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More and more evidences have showed that the unnatural expression of long

non-coding RNA (lncRNA) is relevant to varieties of human diseases. Therefore,

accurate identification of disease-related lncRNAs can help to understand

lncRNA expression at the molecular level and to explore more effective

treatments for diseases. Plenty of lncRNA-disease association prediction

models have been raised but it is still a challenge to recognize unknown

lncRNA-disease associations. In this work, we have proposed a

computational model for predicting lncRNA-disease associations based on

geometric complement heterogeneous information and random forest.

Firstly, geometric complement heterogeneous information was used to

integrate lncRNA-miRNA interactions and miRNA-disease associations

verified by experiments. Secondly, lncRNA and disease features consisted of

their respective similarity coefficients were fused into input feature space.

Thirdly, an autoencoder was adopted to project raw high-dimensional

features into low-dimension space to learn representation for lncRNAs and

diseases. Finally, the low-dimensional lncRNA and disease features were fused

into input feature space to train a random forest classifier for lncRNA-disease

association prediction. Under five-fold cross-validation, the AUC (area under

the receiver operating characteristic curve) is 0.9897 and the AUPR (area under

the precision-recall curve) is 0.7040, indicating that the performance of our

model is better than several state-of-the-art lncRNA-disease association

prediction models. In addition, case studies on colon and stomach cancer

indicate that our model has a good ability to predict disease-related lncRNAs.
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1 Introduction

Long non-coding RNA (lncRNA) is a kind of non-coding

RNA with a length of more than 200 nucleotides, which have

received increasing attention from researchers. LncRNAs have

now been proved to play a key role in transcriptional and

posttranslational regulation (Taft et al., 2010; Mathieu et al.,

2014; Sun et al., 2018; Xie et al., 2018). The pathogenesis of a

series of diseases is significantly associated with mutations and

dysregulation of lncRNAs (Washietl et al., 2014; Chen et al.,

2017). For example, MALAT1 was discovered to be

overexpressed in many entity tumors such as lung cancer

(Cheetham et al., 2013). It was shown that clonogenic and

anchorage-dependent growth of lung cancer cells would be

significantly decreased when H19 was down-regulated

(Barsyte-Lovejoy et al., 2006). Confirming the associations

between lncRNAs and diseases by biological experiments is

time-consuming, labor-intensive and challenging, so using

computational method to predict the associations not only

provides a more efficient way for biological experiments but

also reduces a lot of unnecessary human and material resources.

Currently, dozens of computational models have been proposed

to identify disease-associated lncRNAs based on various

biological data. We can broadly classify the current

computational models for lncRNA-disease association (LDA)

prediction into three categories.

The first class of LDA prediction models is based on

biological networks. Sun et al. implemented random walk and

restart on lncRNA functional similarity network (Sun et al.,

2014). Zhou et al. integrated the LDA network, disease

similarity network and lncRNA-miRNA interaction network

into a heterogeneous network and applied random walk on

the network (Zhou et al., 2015). Chen et al. integrated the

known LDAs, lncRNA expression profiles, lncRNA functional

similarity, disease semantic similarity and Gaussian interaction

profile kernel similarity to predict potential LDAs (Chen, 2015a).

Ping et al. (2019) constructed a model based on the known LDA

network. However, these models need the known LDA network.

Thus, Liu et al. (2014) conceived a model by integrating the

known human expression profiles of lncRNA and disease genes,

which is the first computational model without relying on the

known LDAs. Chen et al. combined miRNA-disease association

and lncRNA-miRNA interactions to form a model called

HGLDA (Chen, 2015c). Zhou et al. developed a

computational method by integrating association among

lncRNA, protein, disease, miRNA, drug and high-order

proximity preserved embedding for predicting LDAs (Zhou

et al., 2021). Sumathipala et al. used the topology of a multi-

level network consisting of lncRNA-protein, protein-protein

interactions and protein-disease associations to identify LDAs

(Sumathipala et al., 2019). Yu et al. used Bi-Random Walks on

the lncRNA functional similarity network and disease network to

predict LDAs (Yu et al., 2017). Yu et al. (2020) constructed a data

fusion model called Attributed Heterogeneous Network Fusion

for LDA prediction (AHNF).

The second class of LDA prediction model is based on matrix

factorization. Fu et al. proposed a LDA prediction model called

MFLDA.MFLDA factored data from heterogeneous data sources

into low-rank matrices based on matrix trivialization to discover

and explore its intrinsic and shared structure (Fu et al., 2018).Wu

et al. constructed a GAMCLDA model by encoding local graph

structures and features. The graph convolution network was used

to encode the features of this map structure and nodes to learn

the potential factorial vectors of lncRNAs and diseases. In

addition, the inner product of lncRNA factor vectors and

disease factor vectors was used as a decoder to reconstruct the

LDA matrix (Wu et al., 2020). Gao et al. (2021) constructed a

multi-label fusion collaborative matrix decomposition approach

to predict LDAs. Wang et al. (2020) developed a weighted matrix

factorization model on multi-relational data to predict LDAs. Liu

et al. (2021) introduced a weighted graph regularized

collaborative matrix factorization (WGRCMF) method to

predict LDAs.

The third class of LDA prediction model is based on machine

algorithms. Machine learning methods focus on gaining insights

into features and imbalanced labels. Chen et al. formulated

Laplace regularized least squares method to predict LDAs

(called LRLSLDA) in a semi-supervised learning framework,

which is the first machine learning-based methods to predict

LDAs (Chen et al., 2015). However, for LRLSLDA, parameter

optimization is a challenge. Later, Chen et al. combined lncRNA

functional similarity with the LRLSLDA-LNCSIM prediction

model and enhanced its performance by introducing similarity

scores for predicting gene-disease associations (Huang et al.,

2016). In addition, Lan et al. implemented a LDAP model based

on SVM bagging by combining disease similarity and lncRNA

similarity (Lan et al., 2017). Yao et al. constructed a

computational model called RFLDA to identify associations

based on feature selection by integrating the experiment-

supported associations among lncRNA, miRNA, disease,

disease semantic similarity and lncRNA functional similarity

(Yao et al., 2020). Xuan et al. have developed a collection of

convolutional neural networks-based lncRNA-disease prediction

models, including CNNLDA (Xuan et al., 2019a), LDAPred

(Xuan et al., 2019b), GCNLDA (Xuan et al., 2019c) and

CNNDLP (Xuan et al., 2019d). The CNNLDA developed an

analysis of the associations between lncRNA and disease using

convolutional neural networks that combined semantic and

functional similarity as well as lncRNA-disease associations,

miRNA-disease associations and lncRNA-miRNA interactions

(Xuan et al., 2019a). The LDAPred integrated a convolutional

neural network and information flow propagation, combining

associations, interactions, similarity structures and topological

structures between lncRNAs, miRNAs and diseases (Xuan et al.,

2019b). The GCNLDA is based on the graph convolutional

network and convolutional neural network to obtain locally
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integrated topological information within the lncRNA-disease-

microRNA networks (Xuan et al., 2019c). By combining disease

similarity, lncRNA similarity, miRNA-disease association and

lncRNA-miRNA interactions, CNNDLP learned the attention

and the low-dimensional network representation of the lncRNA-

disease pairs (Xuan et al., 2019d). Wei et al. developed a method

(LDICDL) that denoised lncRNA and disease features with an

autoencoder, and used the matrix decomposition algorithm to

test for potential disease-lncRNA association (Lan et al., 2022).

Fan et al. proposed an lncRNA-disease prediction method that

implemented convolutional matrices with conditional random

fields and attention mechanisms for learning the embeddings of

nodes for scoring latent associations between lncRNAs and

diseases (Fan et al., 2022). Wu et al. proposed a method that

combined extra trees with multi-layer graph embedding

aggregation to predict LDAs (Wu Q. W. et al., 2021). Cui

et al. proposed a novel model based on bipartite local model

with nearest profile-based association inferring to predict LDAs

(Cui et al., 2020).

These methods described above have achieved good

prediction performance, but they also have some limitations.

The biological network-based approach was affected by the

scarcity of known LDA data; For the matrix factorization-

based approach, the combination of model parameters is a

very complex and necessary procedure; For the machine

learning-based approach, feature processing and the impact of

imbalanced data is a challenge. In this paper, we proposed a novel

LDA prediction model based on geometric complement

heterogeneous information and random forest (GCHIRFLDA

in short). Firstly, the geometric complementation of LDA matrix

was implemented by integrating the information of lncRNA-

miRNA andmiRNA-disease association information. Secondly, a

low-dimensional feature space was extracted from the obtained

LDA matrix by using an autoencoder, which combined Jaccard

similarity coefficient and Gaussian interaction profile kernel

similarity. Finally, a random forest classifier was trained on

the constructed sample set to score potential lncRNA-disease

associations. The AUC and AURP under five-fold cross-

validation demonstrated that the GCHIRFLDA had a better

performance than several state-of-the-art LDA prediction

models, and the case studies on stomach cancer and colon

cancer indicated that the GCHIRFLDA had excellent ability in

identifying disease-associated lncRNAs.

2 Materials and methods

2.1 Representation of lncRNA-disease
associations , miRNA-disease associations
and lncRNA-miRNA interactions

LncRNA-disease associations (LDA), miRNA-disease

associations (MDA) and lncRNA-miRNA interactions (LMI)

were obtained from previous reports (Fu et al., 2018). The

following l, d and m denote the number of lncRNA, disease

and miRNA, respectively. The LDAs are represented by a 240× ×

412 adjacency matrix LDi×j ∈ LDl×d, l is rows represent lncRNAs

and d is columns represent diseases. For each element LDi,j, its

value is equal to one if lncRNA i is related to disease j; otherwise,

its value is equal to 0. Similarly, the MDAs are represented by a

495× × 412 adjacency matrix MDi×j ∈ MDm×d, m is rows

represent miRNAs and d is columns represent diseases. For

each element MDi,j, its value is equal to one if miRNA i is

related to disease j; otherwise, its value is equal to 0. The LMIs are

represented by a 240 × ×495 adjacency matrix LMi×j ∈ LMl×m, l

is rows represent lncRNAs and m is columns represent diseases.

For each element LMi,j, its value is equal to one if lncRNA i is

related to miRNA j; otherwise, its value is equal to 0.

2.2 Calculation of jaccard similarity of
disease and lncRNA

Calculation of similarity of disease and lncRNA is an

important step in LDAs predicting process. So far, there are

many ways to calculate similarity, such as disease semantic

similarity, disease cosine similarity, lncRNA functional

similarity and lncRNA cosine similarity. In this work, we

combine the Jaccard similarity coefficient which is

complementary to the binary matrix and the Gaussian

interaction profile kernel similarity which encodes the non-

linear vectors in the LDA matrix. By experimental research on

different similarity measures, we found that the fusion of these

two kinds of similarity can greatly improve the performance of

the LDA prediction model. Therefore, we chose Jaccard

similarity and Gaussian interaction profile kernel similarity for

LDA prediction in this work. Thank you again for your

comment. The Jaccard similarity coefficient (Jaccard, 1908) of

disease was calculated by LDA matrix by Eq. 1:

JDS(i, j) � LD(: , i)∩​ LD(: , j)
LD(: , i)∪​ LD(: , j) (1)

In Eq. 1, LD(: , i) is the i-th column vector of the LDA

matrix, which represents the association feature of disease i;

LD(: , i)∩​ LD(: , j) represents the number of lncRNAs that are

associated with both disease i and disease j; LD(: , i)∪ ​ LD(: , j)
represents the sum of the number of lncRNAs associated with the

disease i and disease j.

Similarly to disease, the Jaccard similarity of lncRNA can be

calculated by LDA matrix by Eq. 2:

JFS(i, j) � LD(i, : )∩​ LD(j, : )
LD(i, : )∪​ LD(j, : ) (2)

In Eq. 2, LD(i, : ) is the i-th row vector of the LDA matrix,

which represents the association feature of lncRNA i;
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LD(i, : )∩ ​ LD(j, : ) represents the number of diseases that are

associated with both lncRNA i and lncRNA j;

LD(i, : )∪ ​ LD(j, : ) represents the sum of the number of

diseases associated with the lncRNA i and lncRNA j.

2.3 Calculation of Gaussian interaction
profile kernel similarity of disease and
lncRNA

The Gaussian interaction profile kernel similarity (Chen,

2015b) GIPlnc(li, lj) between lncRNA li and lncRNA lj was

calculated by Eq. 3:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

GIPlnc(li, lj) � exp( − λ




LD(i, : ) − LD(j, : )



2)

λ � ~λ/⎛⎝1
l
∑l
i�1
‖li‖2⎞⎠ (3)

From the above equation, the Gaussian interaction profile

kernel similarity matrix of lncRNA can be obtained. LD(i, : )
and LD(j, : ) represents i-th and j-th row of LDA matrix

respectively, ~λ controls the kernel bandwidth, in this work, we

set ~λ to 1.

Similarly, the Gaussian interaction profile kernel similarity

matrix of disease GIPdis(di, dj) can be obtained by Eq. 4.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

GIPdis(di, dj) � exp( − λ




LD(: , i) − LD(: , j)



2)

λ � ~λ/⎛⎝1
d
∑d
i�1
‖di‖2⎞⎠ (4)

In Eq. 4, LD(: , i) and LD(: , j) represents i-th and j-th

column of LDA matrix respectively, ~λ controls the kernel

bandwidth, in this work, we set ~λ to 1.

2.4 Fusing different similarities for lncRNA
and disease

In this paper, we used the maximum value method to

merge lncRNA Gaussian interaction profile kernel similarity

and lncRNA Jaccard similarity into LFJ similarity and fuse

disease Gaussian interaction profile kernel similarity and

disease Jaccard similarity into DSJ similarity by Eqs. 5, 6,

respectively.

LFJ similarity � {GIPlnc(li, lj) ifGIPlnc(li, lj)≥ JFS(i, j)
JFS(i, j) otherwise

(5)
DSJ similarity � {GIPdis(di, dj) ifGIPdis(di, dj) ≥ JDS(i, j)

JDS(i, j) otherwise

(6)

2.5 Geometric complement for lncRNA-
disease associations matrix

The process of constructing the GCHIRFLDA model is

divided into three steps (see Figure 1): 1) geometric

complement for LDA matrix; 2) feature representation and

extraction; 3) random forest classifier training and LDA

prediction. Next, we will introduce the process of constructing

the GCHIRFLDA model in detail.

Inspired by Francesco et al.‘s and Yin et al.‘s method (Wang

et al., 2021; Yin et al., 2022), from the previous data source, we

multiplied the LMI matrix with the MDA matrix and then

divided the [i, j]-th element of the result by the i-th row of

the LMI matrix and the j-th column of the MDA matrix to

represent the potential LDA matrix by Eq. 7:

LMD(i, j) � LM(i, : ) ·MD(: , j)
‖LM(i, : )‖1 +





MD(: , j)



1 (7)

The fusion matrix of LDA was obtained by taking the

maximum value of the potential LDAs computed above and

the original LDAmatrix in the i-th row and j-th column by Eq. 8.

LDnew(i, j) � max(LD(i, j), LMD(i, j)) (8)

In this way, the original LDA matrix can be geometrically

complemented.

2.6 Feature representation and extraction

For the obtained geometric complement matrix, each row

represents the feature vector of lncRNA and each column

represents the feature vector of disease. We combine the i-th

row of the geometric complement matrix and the i-th row of the

similarity fusion matrix of lncRNA to form a new feature vector

of the i-th lncRNA. Similarly, we combine the j-th column of the

geometric complement matrix and the j-th column of the

similarity fusion matrix of disease to form a new feature

vector of the j-th disease. Finally, each lncRNA and disease is

represented as a 652-dimensional feature vector.

Autoencoder is an unsupervised neural network model and

has a good performance in data denoising and dimensionality

reduction. In the GCHIRFLDAmodel, we employee autoencoder

to compress feature space of lncRNA and disease. We set hidden

layer to learn the high-dimensional feature space of the input

data so that the hidden layer can reconstruct the original input

data (Schmidhuber, 2015; Ji et al., 2021).

In this work, we use an autoencoder with an input layer, a

dense layer, an output layer and a fully-connected layer with an

activation function sigmoid. The learning process of the noise-

reducing encoder is to minimize the error between the

reconstructed data and the original data. As a result, each

lncRNA, which is originally represented by a 652-dimensional
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feature vector, is finally compressed into 256-dimensional by

autoencoder. Similarly, each disease, which is originally

represented by a 652-dimensional feature vector, is finally

compressed into 256-dimensional by autoencoder. MSE (mean

squared error) is used as model loss evaluation by Eq. 9:

loss � 1
n
∑(Yinput − Youtput)2 (9)

In Eq. 9, Yinput is the original input data, and Youtput is the

decoded and reconstructed data.

2.7 Random forest classifier training and
lncRNA-disease associations prediction

To train the GCHIRFLDA model, the experiment-supported

2697 LDAs in the original LDA matrix were used as positive

samples; the remaining lncRNA-disease pairs that were not

validated by biological experiments were used as unlabeled

samples. To maintain the balance of the training set, an equal

number of unlabeled samples were randomly selected from the

unlabeled samples as negative samples. The negative samples and

the positive samples were combined into the training sample set

which consisted of 5394 samples.

For accurately predicting potential LDAs, we employed

random forest (RF) for LDA prediction in the GCHIRFLDA

model. Random forest is an ensemble machine learning

model which combines bagging and random features to

add extra diversity of the decision tree model and finally

uses a voting method to combine the prediction results of

multiple base classifiers (Breiman, 2001). RF has many

advantages: 1) it can process a variety of data types,

including qualitative data or quantitative data; 2) it has

high classification accuracy; 3) it has good robustness for

noise data and data with missing values; 4) it has ability to

analyze complex interactions between features. In recent

years, RF has been widely used in a variety of classification

and prediction problems, including differential expression

analysis of microarray data, miRNA-disease association

prediction, etc. In this work, we have carried out

experimental research on six different classifiers, including

SVM and Xgboost. Considering AUC, AUPR, Recall and

other indicators, the performance of RF classifier is the

best. Therefore, RF was chosen as the final classifier in our

prediction model. RF has two important parameters, namely

the number of randomly selected features (mtry) and the

number of trees (ntree). These parameters have a great impact

on the performance of random forest classification model.

Here, we set mtry and ntree by the default value. Then, by the

obtained prediction model, all unconfirmed lncRNA-disease

pairs are scored, and the closer the score is to 1, the more

likely it is that lncRNA is associated with the disease.

FIGURE 1
The flowchart of constructing the GCHIRFLDA model.
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3 Results

3.1 Feature dimension analysis of lncRNA
and disease

For LDAprediction, the dimensionality of the training sample set

has an obvious impact on the accuracy of the prediction model. On

the one hand, for a smaller number of features of lncRNAs and

diseases,more features are not learned, which leads to under-fitting of

the model. On the other hand, for a larger number of features, more

time is spent and the model performance will not yet be greatly

improved or even over-fitting will occur. Therefore, we used the

experimental method to determine the appropriate feature

dimension. Specifically, we use autoencoder to compress the

dimensions of feature space into 16, 32, 64, 128, 256, and

512 respectively, and the feature dimension that makes the

prediction performance of the model the highest is adopted.

Table 1 shows the AUC obtained under five-fold cross-validation

by different dimensional features, from which one can see that the

maximum of AUC is reached when the feature dimension of both

lncRNAs and diseases is 256, so we set the feature dimension of

extracted lncRNAs and diseases by autoencoder to be 256.

3.2 Performance comparison between
random forest and other classifiers

In order to obtain better performance of the GCHIRFLDA

model, we compared RF classifier with several classical classifiers,

including extreme gradient boosting (Xgboost) (Chen and Guestrin,

2016), C50 (Kuhn, 2013), Gradient Boosting Decision Tree (GBDT)

(Ye et al., 2009), SVM (Lan et al., 2017) and LightGBM (Zhang et al.,

2021). In thiswork, we used the averageAUC,AUPR, Recall, F1-score

and Accuracy based on five-fold cross-validation as evaluation

criterion for the six classifiers.

Figure 2 showed the ROC curves and AUCs of different

classifiers, from which one can see that the AUC values of RF,

Xgboost, C50 and GBDT are 0.9897, 0.9814, 0.98959 and 0.9497,

respectively. Figure 3 showed the PR curves and AUPRs of four

classifiers, the AUPR values of RF, Xgboost, C50 and GBDT are

0.704, 0.4505, 0.1607 and 0.2336, respectively. Table 2 showed the

AUC, AUPR, Recall, F1-score and Accuracy of six classifiers. As

one can see from Table 2, all five metrics of RF is the largest

among the six classifiers. The results of the experiments

suggested that RF outperformed the other five classifiers for

LDA prediction. There, RF was finally determined as the final

classifier in the GCHIRFLDA model.

3.3 Performance comparison between
GCHIRFLDA and other lncRNA-disease
associations prediction models

To evaluate the prediction performance of the GCHIRFLDA

model, we compared it with seven state-of-the-art LDA

TABLE 1 The AUCs under different lncRNA/disease feature dimension.

Dimension 16 32 64 128 256 512

16 0.9576 0.9724 0.9768 0.9782 0.9750 0.9724

32 0.9492 0.9753 0.9775 0.9809 0.9804 0.9788

64 0.9577 0.9760 0.9791 0.9833 0.9842 0.9826

128 0.9561 0.9764 0.9808 0.9872 0.9884 0.9877

256 0.9539 0.9736 0.9804 0.9874 0.9897 0.9889

512 0.9109 0.9711 0.9793 0.9880 0.9891 0.9890

FIGURE 2
The ROC Curves of different classifiers in the GCHIRFLDA
model.

TABLE 2 The performance comparison of different classifiers in the
GCHIRFLDA model.

Classifier AUC AUPR Recall Accuracy F1-score

Xgboost 0.9815 0.4544 0.9523 0.9182 0.9523

RF 0.9897 0.7040 0.9673 0.9317 0.9597

C50 0.9513 0.1517 0.9340 0.8724 0.9265

GBDT 0.9497 0.2348 0.8942 0.8701 0.9253

SVM 0.9832 0.5826 0.9243 0.9313 0.9595

LightGBM 0.9832 0.5250 0.9428 0.9215 0.9541
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prediction models, including GAERF (Wu Q.-W. et al., 2021),

CNNLDA (Xuan et al., 2019a), GCNLDA (Xuan et al., 2019c),

MFLDA (Fu et al., 2018), Ping’s method (Ping et al., 2019) and

SIMLDA (Lu et al., 2018). The AUCs and AUPRs of all LDA

prediction models are listed in Table 3. Figure 3 showed the ROC

curves for these LDA prediction models.

From Table 3 and Figure 4, one can see that the AUC and

AUPR of the GCHIRFLDA model are maximal among all

LDA prediction models, which achieved 0.990 and 0.704,

respectively. In term of AUC, our model achieved

0.990 which was 0.99%, 3.23%, 3.96%, 58.19%, 13.63%, and

32.67% higher than GAERF, GCNLDA, CNNLDA, MFLDA,

Ping’s method and SIMCLDA, respectively. In term of AUPR,

our model achieved 0.704 which was 43.38%, 215.79%,

180.47%, 966.67%, 221.46%, 634.38% higher than GAERF,

GCNLDA, CNNLDA, MFLDA, Ping’s Method and

SIMCLDA, respectively. According to the results of cross

validation experiments, our GCHIRFLDA model has better

LDA prediction ability.

3.4 Case studies

To further validate the prediction ability of the GCHIRFLDA

model, we conducted case studies on two most common cancers,

colon cancer and stomach cancer. We used the GCHIRFLDA to

score all the unlabeled lncRNA-disease pairs, and selected the top

20 lncRNAs most likely to be associated with stomach cancer and

colon cancer respectively according to the score. Finally, the predicted

stomach cancer-associated and colon cancer-associated lncRNAs by

the GCHIRFLDA model were validated by data from Lnc2Cancer

v3.0 (Ning et al., 2016), LncRNADisease v2.0 (Bao et al., 2019) and

some published research literature.

Colon cancer is the third most common cancer worldwide and

the fourth leading cause of cancer-related death. The incidence of

colon cancer has increased dramatically in China because of a shift in

our habits as a society (Xue et al., 2015). In this work, we used the

GCHIRFLDA to predict colon cance-associated lncRNAs. As a

result, the top 20 predicted lncRNAs associated with colon cancer

and the provenances of the evidence are shown inTable 4. As one can

see from Table 4, 17 predicted lncRNAs have been confirmed by

records included in the Lnc2Cancer (v3.0) or LncRNADisease (v2.0)

or published literature. For example, Wan et al. showed that the

overexpressing of CDKN2B-AS1 exhibited accelerated proliferation

in colon cancer (Wan et al., 2013). Xu et al. reported the tumor

TABLE 3 The AUCs and AUPRs of different LDA prediction models.

Method AUC AUPR

GCHIRFLDA 0.990 0.704

GAERF 0.980 0.491

GCNLDA 0.959 0.223

CNNLDA 0.952 0.251

LDAP 0.863 0.166

MFLDA 0.626 0.066

Ping’s Method 0.871 0.219

SIMCLDA 0.746 0.095

FIGURE 3
The Precision-Recall Curves of different classifiers in the
GCHIRFLDA model.

FIGURE 4
The ROC Curves of different LDA prediction models.
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suppressor B-cell linker (BLNK) was reduced in expression via

MIR17HG, which resulted in an increase in invasion and

migration of colorectal cancer cells (Xu et al., 2019).

In the digestive tract, stomach cancer is one of themost prevalent

malignancies (Gu et al., 2017). The identification of new

biomolecular markers of stomach cancer is essential for treatment

and diagnosis. In this work, we used the GCHIRFLDA to predict

stomach cancer-associated lncRNAs. As a result, the top 20 predicted

lncRNAs associated with colon cancer and the provenances of the

evidence are shown in Table 5. As seen in Table 5, 18 predicted

lncRNAs have been confirmed by records included in the

Lnc2Cancer (v3.0) or LncRNADisease (v2.0) or published

literature. For example, Feng et al. revealed that

KCNQ1OT1 inhibited stomach cancer cell progression via

regulating miR-9 and LMX1A expression (Feng et al., 2020); Wu

et al. found the high expression of lncRNA-CCAT2 indicated poor

prognosis of stomach cancer and promoted cell proliferation and

invasion (Wu et al., 2017). Consequently, the case studies on colon

cancer and stomach cancer showed that GCHIRFLDA was an

excellent predictor.

4 Conclusion

In this work, we proposed a geometric complement

heterogeneous information and random forest-based approach

for predicting LDAs (named GCHIRFLDA). Firstly, the potential

TABLE 4 The top 20 colon cancer-related lncRNA candidates
predicted by the GCHIRFLDA model.

lncRNA Rank Evidence

CDKN2B-AS1 1 Lnc2Cancer 3.0& LncRNADisease v2.0

PVT1 2 Lnc2Cancer 3.0& LncRNADisease v2.0

UCA1 3 Lnc2Cancer 3.0& LncRNADisease v2.0

NEAT1 4 Lnc2Cancer 3.0& LncRNADisease v2.0

KCNQ1OT1 5 Lnc2Cancer 3.0

XIST 6 Lnc2Cancer 3.0& LncRNADisease v2.0

GAS5 7 Lnc2Cancer 3.0& LncRNADisease v2.0

SPRY4-IT1 8 Lnc2Cancer 3.0& LncRNADisease v2.0

MIR17HG 9 Literature (Xu et al., 2019)

TUG1 10 Lnc2Cancer 3.0& LncRNADisease v2.0

BANCR 11 Lnc2Cancer 3.0& LncRNADisease v2.0

HOTTIP 12 Lnc2Cancer 3.0& LncRNADisease v2.0

BCYRN1 13 LncRNADiseasev2.0

HNF1A-AS1 14 Lnc2Cancer 3.0

AFAP1-AS1 15 Lnc2Cancer 3.0

HULC 16 Lnc2Cancer 3.0

TUSC7 17 Lnc2Cancer 3.0

KIRREL3-AS3 18 unknown

LSINCT5 19 unknown

NPTN-IT1 20 unknown

TABLE 5 The top 20stomach cancer-related lncRNA candidates predicted by the GCHIRFLDA model.

lncRNA Rank Evidence

MALAT1 1 Lnc2Cancer 3.0& LncRNADisease v2.0

XIST 2 Lnc2Cancer 3.0& LncRNADisease v2.0

NEAT1 3 Lnc2Cancer 3.0& LncRNADisease v2.0

CCAT2 4 Lnc2Cancer 3.0& LncRNADisease v2.0

TUG1 5 Lnc2Cancer 3.0& LncRNADisease v2.0

KCNQ1OT1 6 Lnc2Cancer 3.0

HOTTIP 7 Lnc2Cancer 3.0& LncRNADisease v2.0

WT1-AS 8 Lnc2Cancer 3.0& LncRNADisease v2.0

HNF1A-AS1 9 Lnc2Cancer 3.0& LncRNADisease v2.0

HULC 10 Lnc2Cancer 3.0& LncRNADisease v2.0

MIR17HG 11 Literature (Bahari et al., 2015)

CRNDE 12 Lnc2Cancer 3.0& LncRNADisease v2.0

NPTN-IT1 13 Lnc2Cancer 3.0& LncRNADisease v2.0

LINC00675 14 Lnc2Cancer 3.0

KIRREL3-AS3 15 unknown

TP53COR1 16 unknown

BCYRN1 17 Lnc2Cancer 3.0

HOTAIRM1 18 Lnc2Cancer 3.0

AFAP1-AS1 19 LncRNADisease v.2.0

LINC01133 20 Lnc2Cancer 3.0
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LDA matrix is constructed by integrating the LMIs and MDAs

with the original LDA matrix. Then, the Jaccard similarity and

the Gaussian interaction profile similarity of lncRNA and disease

are combined to represent features of lncRNA and disease. Next,

a low-dimensional feature space is extracted by using

autoencoder. Finally, RF is employed as the classifier to

predict potential LDAs. In conclusion, the AUC and AUPR

comparison with other LDA prediction models based on five-

fold cross-validation and the case studies show that our model

has better LDA prediction performance.

Although the GCHIRFLDA model has a good performance,

it still has some limitations. Firstly, the lack of data verified by

biological experimental is a big shortcoming for computational

models. Secondly, randomly selecting the unknown lncRNA-

disease pairs as negative samples may incorrectly classify

potential positive samples as negative samples, which may

affect the prediction performance. Finally, only the

heterogeneous information of miRNAs is introduced in this

work, and in the future, more biological information will be

fused to improve the performance of the LDA prediction model.
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