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More andmore studies have proved thatmicroRNAs (miRNAs) play a critical role

in gene expression regulation, and the irregular expression of miRNAs tends to

be associated with a variety of complex human diseases. Because of the high

cost and low efficiency of identifying disease-associated miRNAs through

biological experiments, scholars have focused on predicting potential

disease-associated miRNAs by computational methods. Considering that the

existingmethods are flawed in constructing negative sample set, we proposed a

clustering-based sampling method for miRNA-disease association prediction

(CSMDA). Firstly, we integrated multiple similarity information of miRNA and

disease to represent miRNA-disease pairs. Secondly, we performed a

clustering-based sampling method to avoid introducing potential positive

samples when constructing negative sample set. Thirdly, we employed a

random forest-based feature selection method to reduce noise and

redundant information in the high-dimensional feature space. Finally, we

implemented an ensemble learning framework for predicting miRNA-disease

associations by soft voting. The Precision, Recall, F1-score, AUROC and AUPR of

the CSMDA achieved 0.9676, 0.9545, 0.9610, 0.9928, and 0.9940, respectively,

under five-fold cross-validation. Besides, case study on three cancers showed

that the top 20 potentially associated miRNAs predicted by the CSMDA were

confirmed by the dbDEMC database or literatures. The above results

demonstrate that the CSMDA can predict potential disease-associated

miRNAs more accurately.
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1 Introduction

MicroRNAs (miRNAs) are a kind of non-coding RNAs with a length of

20–24 nucleotides, which play a critical role in gene expression regulation (Lee

et al., 1993; Wightman et al., 1993; He & Hannon, 2004). Accumulating evidences

have showed that the dysregulation of miRNA is associated with human complex

diseases (Hwang & Mendell, 2006; Mattick & Makunin, 2006; Jonas & Izaurralde,

2015). Wang et al. have proved that the expression level of hsa-mir20b-5p is
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associated with the pathogenesis of Alzheimer’s disease

(Wang et al., 2022). Taverner et al. have proposed that

microRNA-425–5p and microRNA-451 can be used as the

risk biomarkers of cardiovascular disease (Taverner et al.,

2021). Ma et al. have showed that the overexpression of

microRNA-10b promotes invasion and metastasis of

mammary tumor cells (Ma et al., 2007). Hashimoto et al.

have demonstrated that the abnormal expression of miR-

1307–3p in human serum is associated with a variety of

malignant tumors (Hashimoto et al., 2021). Therefore,

accurately identifying disease-associated miRNAs can

facilitate the study of the mechanism of miRNA in complex

diseases. To guide complex biological experiments, many

computational models have been developed for predicting

miRNA-disease associations (Chen et al., 2019a).

Thus far, scholars have proposed a series of network-based

miRNA-disease association prediction models

(Bandyopadhyay et al., 2010). Jiang et al. integrated a human

miRNA-phenome network and a miRNA function-related

network for predicting disease-associated miRNAs (Jiang

et al., 2010). Shi et al. mapped the pathogenic disease genes

and miRNA target genes into the protein-protein interaction

network, and employed the randomwalk with restart to identify

miRNA-disease associations (Shi et al., 2013). Zeng et al.

implemented a structural perturbation approach for miRNA-

disease association prediction on a bilayer network which

integrated the known miRNA-disease associations and

miRNA (disease) similarity network (Zeng et al., 2018). Xiao

et al. first calculated the weighted K nearest neighbor profiles of

miRNAs and diseases, and then used graph regularized matrix

factorization to predict miRNA-disease associations (Xiao et al.,

2018). Zhong et al. proposed a global method based on non-

negative matrix factorization, which could simultaneously

predict all disease-related miRNAs (Zhong et al., 2018). Ma

et al. presented a miRNA-disease association prediction model

which did not depend on any known miRNA-disease

associations (Ma et al., 2019). Li et al. constructed a

heterogeneous bilayer network by integrating similarity

networks and interaction network, and then utilized the

algorithm faster randomized partial matrix completion to

infer latent disease-lncRNA associations (Li et al., 2019). Yu

et al. proposed a knowledge-driven method to predict disease-

miRNA associations (KDFGMDA) (Yu et al., 2022). Based on

dynamic neighborhood regularized logistic matrix

factorization, Yan et al. proposed a method (DNRLMF-

MDA) to predict miRNA-disease associations (Yan et al.,

2019). Qu et al. proposed a biased random walk

computational method for miRNA-disease association

prediction (BRWRMHMDA), which was restarted on

multilayer heterogeneous networks (Qu et al., 2021). Jiang

and Zhu proposed a model of decision template-based

miRNA-disease association prediction (DTMDA) (Jiang &

Zhu, 2020).

In recent decades, dozens of miRNA-disease association

prediction models based on machine learning have been

proposed. One of the major challenges facing these models is

how to construct negative samples set. Yao et al. implemented

an improved random forest-based model for miRNA-disease

association prediction (IRFMDA) which constructed negative

samples by randomly combining miRNAs and diseases (Yao

et al., 2019). Zhao et al. proposed an adaptive boosting model

(ABMDA) which employed the k-means algorithm to cluster

the unlabeled samples and selected negative samples randomly

from each cluster (Zhao et al., 2019). Zhou et al. designed a

miRNA-disease association prediction model based on gradient

boosting decision tree and logistic regression (GBDT-LR)

which applied the k-means algorithm to cluster the

unlabeled samples and extracted negative samples from each

cluster by the ratio of the size of each cluster to the entire

unlabeled sample set size (Zhou et al., 2020). Li et al. proposed a

graph auto-encoder-based miRNA-disease association

prediction model (GAEMDA) which randomly selected

5,430 unlabeled samples as negative samples (Li et al., 2021).

Chen et al. proposed an anti-noise miRNA-disease association

prediction algorithm (ANMDA) which applied the k-means

algorithm to cluster the unlabeled samples and selected negative

samples equally from each cluster to reduce the noise (Chen

et al., 2021). Dai et al. presented a resampling-based ensemble

framework (ERMDA) which constructed multiple balanced

training subsets by resampling and obtained the final

prediction result by soft voting strategy (Dai et al., 2022).

Liu et al. proposed a new novel method via deep forest

ensemble learning based on autoencoder (DFELMDA) to

predict miRNA-disease associations (Liu et al., 2022). Chen

et al. presented a model of extreme gradient boosting machine

for miRNA-disease association (EGBMMDA), which calculated

the statistical measures and matrix factorization results for each

miRNA-disease pair to form an information feature vector

(Chen et al., 2018). The above methods inevitably

introduced potential positive samples into negative sample

set, which limited the prediction performance of these

models (Rayhan et al., 2017).

In this paper, we proposed a novel clustering-based sampling

method for miRNA-disease association prediction (CSMDA)

which could construct more reliable negative sample set.

Firstly, the CSMDA integrated a variety of similarity

information of miRNA and disease to represent the feature

vector of miRNA-disease pairs. Secondly, the CSMDA

constructed negative sample set based on MiniBatchKMeans

clustering to reduce the proportion of potentially positive

samples in the negative samples set. Thirdly, the CSMDA

generated numerous training subsets through multiple rounds

of sampling on the negative sample set to reduce the bias caused

by single small-scale sampling. Fourthly, the CSMDA applied a

random forest-based feature selection approach to reduce noise

and redundant information in the high-dimensional feature
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space. Finally, a set of base classifiers were trained on the training

subsets after feature selection and the final prediction result was

obtained by soft voting. The Precision, Recall, F1-score, AUROC

and AUPR of the CSMDA achieved 0.9676, 0.9545, 0.9610,

0.9928 and 0.9940 under 5-fold cross-validation, which was

significantly higher than that of the existing methods. Besides,

case study on three cancers showed that all the top 20 miRNAs

predicted to be most likely associated with these cancers by the

CSMDAwere confirmed by the dbDEMC database or literatures.

2 Materials and methods

2.1 Experimentally confirmed miRNA-
disease associations

Experimentally confirmed 5,430miRNA-disease associations

were obtained from the HMDD (Human microRNA Disease

Database) (Li et al., 2014), including 495 miRNAs and

383 diseases. Here, we stored these miRNA-disease

associations by a matrix MDNm×Nd, which was defined as:

MD(m(i), d(j)) � {1, miRNAm(i)and disease d(j)are verified to be related
0, miRNAm(i)and disease d(j)are not verified to be related (1)

Here, Nm and Nd represent the number of miRNAs and

diseases, respectively.

2.2 Disease semantic similarity

The descriptors of 383 diseases mentioned above were

obtained from the MeSH (Medical Subject Headings) database

and Directed Acyclic Graphs (DAGs) for each disease were

constructed by the previous methods (Wang et al., 2010; Xuan

et al., 2013). In aDAG (D), the nodes represent diseaseD and its

ancestral nodes, and the directed edges represent the relationship

of diseases. The semantic contribution of disease d to diseaseD in

DAG (D) was defined as follows:

D1D(d) � { 1, d � D
max{Δ × D1D(d′)|d′ ∈ children ofd}, d ≠ D

(2)
Here, Δ is the semantic contribution factor. As the distance

between D and other diseases in DAG(D) increases, the

semantic contribution of these diseases will decrease. Then,

the semantic value of disease D was defined as follows:

DV1(D) � ∑
d∈T(D)

D1D(d) (3)

Here, T(D) represents the disease D and its all ancestral

nodes. For two diseases, d(k) and d(l), the disease semantic

similarity between them was defined as follows:

SS1(d(i), d(j)) � ∑
t∈T(d(i))∩T(d(j))(D1d(i)(t) +D1d(j)(t))

DV1(d(i)) +DV1(d(j))
(4)

Considering two different diseases in the same layer of a

DAG (D), if the occurrence rate of one disease is different from
another, their semantic contribution to disease D should be

different. Inspired by Xuan et al. (Xuan et al., 2013), another

way to calculate the semantic contribution of disease d in

DAG (D) to disease D was defined as follows:

D2D(d) � −log the number of DAGs including d

the number of disease
(5)

Similarly, the disease semantic value DV2(D) of disease D

was defined as follows:

DV2(D) � ∑
d∈T(D)

D2D(d) (6)

Then, the disease semantic similarity between disease d(i)
and disease d(j) was defined as follows:

SS2(d(i), d(j)) � ∑
t∈T(d(i))∩T(d(j))(D2d(i)(t) +D2d(j)(t))

DV2(d(i)) +DV2(d(j))
(7)

Finally, we combined the above two methods to calculate the

disease semantic similarity of disease d(i) and d(j) as follows:

SS(d(i), d(j)) � SS1(d(i), d(j)) + SS2(d(i), d(j))
2

(8)

2.3 Gaussian interaction profile kernel
similarity for diseases

Based on the assumption that miRNAs with similar functions

tend to be related to diseases with similar phenotypes (van

Laarhoven et al., 2011), Gaussian interaction profile kernel

(GIPK) similarity for diseases was introduced to represent the

relationship between diseases from another perspective. Here, let

IP (d(i)) represent the i th column vector of the miRNA-disease

association matrixMD, which denotes whether there are verified

associations between disease d(i) and each miRNA. Then, the

GIPK similarity of disease d(i) and d(j) was defined as follows:

GD(d(i), d(j)) � exp( − γd
����IP (d(i)) − IP (d(j))����2) (9)

In Eq. 9, parameter γd controls the kernel bandwidth and was

calculated by the following formula:

γd �
γ′d

1
Nd

∑Nd

i�1‖IP (d(i))‖2 (10)
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According to the previous study (Chen & Yan, 2013; Chen

et al., 2016), γ′d was set to 1 here.

2.4 Integrated similarity of diseases

Since there may be no semantic similarity between two

diseases, we integrated semantic similarity and GIPK

similarity of disease here. Inspired by previous works (Dai

et al., 2022), the integrated disease similarity between d(i) and
d(j) was defined as follows:

IDS(d(i), d(j)) � { SS(d(i), d(j)), SS(d(i), d(j)) ≠ 0
GD(d(i), d(j)), SS(d(i), d(j)) � 0

(11)

2.5 MiRNA functional similarity

Based on the hypothesis that miRNAs with similar functions

tend to be associated with diseases with similar phenotypes,

miRNA functional similarity can be calculated (Wang et al.,

2010). Here, we directly obtained miRNA functional similarity

from the MISIM database (http://www.cuilab.cn/fi les/images/

cuilab/misim.zip) and represented them by FS(m(i), m(j)).

2.6 Gaussian interaction profile kernel
similarity for miRNAs

Similar to disease, the GIPK similarity between miRNAm(i)
and m(j) was defined as follows:

GM(m(i), m(j)) � exp( − γm
����IP (m(i)) − IP (m(j))����2)

(12)

γm � γ′m
1
Nm

∑Nm

i�1 ‖IP (m(i))‖2 (13)

Here, IP (m(i)) represent the i th row vector of miRNA-

disease associations matrix MD, which indicates whether there

are verified associations between miRNA m(i) and each disease.

Inspired by previous works (Chen & Yan, 2013; Chen et al.,

2016), γ′m was set to 1 here.

FIGURE 1
The method of sample representation.

FIGURE 2
The method of constructing a negative sample set.
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2.7 Integrated similarity of miRNAs

Since there may be no functional similarity between two

miRNAs, we integrated the miRNA functional similarity and the

GIPK similarity of miRNA m(i) and m(j). Inspired by previous

works (Dai et al., 2022), the integrated miRNA similarity between

m(i) and m(j) was defined as follows:

IMS(m(i), m(j)) � { FS(m(i), m(j)), FS(m(i), m(j)) ≠ 0
GM(m(i), m(j)), FS(m(i), m(j)) � 0

(14)

2.8 Sample representation

Here, a miRNA-disease pair was taken as a sample. The

feature vector of disease d(i) was defined as follow:

FD(d(i)) � (IDS(d(i), d(1)), IDS(d(i), d(2)), . . . , IDS(d(i), d(Nd))) (15)

Similarly, the feature vector of miRNA m(j) was defined as

follow:

FM(m(j)) � (IMS(m(j), m(1)), IMS(m(j), m(2)), . . . , IMS(m(j), m(Nm)))
(16)

Then, the feature vector of a sample (d(i),m(j)) was defined
as follow:

F(d(i), m(j)) � (FD(d(i)), FM(m(j))) (17)

The method of sample representation is shown in Figure 1.

2.9 Constructing negative sample set

In this work, the 5,430 experimentally confirmed miRNA-

disease associations were taken as positive samples and the

184,155 unverified miRNA-disease pairs as unlabeled samples.

Most methods (Yao et al., 2019; Zhao et al., 2019; Zhou et al.,

2020; Chen et al., 2021; Li et al., 2021; Dai et al., 2022) of

constructing negative sample set are to randomly select some

unlabeled samples as negative samples, or apply k-means

clustering on the unlabeled samples and sample negative

examples from the resulted clusters. However, these methods

may introduce potential positive samples into negative sample set

and lead to the performance degradation of the trained model

(Chen et al., 2021). Here, we proposed a novel and effective

method to construct negative sample set from the total sample

set. Firstly, we defined the positive sample set P, and the

unlabeled sample set U:

P � {F(d(i), m(j))∣∣∣∣MD(m(j), d(i)) � 1} (18)
U � {F(d(i), m(j))∣∣∣∣MD(m(j), d(i)) � 0} (19)

And we defined the total sample set T as follows:

T � P ∪ U (20)

Secondly, according to the hypothesis that in the total sample

set, the smaller the Minkowski distance between the two samples,

the more likely they are to be the same kind of samples (Hartigan

& Wong, 1979), we clustered T into K clusters by the

MiniBatchKMeans (Pedregosa et al., 2011). The formula for

calculating Minkowski distance was as following Eq. 21.

Dmk(x, y) � ⎛⎝∑n
u�1

∣∣∣∣xu − yu

∣∣∣∣p⎞⎠ 1
p (21)

MiniBatchkmeans is an optimization of K-Means

algorithm. It uses mini-batches to reduce the amount of

computation required to converge to a local solution,

thereby reducing the computing time required for

clustering the large-scale dataset. To ensure the accuracy of

clustering results, we repeated clustering ten times. Then, we

denoted the K clusters as follows:

C(1), C(2), . . . , C(K) (22)

The proportion of positive samples in the i th cluster was

defined as follows:

p(i) � |C(i) − U|
|C(i)| , i ∈ {1, 2, . . . , K} (23)

FIGURE 3
Ensemble learning framework.
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Thirdly, we ranked all clusters by p(i), and then denoted the

top n (n<K) clusters with the fewest p(i) as follows:
C(h(1)), C(h(2)), . . . , C(h(i)), . . .C(h(n)) (24)

Here, C(h(i)) represents the cluster with the i th fewest p(i).
Finally, we defined the i th negative sample set NS(h(i)) as

follows:

NS(h(i)) � C(h(i)) − P, i ∈ {1, 2, . . . , n} (25)

Here,NS(h(i)) represents the clusterC(h(i)) after removing

the positive sample.

Then, we constructed the total negative sample set N as

follows:

N � NS(h(1)) ∪ NS(h(2)) ∪ . . .NS(h(n)) (26)

The number of samples in the negative sample N set

constructed by the above method is 119,659. The method of

constructing a negative sample set is shown in Figure 2.

2.10 Ensemble learning framework

In this work, we implemented an ensemble learning

framework for miRNA-disease association prediction. Inspired

by the previous research (Chen et al., 2019b; Dai et al., 2020;

Sherazi et al., 2021; Wang et al., 2021; Zeng et al., 2021), we built

the CSMDA through the following three stages: 1) construct

multiple training subsets to increase the diversity of base

classifiers by randomly sampling from N; 2) perform the

random forest-based feature selection to reduce noise and

redundant information in the high-dimensional feature space;

3) use soft voting strategy to integrate the prediction results of all

base classifiers. The process of constructing the ensemble

learning framework is shown in Figure 3.

2.10.1 Constructing training subsets
In this work, we constructed multiple different training

subsets and balanced them to improve the prediction

performance of the CSMDA. On the one hand, the diversity

of subsets makes base classifiers discrepant from each other and

improves the generalization ability of the CSMDA. On the other

hand, multiple disparate training subsets can make full use of all

negative samples. Here, we defined the size of the P as |P|. First,
all samples in P were regarded as positive samples. Second, the

|P| negative samples were randomly sample fromN. Finally, the

positive and negative samples were combined into each training

subset. In this work, we constructed ten training subsets through

the above methods for the CSMDA.

2.10.2 Feature selection on each training subset
In the CSMDA, each miRNA-disease feature vector has

878 dimensions, which may contain a large amount of noise

and redundant information. Inspired by previous research (Yao

et al., 2019; Dai et al., 2022), we performed feature selection based

on random forest variable importance score on each training

subset. First, we trained a random forest model on each training

subset and sorted all features by the variable importance scores

which were generated by the random forest. Then, we selected

the top X features with the highest variable importance scores to

form a new feature space for each subset.

2.10.3 Soft voting strategy
In this work, the Extreme Gradient Boosting (XGBoost)

(Chen & Guestrin, 2016) was used as base classifier. Here, let

FIGURE 4
The silhouette coefficient of clustering results under different numbers of clusters.

TABLE 1 Performance comparison of the CSMDA using different base
classifiers.

Model Precision Recall F1-score AUROC AUPR

CSMDA-AB 0.9567 0.9267 0.9414 0.9885 0.9901

CSMDA-ERT 0.9666 0.9514 0.9589 0.9907 0.9926

CSMDA-RF 0.97 0.9468 0.9582 0.9912 0.9929

CSMDA-XGB 0.9674 0.9543 0.9608 0.9927 0.9939
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m represent the number of training subsets. Take an unknown

miRNA-disease pair as sample input, m base classifiers could

produce m prediction result for the sample, and then the m

prediction results were integrated by the soft voting strategy

(Sherazi et al., 2021; Wang et al., 2021; Zeng et al., 2021).

Specifically, the output of the i th sample by soft voting was

defined as follows:

O(i) � 1
m
∑m

j�1O(i, j) (27)

Here, O(i, j) represents the prediction scores of the j th

classifier for the i th sample. If O(i)> 0.5, the miRNA-disease

pair were regarded to be associated; otherwise, it was considered

to be not associated.

3 Results

3.1 Performance evaluation criteria

In this work, we employed five-fold cross-validation to

evaluate the performance of the CSMDA. Firstly, we adopted

the known 5,430 miRNA-disease association pairs as positive

samples and randomly selected an equal number of samples from

the negative sample set N as negative samples. Then, all positive

samples and all negative samples were combined into a sample

set. Next, the constructed sample set was divided into five parts,

and in each cross-validation, one part was taken out and merged

with unlabeled samples to make up the test sample set, and the

remaining four parts were all used as the training sample set.

Here, we evaluated the CSMDA by five metrics: Precision, Recall,

F1-score, AUC (Area under the receiver operating characteristic

curve) and AUPR (Area under the precision-recall curve). The

receiver operating characteristic (ROC) curves were obtained by

plotting the true positive rate (TPR) and false-positive rate (FPR)

under different levels of thresholds, and then the area under of

ROC (AUC) was computed (Hajian-Tilaki, 2013). The higher the

turning point of the ROC curve to the upper left, the closer the

AUC is to 1, indicating the better performance of the model. The

formulae for computing TPR and FPR were as following Eq. 28

and Eq. 29.

TPR � TP

TP + FN
(28)

FPR � FP

FP + TN
(29)

The Precision-Recall (PR) curves were obtained by plotting

the Precision and Recall rates under different levels of thresholds,

and then the area under of PR curve (AUPR) was computed

(Saito & Rehmsmeier, 2015). Similarly, the higher the turning

point of the PR curve to the upper right, the closer the AUPR is to

1, indicating that the model has a better performance in

predicting. The formulae for computing Precision and Recall

were as following Eq. 30 and Eq. 31.

TABLE 2 Performance comparison of the CSMDA under different dimension training samples.

Model Precision Recall F1-score AUROC AUPR

CSMDA-NOFS 0.9674 0.9543 0.9608 0.9927 0.9939

CSMDA-FS75 0.9676 0.9545 0.9610 0.9928 0.9940

CSMDA-FS50 0.9667 0.9551 0.9608 0.9927 0.9939

CSMDA-FS25 0.9657 0.9540 0.9598 0.9916 0.9930

FIGURE 5
The distribution of features from miRNAs and diseases among the top X features.
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Precision � TP

TP + FP
(30)

Recall � TP

TP + FN
(31)

Furthermore, F1-Score, as a comprehensive metric, is a

toned-down average of precision and recall and is used to

balance the effects of precision and recall and evaluate a

classifier more comprehensively. In addition, the Accuracy is

the result of the correct classification of the response model. The

F1-Score and Accuracy can be calculated as Eq. 32 and Eq. 33 as

followed.

F1-score � 2pPrecisionpRecall
Precision + Recall

(32)

Accuracy � TP + TN

TP + TN + FP + FN
(33)

3.2 Performance analysis of clustering

In constructing the negative sample set, the number of

clusters K is the key factor affecting the effectiveness of the

final clustering. In this work, the silhouette coefficient (SC)

(Rousseeuw, 1987) was adopted as the cluster validity index to

evaluate the validity of clustering results with different cluster

numbers. The silhouette coefficient is a kind of internal index to

judge criteria of clustering result and it is calculated as follows:

SC(o) � b(o) − a(o)
max{a(o), b(o)} (34)

Here, a(o) represents the average distance between sample o

and other samples in its cluster, and b(o) represents the

minimum average distance between sample o and samples in

other clusters. The value of SC(o) ranges from -1 to 1, and SC(o)
getting closer to 1 indicates that the cluster algorithm works

better. First, T was divided into 2, 3 . . . 24, and 25 clusters by

MiniBatchKMeans clustering. Then, according to each sample

and its label obtained through clustering, the silhouette

coefficient was calculated in turn. The silhouette coefficient

with a different number of clusters is shown in Figure 4. As

one can see, the silhouette coefficient decreases gradually with the

increase of the number of clusters and achieves a maximum of

0.349 when the number of clusters is 2. Therefore, we set the

values of K to 2 in the CSMDA.

3.3 Performance analysis of base classifier

Base classifier plays an importance role in the prediction

performance of the ensemble learning framework. In this work,

we compared the performance of four base classifiers: AdaBoost,

Random Forest (RF), Extreme Gradient Boosting (XGBoost) and

Extremely Randomized Trees (ExtRa Trees). For optimal

performance, we optimized the hyper-parameters of each

model. The prediction performance of the CSMDA using

different base classifiers are listed in Table 1. As one can see,

the Precision of the XGBoost is 0.9674, the Recall is 0.9543, the

F1-score is 0.9608, the AUROC is 0.9927 and the AUPR is 0.9939.

The XGBoost is lower than the RF in terms of Precision, but it is

higher than other models in all other metrics. Therefore, the

XGBoost was employed in the CSMDA.

3.4 Feature dimension analysis of samples

In the feature selection, according to the variable importance

scores, 100, 75, 50, and 25% features were selected from the

original feature space to construct the training set, denoted as

CSMDA-NOFS, CSMDA-FS75, CSMDA-FS50, and CSMDA-

FS25, respectively. Then, we evaluated the prediction

performance of the CSMDA with different number of

features, and the results were listed in Table 2. As one can

see, when the dimension of the training sample is 75% of the

length of the original feature vector, the effect of feature selection

on improving the performance of the CAMDA is optimum.

Therefore, we set the feature dimension of the training set to 75%

of the length of the original feature vector. We further analyzed

the contribution of miRNA and disease to the feature vector, the

distribution of features from miRNAs and diseases among the X

TABLE 3 Performance comparison of the CSMDA with other MDA prediction models.

Model Precision Recall F1-score AUROC AUPR

ABMDA [19] 0.8213 ± 0.0033 0.8371 ± 0.0044 0.8290 ± 0.0030 0.9023 ± 0.0021 0.8879 ± 0.0032

ANMDA [22] 0.8561 ± 0.0017 0.8728 ± 0.0020 0.8643 ± 0.0014 0.9373 ± 0.0005 0.9328 ± 0.0008

GAEMDA [21] 0.8146 ± 0.0031 0.9111 ± 0.0028 0.8597 ± 0.0010 0.9352 ± 0.0001 0.8850 ± 0.0010

GBDT-LR [20] 0.8403 ± 0.0026 0.8567 ± 0.0031 0.8484 ± 0.0021 0.9246 ± 0.0010 0.9177 ± 0.0015

IRFMDA [18] 0.8447 ± 0.0021 0.8598 ± 0.0025 0.8521 ± 0.0016 0.9267 ± 0.0009 0.9222 ± 0.0012

ERMDA [23] 0.8740 ± 0.0039 0.9043 ± 0.0019 0.8889 ± 0.0022 0.9561 ± 0.0013 0.9542 ± 0.0020

CSMDA 0.9676 ± 0.0052 0.9545 ± 0.0059 0.9610 ± 0.0042 0.9928 ± 0.0012 0.9940 ± 0.0009
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features with the highest variable importance scores is shown in

Figure 5. As we can see from Figure 5, the number of features

from miRNAs is generally greater than that from diseases, which

is consistent with the fact that the number of miRNAs is greater

than that from the diseases. This indicates that feature selection

based on the variable importance score is reasonable.

3.5 Performance comparison between
clustering-based sampling method for
miRNA-disease association prediction and
other miRNA-disease association
prediction models

To prove the ability of the CSMDA to predict potential

disease-associated miRNAs, we compared it with six state-of-

the-art MDA prediction models, including ABMDA (Zhao et al.,

2019), ANMDA (Chen et al., 2021), GAEMDA (Li et al., 2021),

GBDT-LR (Zhou et al., 2020), IRFMDA (Yao et al., 2019) and

ERMDA (Dai et al., 2022). First, the CSMDA and other MDA

prediction models constructed negative sample set by their

respective methods. Secondly, we used the recommended

hyper-parameters for these models. Finally, we performed

500 times five-fold cross-validation for each model. The

performance of the above MDA prediction models are shown

in Table 3. As one can see, the Precision, Recall, F1-score, AUC

and AUPR of the CSMDA is 0.9676 ± 0.0052, 0.9545 ± 0.0059,

0.9610 ± 0.0042, 0.9928 ± 0.0012, and 0.9940 ±

0.0009 respectively, which superior to other methods in all

TABLE 4 The top 20 miRNAs for three cancers predicted by the
CSMDA.

Disease Rank miRNA Evidence

breast cancer 1 hsa-mir-195 dbDEMC

2 hsa-mir-146a dbDEMC

3 hsa-mir-24 dbDEMC

4 hsa-let-7e dbDEMC

5 hsa-mir-9 dbDEMC

6 hsa-mir-219 dbDEMC

7 hsa-mir-148a dbDEMC

8 hsa-mir-218 dbDEMC

9 hsa-let-7a dbDEMC

10 hsa-mir-29a dbDEMC

11 hsa-mir-223 dbDEMC

12 hsa-mir-30d dbDEMC

13 hsa-mir-92a dbDEMC

14 hsa-mir-210 dbDEMC

15 hsa-mir-200c dbDEMC

16 hsa-mir-17 dbDEMC

17 hsa-mir-214 dbDEMC

18 hsa-mir-372 dbDEMC

19 hsa-mir-106b dbDEMC

20 hsa-mir-221 dbDEMC

colon cancer 1 hsa-mir-24 dbDEMC

2 hsa-mir-20a dbDEMC

3 hsa-mir-125b dbDEMC

4 hsa-mir-182 dbDEMC

5 hsa-mir-29a dbDEMC

6 hsa-mir-214 dbDEMC

7 hsa-mir-17 dbDEMC

8 hsa-mir-21 dbDEMC

9 hsa-mir-30b dbDEMC

10 hsa-mir-29b dbDEMC

11 hsa-mir-19b dbDEMC

12 hsa-mir-19a dbDEMC

13 hsa-mir-18a dbDEMC

14 hsa-mir-141 dbDEMC

15 hsa-mir-155 dbDEMC

16 hsa-mir-223 dbDEMC

17 hsa-mir-127 dbDEMC

18 hsa-mir-34c Hiyoshi, Y., et al. [40]

19 hsa-mir-1 dbDEMC

20 hsa-mir-126 dbDEMC

lung cancer 1 hsa-mir-29c dbDEMC

2 hsa-mir-92a dbDEMC

3 hsa-mir-206 dbDEMC

4 hsa-mir-214 dbDEMC

5 hsa-mir-183 dbDEMC

(Continued in next column)

TABLE 4 (Continued) The top 20miRNAs for three cancers predicted by
the CSMDA.

Disease Rank miRNA Evidence

6 hsa-mir-210 dbDEMC

7 hsa-mir-142 dbDEMC

8 hsa-mir-221 dbDEMC

9 hsa-mir-30e dbDEMC

10 hsa-mir-24 dbDEMC

11 hsa-mir-223 dbDEMC

12 hsa-mir-20b dbDEMC

13 hsa-mir-193b dbDEMC

14 hsa-mir-191 dbDEMC

15 hsa-mir-22 dbDEMC

16 hsa-mir-124 dbDEMC

17 hsa-mir-18b dbDEMC

18 hsa-mir-30a dbDEMC

19 hsa-mir-148a dbDEMC

20 hsa-mir-15b dbDEMC
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metrics. The results proved the outstanding prediction

performance of the CSMDA.

3.6 Case studies

To prove the application value of the CSMDA in guiding

biological experiments, we performed case studies on three

common cancers, including breast cancer, colon cancer and

lung cancer. Firstly, we combined the 5,430 positive samples

verified by the experiment and the 5,430 negative samples

randomly selected from the negative sample set N into the

training set of CSMDA. Secondly, we identified the positive

and negative samples to which the three diseases belong.

Thirdly, in the case study of current cancer, remove all

samples related to current cancer in the training set. Finally,

we trained CSMDA on this training set, and scored miRNA-

disease pairs related to current cancer by using the CSMDA. We

verified the top 20 miRNAs predicted to be associated with each

cancer, and the results were listed in Table 4. Here, we validated

these predicted miRNAs through the dbDEMC (Database of

differentially expressed miRNAs in human cancers) database

(Yang et al., 2017) or literatures. As one can see from Table 4, for

breast cancer and lung cancer, all predicted miRNAs were

confirmed by the dbDEMC database; for colon cancer, all

predicted miRNAs except hsa-mir-34c were confirmed by the

dbDEMC database. However, Hiyoshi et al. demonstrated that

the expression level of Mir-34C in human colon cancer cells was

higher than that in non-tumor cells (Hiyoshi et al., 2015). In

summary, case study demonstrated that the CSMDA was reliable

for predicting disease-associated miRNAs.

4 Conclusion

In this work, we presented a clustering-based sampling

method for predicting miRNA-disease associations, named

CSMDA. Firstly, the CSMDA integrated similarity of disease

and miRNA to represent samples. Secondly, the CSMDA

implemented an effective clustering-based sampling

method to construct negative sample set. Thirdly, the

CSMDA employed a random forest-based feature selection

method to reduce noise and redundant information in the

high-dimensional feature space. Finally, the CSMDA

implemented an ensemble learning framework for

predicting miRNA-disease associations by soft voting. The

experimental results and case studies on the three cancers

demonstrate that the CSMDA is a reliable model to predict

disease-associated miRNAs. The main contribution of the

CSMDA is to propose a new method to construct a more

effective negative sample set, which avoids the possibility of

introducing potential positive samples into negative sample

set as much as possible. The negative sample set constructed

by our method not only makes CSMDA perform well, but

also improves the performance of other MDA prediction

models. However, it should be noted that there are several

limitations to the CSMDA. First, it is still inevitable to

introduce potential positive samples in the stage of

constructing the negative sample set. Second, the

clustering algorithm used in the CSMDA is

MiniBatchKMeans which showed good clustering effect,

but other clustering algorithms may make the negative

sample set purer. We will study the clustering effect of

other clustering algorithms on the total sample set in the

next work. Finally, in current work, the information

associated with miRNA and disease is limited, which may

result in the essential features that are helpful to identify

miRNA-disease associations not being extracted in the

CSDMA. In the future, we will integrate more features

related to disease and miRNA into the CSMDA. In

summary, we hope that the CSMDA can help researchers

make breakthroughs in the treatment of complex human

diseases at the miRNA level.
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