 h post-

infection (hpi) along with control (mock-inoculated)
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samples. An RNeasy Plant Mini Kit was used for RNA

isolation (Qiagen, Hilden, Germany). RNA quality and

quantification were checked using a Nanodrop ND-1000

(Thermo Scientific, Waltham, MA, United States), Qubit

fluorometer (Thermo Scientific, Waltham, MA,

United States), and Bioanalyzer 2100 (Agilent, Santa Clara,

CA, United States). RNA samples were confirmed to have an

RNA integrity number (RIN) above 7 to proceed with library

preparation using the NEBNext mRNA library preparation kit

(New England Biolabs, Ipswich, MA, United States) according

to the manufacturer’s protocol and then followed by RNA

sequencing. A total of 18 libraries of RNA-seq runs were

obtained on the Illumina HiSeq 2500 platform (Illumina, San

Diego, CA, United States).

2.2 Quality filtration and genomemapping

tRNA-seq raw data quality filtration was performed to remove

low-quality reads and adapter sequences followed by genome

mapping to identify the known and novel SJs. RNA-seq reads of

18 libraries were quality filtered with AdapterRemoval (v2.3.0)

[--minquality 25 --adapter-listAdapter.txt] (Schubert et al., 2016).

The genome for the indica variety was downloaded from the

EnsemblPlant database (ftp://ftp.ensemblgenomes.org/pub/plants/

release-44/fasta/oryza_indica/dna/). Genome index files were

created using the STAR alignment tool (v2.7.2b), and quality

filtered reads were mapped to the genome index with a 2-pass

mapping strategy (Dobin et al., 2013; Dobin and Gingeras, 2016;

Zhang et al., 2017a). The first-pass mapping mode was performed

with the parameters --sjdbOverhang 100 --outSAMprimaryFlag

AllBestScore --outFilterMismatchNmax 2 --

outSJfilterCountTotalMin 10 5 5 5 --outSAMstrandField

intronMotif --outFilterIntronMotifs RemoveNoncanonical

--alignIntronMin 60 --alignIntronMax 6000 --

outFilterScoreMinOverLread 0 --outFilterMatchNminOverLread

0 --alignMatesGapMax 400. The novel SJs of the first-pass

mapping were used for generating the genome index files for

second-pass mapping with zero mismatches

[--outFilterMismatchNmax 0] and allowed accurate mapping

around the splice junctions and the rest of the parameters were

similar to the first-pass mapping (Supplementary Flow Chart S1).

The output file of STAR aligner (sj.out.tab) consists of

detailed information about SJ including coordinates,

overhang, the number of uniquely mapping reads crossing

the junction (column 7), and number of multi-mapping reads

crossing the junction (column 8). The SJ files of each library

from the second pass mapping were used to infer high-

confidence SJs that are well supported by the mapped

reads. To retrieve the high-confidence SJs, we considered

the following features: 1) SJs with canonical intron motif, 2)

at least one uniquely mapping read count crossing the SJ, and

3) 0 mismatch read alignment.

2.3 Assembly and merging

Three different reference-based transcriptome assemblers,

Cufflinks (v2.2.1) (Trapnell et al., 2010), StringTie2 (v2.0.1)

(Kovaka et al., 2019) and Scallop (v0.10.3) (Shao and

Kingsford, 2017) were used to assemble the reads with the

default parameters. The sorted BAM files generated from

STAR alignment were used to assemble the reads of each

library. The resulting transcripts (GTF files) for 18 libraries of

each assembler tool were merged with three different merging

tools, Cuffmerge (v2.2.1) [--min-isoform-fraction 0] (Ghosh and

Chan, 2016), StringTie2-Merge (v2.0.1) (StringtieM) [-F 0 -T 0 -f

0 -g 0] (Kovaka et al., 2019), and Taco (v0.7.3) [--gtf-expr-attr

RPKM --filter-min-expr 0 --isoform-frac 0 --max-isoforms 0]

(Niknafs et al., 2017).

2.4 Evaluation of transcriptome
annotation

We evaluated the assembled and merged transcriptome

annotation files to identify the best performance assembler

and merging tool. Exon and intron coordinates were extracted

using the transcriptome annotation GTF files generated by

three different assemblers along with three various merging

tools as mentioned in Section 2.3. Intron coordinates were

constructed using the construct_introns function from gread

R library (https://rdrr.io/github/asrinivasan-oa/gread/) (v0.

99.3).

To compare transcripts produced by different

combination tools, we generated Venn diagrams of

overlapping non-redundant transcripts by exon and intron

coordinates of each assembler with three merging tools. We

also analyzed merging tools annotation files with transcript

quantification tools such as Salmon (v1.3.0) (Patro et al.,

2017) [-i index folder -l ISR -1 fastq1 -2 fastq2 --gcBias

--seqBias --posBias --dumpEqWeights -o output] and

Kallisto (v0.46.2) (Bray et al., 2016) [-i Kallisto_index

--bias fastq file -o output file]. All 9 annotation files from

3 merging tools (Cuffmerge, StringtieM, and Taco) for

3 assemblers (Cufflinks, StringTie2, and Scallop) were used

for the transcript quantification evaluation.

2.5 Filtration and validation of
transcriptome annotation

Based on the evaluation analysis, StringtieM was used to

merge the raw assembly transcript annotations of various

assemblers. We filtered the transcripts with non-canonical and

poorly supported SJs (low abundance and short overhang length

of spliced alignment) to improve the annotation quality. We used

in-house build scripts to create the SJ database (SJdb) from STAR
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second-pass mapping output (sj.out) files. The resulting

annotation was merged using StringtieM with the Ensembl

transcriptome dataset to create IndicaRTD.

We adapted the junction coverage compatibility (JCC)

analysis (Soneson et al., 2019) for further validation of the

accuracy of the IndicaRTD. Initially, we created the

BSgenome library for the O. sativa indica genome

downloaded from the EnsemblPlant database using the

BSgenomeforge R function (Pagès, 2019). To calculate JCC

scores, we first fit a fragment-level bias model using the

fitAlpineBiasModel function of the JCC R package and a

wrapper for alpine Bioconductor package functions for

each library separately (Love et al., 2016). We used a set of

single-isoform genes with a length between 600 bp and

7,000 bp and between 500 and 10,000 assigned reads to fit

the bias model. The fragment bias model fits into the model to

predict the coverage profiles for each transcript in the

reference catalog using the predictTxCoverage function of

the JCC R package. Later, the scaleTxCoverages function of

the JCC R package was used to measure the coverage profiles

by the transcript abundance estimates extracted by the

Salmon alignment-based method to determine the

predicted number of reads covering each position in the

transcript. Also, this step extracts the sum of the predicted

number of reads for each unique junction across all

transcripts. We extracted the number of reads observed for

each junction from the STAR aligner output (SJ.out.tab) file

for each library. We also used the combineCoverages function

from the JCC R package combined with both the predicted

junction coverages from the scaleTxCoverages function and

observed junction coverages from STAR alignment. This also

provides information on transcript abundances at the gene

level and includes information about the number/fraction of

uniquely and multi-mapping reads passaging each junction.

Further calculateJCCScores function was used to estimate the

JCC scores of each gene for each library. A similar method

was followed for Ensembl RTD to calculate the JCC scores.

Density plots were generated for the JCC scores of both

IndicaRTD and Ensembl RTD.

We also performed the validation of IndicaRTD compared with

Ensembl RTD with two transcript quantification tools such as

Salmon (v1.3.0) (Patro et al., 2017) [-i index folder -l ISR

-1 fastq1 -2 fastq2 --gcBias --seqBias --posBias --dumpEqWeights

-o output] and Kallisto (v0.46.2) (Bray et al., 2016) [-i kallisto_index

--bias fastq file -o output file]. Both Salmon and Kallisto tools were

developed for the fast and accurate transcript quantification

compared to other currently available quantification tools such as

cufflinks and TopHat. (Zhang et al., 2017b; Sarantopoulou et al.,

2021) (https://learn.gencore.bio.nyu.edu/rna-seq-analysis/salmon-

kallisto-rapid-transcript-quantification-for-rna-seq-data/).

Furthermore, we listed the aligned read and its transcript percentages

for each of the 18 libraries for the transcriptome annotation for both

the Salmon and Kallisto tools.

3 Results

3.1 Quality filtration and genome mapping

After quality filtration was performed with a minimum

Phred score of 25 and removal of adapter contamination from

raw reads, ~100% reads were retained in each library with

98 nt–99 nt average read length at each end (Supplementary

Table S1). Approximately 88–94% of filtered reads were

shown to be uniquely mapped to the indica genome

(Supplementary Tables S2, S3). STAR first-pass mapping

generated a total of 317,401 SJs. Among them, 213,128 are

shown as unannotated novel canonical SJs with at least one

uniquely mapped read count along with 101,766 annotated

canonical SJs with at least one uniquely mapped read count

from Ensembl, and the rest of the 2,507 SJs have multi-mapped

reads. During STAR second-pass mapping, a total of 306,789 SJs

were generated. Among them, 1,862 were shown as unannotated

novel canonical SJs with at least one uniquely mapped read

count, 300,875 were shown as annotated canonical SJs with at

least one uniquely mapped read count from Ensembl, and first-

pass mapping SJs and the rest of the 4,052 SJs had multi-mapped

reads (Table 1). Filtering based on the canonical SJ intron

sequence motifs with at least one uniquely mapped read count

crossing the SJ and 0 mismatch read alignment generates

302,737 unique SJs. The number of SJs for each canonical

splice site was extracted (Supplementary Table S4). GT/AG

and its equivalent CT/AC splice signals are found in 296,962

(~98%) SJs compared to other canonical splice signals GC/AG

and CT/GC (5,473), AT/AC, and GT/AT (302). A total of 82.77%

of total SJs are found in at least two libraries (Supplementary

Table S5).

3.2 Assembly and merging

The number of genes and transcripts were calculated and

plotted for each library generated by the three different reference-

based transcriptome assemblers such as Cufflinks, StringTie2,

and Scallop (Supplementary Figures S1, S2). Cufflinks assembled

47,154 to 50,555 genes and 76,593 to 83,054 transcripts per

sample, while StringTie2 and Scallop assembled 25,952 to

36,952 genes and 46,588 to 61,541 transcripts per sample

(Supplementary Table S6). Cufflinks assembled 25–45% more

genes and 24–39% more transcripts compared to other

assemblers. The number of mapped reads by the STAR

aligner is shown on the secondary Y-axis. The number of

mapped reads was shown to be distributed between

23.2 million to 46.9 million. The number of assembled genes

and transcripts does not seem significantly impacted by the depth

of sequencing at this range.

The detailed observation of the excess number of assembled

genes and transcripts of Cufflinks revealed that it generated new
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transcripts with false splice junctions. The total unique number

of SJs of Cufflinks, StringTie2, and Scallop across all 18 libraries

are 376,001, 180,118 and 169,757, respectively (Supplementary

Table S7). Cufflinks generated 52 and 54%more SJs compared to

StringTie2 and Scallop, respectively. Later, we decided to

compare the SJs generated by the individual assembler with

second-pass mapping of STAR aligner-produced SJs. Overall,

Cufflinks, StringTie2, and Scallop match 45, 98, and 98% of SJs

with STAR second-pass mapping generated SJs. As anticipated,

Cufflinks consisted of ~55% more false SJs than StringTie2 (2%)

and Scallop (2%).

Later, merging all of the assembled data for the 18 libraries

for each assembler was performed with three different merging

tools including Cuffmerge, StringtieM, and Taco. Cuffmerge

generated 54,387, 47,182, and 49,686 genes and 170,241,

116,172, and 118,487 transcripts for Cufflinks, Scallop, and

StringTie2 assemblers, respectively. However, Taco produced

48,857, 35,167, and 43,929 genes and 126,236, 132,100, and

70,413 transcripts for Cufflinks, Scallop, and

StringTie2 assemblers, respectively. Similarly, StringtieM

generated 51,012, 34,455, and 43,564 genes and 256,275,

119,581, and 101,407 transcripts for Cufflinks, Scallop, and

StringTie2 assemblers, respectively (Supplementary Table S8).

For Cufflinks assembled data, the percentage of transcripts

produced by StringtieM was 33 and 50% higher than

Cuffmerge and Taco, respectively, though the percentage of

genes was 6% less than Cuffmerge and 4% higher than Taco.

The Scallop assembled data shows 14 and 2% higher transcripts

and 36 and 2% lesser genes than Cuffmerge and Taco,

respectively. Similarly, for StringTie2 assembled data,

StringtieM shows 16% fewer transcripts than Cuffmerge. Still,

it offers a 30% higher number of transcripts than Taco merged

data and 14 and 0.8% fewer genes than Cuffmerge and Taco,

respectively. Among the three merge tools, StringtieM shows a

more significant number of AS variants from a lower number of

genes compared with the other two merge tools, Cuffmerge

and Taco.

The mono-exonic transcripts are mRNAs with a single

stretch of a protein-coding region and without any non-

coding regions to splice out. The number of mono-exonic

transcripts for the merged annotation of Cufflinks assembled

data shows 25,516, 23,735, and 21,350 for Cuffmerge, Taco, and

StringtieM, respectively (Supplementary Table S9). Similarly, for

the Scallop and StringTie2 assembled data, the number of mono-

exonic transcripts were distributed from 8,865 to 18,011 for the

different merged annotations. Though Cufflinks data shows a

greater number of mono-exonic transcripts, Taco merged

annotation of the StringTie2 assembler annotation files show a

high percentage of mono-exonic transcripts compared to the

other merge tools.

3.3 Evaluation of transcriptome
annotation

A comparison of non-redundant transcripts was performed

for the three merge tools (Cuffmerge, Taco, and StringtieM) by

exon and intron coordinates for each assembler of Cufflinks,

Scallop, and StringTie2. When using intron coordinates, the

variations at the 5′ and 3′ end of the transcript are not

considered; two transcripts sharing the exact intron

coordinates are considered the same transcript. While using

exon coordinates, two transcripts must be the same from start

to end (Figure 1A). The example list shows the non-redundant

transcripts by exon and intron coordinates for the gene ID

G10043 from the GTF file of Taco merged annotation along

with chromosome and strand information (Figure 1B).

The transcript structures can be represented either by the

intron or exon coordinates. The difference is that transcripts

represented by intron coordinates ignore variations of the TSS

and alternative PAS, which standard RNA-seq are not equipped

to capture. We compared transcript structures by exon and

intron coordinates among the different assemblers and the

different merge tools. While considering the exon coordinates

TABLE 1 STAR first and second-pass mapping splice junction (SJ) statistics. RNA-seq clean reads were mapped on the Oryza sativa Indica genome
using STAR aligner, which generated the possible SJs. The total number of unique SJs was given with uniquely and multi-mapped reads crossing
the SJs. The numbers of both canonical and annotated SJs with at least 1 uniquely mapped read crossing the junction are given.

STAR alignment splice junctions (SJs) statistics

Feature First-pass mapping with
2 mismatches

Second-pass mapping with
0 mismatches

Unique no. of novel SJs (Uniquely + multi-mapped reads) 214,063 2,031

Unique no. of annotated SJs (Uniquely + multi-mapped reads) 103,338 304,758

Unique no. of novel canonical SJs with at least 1 uniquely mapped read count 213,128 1,862

Unique no. of annotated canonical SJs with at least 1 uniquely mapped read count 101,766 (Ensembl) 300,875 (Ensembl+1st pass novel)

Total unique no. of canonical SJs with at least 1 uniquely mapped read count 314,894 302,737

Total no. of unique SJs (Uniquely + multi-mapped reads) 317,401 306,789
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of transcripts, both the 5′ and 3′ UTR region coordinates vary

among the transcripts of a gene, which permits a more significant

number of unique transcripts. These coordinates can be avoided

by choosing the intronic region coordinates and collapsing the

duplicate transcripts to compare among the merge tools. While

using the intron coordinates for the transcripts, the number of

overlapping non-redundant transcripts among three assemblers

(Cufflinks, Scallop, and StringTie2) for each merging tool

Cuffmerge, Taco, and StringtieM show 43,195, 18,191, and

25,460 compared to exon coordinates 42,144, 55, and 147,

respectively (Supplementary Table S10; Supplementary

Figure S3).

The distribution of overlapping non-redundant transcripts

among the three assemblers by intronic coordinates was

calculated (Supplementary Figure S4). StringtieM produces the

highest number of total non-redundant transcripts,

347,014 among the three merge tools for the three assemblers

by intron coordinates. These statistics show that using intron

coordinates is the best for transcript comparison.

The total number of introns corresponding to the length

distribution was analyzed for each annotation file

(Supplementary Table S11). Approximately 90% of introns in

nine merged transcriptome annotations occur at ≤ 1000 nt length

(Supplementary Figures S5, S6).

The distribution in the number of isoforms per number of

genes was plotted for 1) Cuffmerge, 2) StringtieM, and 3) Taco

(Supplementary Figure S7). The Cufflinks assembler shows a

more significant number of genes with ≥ 2 isoforms/gene

compared to the other two assemblers such as StringTie2 and

Scallop.

The overlapping number of unique transcripts by intron

coordinates were estimated for all 18 libraries for each

assembler (Supplementary Figure S8). In addition, the

overlapping number of unique transcripts by intron

FIGURE 1
(A) Illustration of the usage of exon and intron coordinates for non-redundant transcripts to evaluate transcript GTF files. (B) An example set of
non-redundant transcripts for the gene ID G10043 for the Taco merged annotation file by exon and intron coordinates.
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FIGURE 2
Density plots of the JCC scores of IndicaRTD (red line) and Ensembl RTD (black line) genes for each sequencing library. A comparison of the
distribution of genes with JCC scores for both IndicaRTD and Ensembl RTD annotation for 12_1, 12_2, 24_1, 24_2, 24_3, and 36_1 sequencing
libraries are shown. The X- and Y-axis represent the JCC score and gene density, respectively.
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coordinates for the nine annotation files generated by three

merging tools for the raw assembly of three assemblers were

estimated (Supplementary Figure S9). StringtieM showed

better performance with most of the transcripts matching

with the parent annotation transcripts compared to other

merging tools.

Salmon (v1.3.0) and Kallisto (v0.46.2) readmapping statistics

for nine transcript annotation files of three merging tools

(Cuffmerge, StringtieM, and Taco) and for three assemblers

(Cufflinks, StringTie2, and Scallop) were calculated

(Supplementary Table S12). For all annotations, the

percentages of the mapping rate is distributed between

86.63 and 93.94% for Salmon and 91.47–95.27% for Kallisto

aligners. Similarly, percentages of transcripts aligned by clean

reads are distributed between 88.37 and 99.86% for Salmon and

82.77–98.04% for Kallisto aligners. The higher the percentage of

transcript alignment with a high percentage of reads, the better

the sensitivity and specificity.

To investigate how SJs and transcripts change before and

after the merge step, we calculated the precision and recall

values for merging transcriptome annotation with the raw

annotation transcripts of the assemblers before the merge.

Although there is a significant overlap between raw assembly

and merged assembly in terms of transcript structures, we

observed that some of the raw assembly transcripts

disappeared after the merge. Similarly, some merge tools

generate new transcripts not in the raw assemblies.

Precision represents the closeness of the merging

annotation calculated by taking the ratio of the number of

non-redundant overlapping transcripts of merging

annotation in the raw assembly annotation files and the

total number of non-redundant transcripts in merging

annotation. The recall represents the recovery rate of the

merging annotation calculated using the ratio of the

number of non-redundant overlapping transcripts of the

merging annotation in the raw assembly annotation files

and the total number of non-redundant transcripts in the

raw assembly annotation files (Supplementary Figure S10).

Scatter plots were generated using the precision and recall

values on both the X and Y-axis, respectively.

A Scatter plot of the precision and recall values of the unique

intronic segment coordinates (Supplementary Figure S11A) and

unique transcripts by intron coordinates (Supplementary Figure

S11B) demonstrates that StringtieM is the best performance

merge tool. StringtieM shows transcript recall rates of 58, 77,

and 55% for Scallop, Cufflinks, and StringTie2 assemblers,

respectively, and compared with other merge tools, Cuffmerge

and Taco, which are distributed from 33 to 52%. Also, the

precision levels of transcripts of the StringtieM are much

higher (above 95%) for the three different assemblers

compared to Cuffmerge and Taco, which are distributed from

63 to 92%.

3.4 Filtration and validation of
transcriptome annotation

Based on precision and recall values, StringtieM annotation

shows the best true positive rate and closeness with raw assembly

compared with Cuffmerge and Taco. Therefore, the StringtieM

merge annotation of the raw assemblies of different assemblers

was used for further analysis. We used the in-house built shell

script to create the SJdb with features such as canonical SJ, the

number of unique mapping reads crossing the junction

(≥5 reads), and the maximum spliced alignment overhang

length (≥10 nt). SJdb was created with 138,532 unique

canonical SJs out of 306,789 SJs generated from STAR

second-pass mapping (Supplementary Table S13). A total of

102,950 transcripts consisting of these valid SJs were retained

out of annotation of 345,918 transcripts. We created the

IndicaRTD with a total of 122,968 transcripts after merging

with StringtieM with 102,950 transcripts and the Ensembl

transcriptome dataset.

JCC was implemented to validate the completeness of the

reference transcriptomic data set. JCC scores of the genes

measure the agreement of the predicted junction coverage of

the transcript abundance estimation from the Salmon method,

and the observed number of junction reads from the STAR

aligner. A higher JCC score represents a higher disagreement

between the predicted junction coverage and the observed

number of junction reads. It has been used to identify genes

with poor annotations, such as missing transcript isoforms and

missed annotations at the 5′ and 3′ UTR regions. Additionally,

we use the JCC score to measure the quality of the

transcriptome annotations. Genes with a lower JCC score

represent the transcript annotation with a higher quality and

are expected to have a higher level of agreement between

predicted junction coverage and the observed number of

junction reads.

In this study, the IndicaRTD shows more genes with a better

JCC score (≤0.6) compared to the Ensembl RTD in all sequencing

libraries (Figure 2; Supplementary Figure S12). Therefore, the

IndicaRTD from the current study can provide a more accurate

quantification of transcript and gene expressions using RNAseq

data. Thus, the IndicaRTD is currently available as a more

comprehensive and accurate transcript annotation.

We assessed the percentage of clean reads aligned to the

Indica and Ensembl RTD annotations and the number of

transcripts mapped by reads for both the Salmon and Kallisto

quantification tools (Table 2). In this study, IndicaRTD shows

~90% of reads mapped in all 18 libraries compared to ~77% of

Ensembl RTD. Also, the number of transcripts showed

expression (with reads support) >2-fold when using

IndicaRTD compared to Ensembl RTD. These statistics show

that the current study, IndicaRTD annotation, is more reliable for

expression analysis than the Ensembl RTD.

Frontiers in Genetics frontiersin.org08

Srikakulam et al. 10.3389/fgene.2022.995072

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.995072


TABLE 2 Comparison of IndicaRTD and Ensembl RTD. (A) The table shows the percentages of reads aligned with the transcripts and the number of
transcripts mapped by the RNA-seq reads by the Salmon mapping tool for both Ensembl and IndicaRTD annotation. (B) The table shows the
percentages of reads aligned to the transcripts and the number of transcripts mapped by the RNA-seq reads by the Kallisto mapping tool for both
Ensembl and IndicaRTD annotation.

(A) Salmon alignment

Read mapping rate for the transcripts Number of transcripts with read mapping

Ensembl RTD Indica
RTD (current study)

Ensembl RTD Indica
RTD (current study)

12_1 74.31 90.60 27224 78192

12_2 73.96 90.66 27363 78661

24_1 69.85 87.33 25909 72772

24_2 77.64 90.94 27206 75207

24_3 75.71 90.75 27240 76214

36_1 79.30 91.73 26185 72401

36_2 72.42 90.12 26104 74237

48_1 76.19 90.93 26127 69162

48_2 69.41 89.77 26530 74537

60_1 77.07 90.99 26835 76159

60_2 75.04 90.53 26534 74710

60_3 75.10 90.68 26801 77213

72_1 73.96 90.44 26741 76542

72_2 75.42 91.08 25781 73774

72_3 73.81 90.57 26941 77593

C1 77.64 90.94 27206 75204

C2 73.41 88.37 26996 77617

C3 72.82 86.20 26893 77717

(B) Kallisto alignment

Read mapping rate for the transcripts Number of transcripts with read mapping

Ensembl RTD Indica RTD (current study) Ensembl RTD Indica RTD (current study)

12_1 75.90 92.38 28833 86141

12_2 75.61 92.47 29023 86698

24_1 71.33 89.48 27591 81954

24_2 79.32 92.83 28836 83944

24_3 77.16 92.60 28752 84531

36_1 80.63 93.43 27706 81598

36_2 74.17 91.73 27869 83194

48_1 77.86 93.02 27796 79450

48_2 70.89 91.75 28249 82805

60_1 78.64 92.93 28418 84911

60_2 76.45 92.40 28114 83040

60_3 76.44 92.31 28400 85364

72_1 75.29 92.10 28443 84861

72_2 76.69 92.65 27344 82277

72_3 75.35 92.34 28703 85746

C1 79.32 92.83 28836 83944

C2 74.57 89.94 28649 85597

C3 77.22 91.81 28635 86757
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4 Discussion

RTD is the major backbone for accurate gene quantification

of RNA-seq data analysis and consists of a list of genes and

possible transcript isoforms of an organism (Brown et al., 2017;

Zhang et al., 2017a; Rapazote-Flores et al., 2019; Vitoriano et al.,

2021). The quality of the transcriptome annotation could help

with fast and accurate estimation of transcript expression and

AS events using the RNA-seq data with the help of the 3DRNA-

seq tool (Chaudhary and Kalkal, 2021; Guo et al., 2021;

Vitoriano et al., 2021; Escudero-Martinez et al., 2022).

Despite rice being an important crop plant and several

attempts being made in the past to improve its

transcriptome annotation and AS diversity, IndicaRTD

contains a significantly higher number of transcript isoforms

(Lu et al., 2010; Zhang et al., 2010; Zhang H. et al., 2019;

Schaarschmidt et al., 2020; Wang S. et al., 2022; Hasan et al.,

2022; He et al., 2022). Several single gene studies have identified

the role of AS transcript isoforms in the eukaryotic system

including the plant system specifically in rice (Ganie and Reddy,

2021; Singh and Ahi, 2022; Wright et al., 2022). The new

IndicaRTD contains 122,968 non-redundant transcript

isoforms from 53,695 genes, and from these, 98,362 (~80%)

AS transcript isoforms were produced from 14,916 (~48%)

multi-exon genes. These high-quality transcripts were

generated from a total of 138,532 stringent quality filtered

unique canonical SJs including 49,223 (36%) novel SJs. A

recent study, which was performed with long-read

transcriptome sequencing of O. sativa ssp. Japonica var

Nipponbare, has shown a total of 73,659 SJs along with

12,755 (17%) novel canonical and non-canonical SJs (Hasan

et al., 2022). Additionally, we performed a comparison study

and showed that IndicaRTD consists of a greater number of

genes with a complete number of possible transcript isoforms

compared to the currently available Ensembl RTD. Here, we

demonstrate the significance of the improved IndicaRTD using

reference-based alignment quantification tools such as Salmon

and Kallisto. The Salmon and Kallisto align approximately 90%

of the reads to the IndicaRTD, while the Ensembl RTD shows

70–80% read alignment. This scenario shows that many

transcript isoforms were missing in the Ensembl RTD, which

are available in the current IndicaRTD.

A recent study on A. thaliana RTD (AtRTD3)

construction using single-molecule long-read sequencing

technology, such as Pacific Biosciences (PacBio), showed

more transcript isoforms with novel SJs compared to

AtRTD2 (Zhang et al., 2017b; Zhang et al., 2022). Similarly,

a report was published on human transcriptome annotation

using long-read sequencing technology that found several

novel protein-coding and non-coding transcript isoforms

(Kuo et al., 2020). Another report showed an improvement

in the barley reference transcriptome (BaRTv2.18) by

integrating both short- and long-read sequencing data sets

compared to BaRTv1 (Rapazote-Flores et al., 2019; Coulter

et al., 2022). A similar approach was adapted to identify the

11,733 and 161,913 transcript isoforms in rice (O. sativa L.

ssp. Japonica) and tomato (Solanum lycopersicum),

respectively (Zhang G. et al., 2019; Clark et al., 2019).

Equivalent and upgraded strategies can also be employed to

improve IndicaRTD quality. Other reports have shown that

long-read sequencing has been performed for rice plants and

several novel AS transcripts were found, but none of them

discussed comprehensive transcriptome annotation

(Schaarschmidt et al., 2020; Wang X. et al., 2022; Hasan

et al., 2022; He et al., 2022). Some drawbacks of the current

IndicaRTD are a lack of information to identify TSS,

transcription end (polyadenylation) sites (TES), alternative

polyadenylation (APA), and the right combination of

different TSS, TES, and SJs using the short-read RNA-seq

data (Zhang et al., 2017a; Zhang et al., 2022). This leads to

miss-assembled transcripts and it can be solved by single-

molecule long-read sequencing technologies such as PacBio

and Oxford Nanopore sequencing (Zhang H. et al., 2019;

Clark et al., 2019; Coulter et al., 2022). However, the high

error rate in the long-read sequencing leads to the creation of

false SJs (Watson and Warr, 2019; Lima et al., 2020). This can

be overcome by short-read sequencing data with an advantage

of read depth, which permits the generation of high-

confidence SJs (Au et al., 2012; Kovaka et al., 2019; Coulter

et al., 2022; Zhang et al., 2022). A recent study identified some

flaws while creating RTD with a common reference genome

sequence for the different genotype transcriptome sequencing

data within a species (Guo et al., 2022). Rice has different

genotypes with high-value traits and IndicaRTD can be

improved by using the genotype-specific reference genome

(Das et al., 2013; Roy et al., 2015; Shrestha et al., 2021).

5 Conclusion

In this study, we used a novel transcriptome assembly

pipeline to improve the quality of the Oryza sativa indica

reference transcriptome data. Our analysis showed a

significant increase in AS transcripts. Moreover, using the

current IndicaRTD, we want to perform differential

expression analysis for different biotic and abiotic stress

conditions in rice. Our evaluation using Salmon and

Kallisto shows better performance of IndicaRTD compared

to Ensembl RTD. Therefore, the IndicaRTD can be employed

for better RNA-seq quantification analysis. The current

IndicaRTD can be used as preliminary data and improved

by employing long-read sequencing technologies such as

PacBio and Nanopore. The generalized process of the RTD

assembly pipeline should also be adapted for other eukaryotic

organisms to generate species-specific transcriptome

annotation.
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