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Clear cell renal cell carcinoma (ccRCC) is a lethal urological malignancy. DNA

methylation is involved in the regulation of ccRCC occurrence and progression.

This study aimed to establish a prognostic model based on DNAmethylation to

predict the overall survival (OS) of patients with ccRCC. To create thismodel, we

used the transcriptome and DNAmethylation data of patients with ccRCC from

The Cancer Genome Atlas (TCGA) database. We then used the MethylMix R

package to identify methylation-driven genes, and LASSO regression and

multivariate Cox regression analyses established the prognostic risk model,

from which we derived risk scores. We incorporated these risk scores and

clinical parameters to develop a prognostic nomogram to predict 3-, 5-, and 7-

year overall survival, and its predictive power was validated using the

ArrayExpress cohort. These analyses identified six methylation-driven genes

(SAA1, FUT6, SPATA18, SHROOM3, AJAP1, and NPEPL1) that produced risk

scores, which were sorted into high- and low-risk patient groups. These two

groups differed in nomogram-predicted prognosis, the extent of immune cell

infiltration, tumor mutational burden, and expected response to additional

therapies. In conclusion, we established a nomogram based on six DNA

methylation-driven genes with excellent accuracy for prognostic prediction

in ccRCC patients. This nomogrammodel might provide novel insights into the

epigenetic mechanism and individualized treatment of ccRCC.
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1 Introduction

Renal cell carcinoma is a common malignant tumor

originating from the renal parenchymal urothelial system, and

more than 70% of renal cell carcinomas are renal clear cell

carcinomas (Jonasch et al., 2021). Surgery is the main

treatment for localized ccRCC, but 20%–40% of patients

experience postoperative recurrence or metastasis (Teng et al.,

2014). The 5-year survival rate of patients with ccRCC and

distant metastases is extremely low, and the prognosis is poor

(Atkins and Tannir, 2018). Treatment of advanced and

metastatic ccRCC relies primarily on immunotherapy, targeted

therapy, and chemotherapy (Atkins and Tannir, 2018), but not

all patients can benefit from these treatments. Therefore, early

identification of patients with high-risk and improved treatment

decisions are expected to increase overall survival in patients with

ccRCC. Presently, the TNM staging system cannot well

characterize the biological heterogeneity of tumors, So, its

performance in predicting the prognosis of ccRCC needs to be

improved (Ljungberg et al., 2015). Exploring biomarkers with

prognostic value for ccRCC patients is critical for optimizing

treatment decisions. Epigenetic changes are highly involved in

cancer progression (Jones and Baylin, 2007). DNAmethylation is

an important aspect of epigenetic status, and it is involved in

transcriptional regulation and maintenance of genomic stability

(Pu et al., 2016). Identifying abnormal changes in DNA

methylation can be used for cancer risk evaluation, early

diagnosis, and prognostic prediction (Liu et al., 2021).

Hypermethylation of promoter or enhancer CpG regions in

ccRCC can lead to inactivation of important tumor suppressor

genes, such as SFRP1 (Morris et al., 2010), RASSF1A (Morrissey

et al., 2001), and STK11 (Zheng et al., 2017). Aberrant DNA

methylation may influence the occurrence and progression of

ccRCC. Several studies have reported the prognostic significance

of DNA aberrant methylation in ccRCC (Deckers et al., 2015;

Zhao et al., 2016; Fabrizio et al., 2017). However, there has yet to

be a comprehensive and systematic methylation assessment in

patients with ccRCC to further explore the role of dysregulated

DNA methylation and corresponding gene expression changes,

which can inform prognosis and treatment decisions in patients

with ccRCC.

MethylMix is an R-based algorithm for identifying

differentially methylated genes in specific diseases (Cedoz

et al., 2018). In this study, DNA methylation and gene

expression data from patients with ccRCC were obtained from

The Cancer Genome Atlas (TCGA) database, and methylation-

driven genes were identified using the MethylMix R package. A

six DNA methylation risk scoring model was constructed using

LASSO regression analysis. We combined the risk score with

clinicopathological risk factors to construct a nomogram for

ccRCC patients’ overall survival prediction and validated the

model using the ArrayExpress database. In addition, we explored

the molecular and immune characteristics and drug sensitivity of

the risk assessment groups to provide new insights into their

roles in ccRCC and new avenues of therapeutic research. Our

findings suggest that the six gene risk model can achieve accurate

prediction of prognosis in ccRCC.

2 Materials and methods

2.1 Data acquisition and processing

In this study, RNA-sequencing data (including 71 non-

cancerous tissues and 512 ccRCC tissues), gene mutations,

and clinicopathological data for ccRCC were downloaded

from the TCGA database. TCGA-Assembler2 was used to

acquire level-3 methylation data (including 24 non-cancerous

tissues and 302 ccRCC tissues) using the Illumina Infinium

Human Methylation 450 platform (Wei et al., 2018). We used

the E-MTAB-1980 dataset (N = 101) from the ArrayExpress

database as the external validation cohort.

2.2 Identification of methylation-driven
genes

The MethylMix R package was used to analyze DNA

methylation data and paired gene expression data of patients

with ccRCC to obtain MDGs. The MethylMix analysis requires

three steps. First, correlation analysis was performed on gene

methylation and paired gene expression data to obtain

transcriptionally predicted genes. Next, a β-mixture model

was established for each gene. Finally, the methylation status

was compared between 302 ccRCC samples and 24 non-

cancerous samples using the Wilcoxon rank test to obtain

differentially methylated genes.

2.3 Functional enrichment and pathway
analysis of MDGs

To understand the potential molecular mechanisms of

MDGs, Gene Ontology (GO) enrichment analysis was

performed using the clusterProfiler R package.

2.4 Building and validating of the risk score
model

Independent MDGs that were significantly related to

prognosis were identified using least absolute shrinkage and

selection operator (LASSO) regression analysis. A risk score

prediction model with six genes was obtained by weighting

mRNA expression levels using multivariate Cox regression

coefficients. We divided the patients with ccRCC into two
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groups according to the median risk score: high- and low-risk.

We conducted Kaplan–Meier curve and time-dependent receiver

operating characteristic curve (tdROC) analyses to measure the

model’s predictive performance.

2.5 Establishment and validation of the
predictive nomogram

Univariate and multivariate Cox regression analyses were

performed to assess the significance of the risk scoring model and

other traditional clinical features for predicting overall survival

(OS) for patients with ccRCC. A prognostic nomogram for

patients with ccRCC was constructed based on risk scores and

other traditional clinical parameters to predict the 3-, 5-, and 7-

year OS. The consistency index (C-index) was calculated to

quantify the discriminative performance of the nomograms.

The nomogram generated a prognostic risk score for each

patient. The predictive performance of the nomogram was

further assessed using the tdROC curve analysis. A calibration

plot was constructed to compare the clinically observed and

predicted survival rates. We validated the nomogram using a

dataset obtained from ArrayExpress.

2.6 Weighted gene correlation network analysis
and gene set enrichment analysis

Weighted gene correlation network analysis (WGCNA) was

performed to identify significant modules related to the six gene

risk score using the R package WGCNA. The construction

process was the same as previously described (Langfelder and

Horvath, 2008). Module Membership (MM) was defined as the

Pearson’s correlation between gene expression and module

eigengenes. Gene significance (GS) was defined as the

Pearson’s correlation between gene expression and certain

clinical trait. Based on cutoff criteria |MM|>0.8, |GS|>0.7, hub
genes were identified in the significant modules. Differentially

expressed genes (DEGs) between the two groups with high- and

low six-gene score were identified using Deseq2 (Anders and

Huber, 2010). The biological processes in the two risk subgroups

were explored using gene set enrichment analysis (GSEA) based

on the GO Biological Processes with the clusterProfiler package

of R (Yu et al., 2012).

2.7 Gene mutation analysis and antitumor
drug sensitivity analysis

Gene mutation information was downloaded from the

TCGA database. The mutations in each ccRCC sample were

calculated using maftools R package (Mayakonda et al., 2018).

GDSC (https://www.cancerrxgene.org/) is a public online

database that provides information on molecular markers

of drug sensitivity and response in cancer cells, providing a

unique resource for facilitating the discovery of new targets

for cancer therapy (Yang et al., 2013). We used GDSC to

explore differences in antitumor drug sensitivity between the

two risk subgroups and the oncopredict package of the R

program was used for analysis. Lower scores in the analysis

represent higher drug sensitivity.

2.8 Tumor-infiltrating immune cells
characteristics and tumor immune
dysfunction and exclusion score

CIBERSORT analysis was used to assess the relative

proportion of 22 tumor-infiltrating immune cells in ccRCC

tumor tissues. Wilcoxon rank-sum test was used for analyzing

the different levels of immune cell infiltration between the two

risk groups. The response of different risk groups to

immunotherapy was predicted using the TIDE (http://tide.

dfci.harvard.edu/) algorithm.

2.9 Cell culture

ccRCC cell lines (SW839, A498) and the human embryonic

kidney cell line, 293-T, were obtained from the Cell Bank of the

Chinese Academy of Sciences. SW839 cells and A498 cells were

cultured in RPMI-1640 (Gibco) containing 10% fetal bovine

serum (Gibco). The 293-T cell line was cultured in DMEM

medium (Gibco) containing 10% fetal bovine serum (Gibco).

All mediums were treated with 100U/ml penicillin and 100 μg/

ml streptomycinm, and all cells were incubated at 37°C with

5% CO2.

2.10 Quantitative real-time PCR
(qRT-PCR)

Using the ESscience RNA-Quick Purification Kit (YiShan

Biotech, China) to extract the total RNA following the

manufacturer’s instructions. The cDNA was synthesized with

the PrimeScript RT reagent Kit with gDNA Eraser (Takara,

Japan). qRT-PCR was performed using the TB Green Premix

Ex Taq II (Takara, Japan) in ABI Quantstudio Dx Real-Time

PCR instrument. The primers were listed in Supplementary

Table S1. Relative mRNA levels were normalized using

GAPDH as an internal control. The 2−ΔΔCt method was

applied for analysis of the results.

2.11 Statistical analysis

The Wilcoxon rank-sum test was used to compare

differences between the two groups. Survival curves of the
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groups were plotted using the Kaplan–Meier method and

compared using the log-rank test. Variables associated with

OS were analyzed using univariate Cox and multivariate Cox

regressions analyses. All data analyses were performed using R

version 4.0.3. A two-tailed p-value of less than 0.05 was

considered significant.

3 Results

3.1 Identification of MDGs in ccRCC

This study’s workflow is presented in Figure 1. To identify

MDGs in ccRCC, we performed MethylMix analysis on

302 ccRCC and 24 non-cancerous samples, resulting in a

total of 560 MDGs. Heatmaps of the methylation and gene

expression levels of these 560 MDGs were shown in Figures

2A,B. GO analysis showed that the enriched biological

processes included regulation of cell-cell activation, positive

regulation of lymphocyte proliferation, positive regulation of

T cell proliferation, and leukocyte cell-cell adhesion. Markedly

enriched cellular components included the apical plasma

membrane, external components of the plasma membrane,

and apical part of the cell. The top three terms of molecular

function included “anion transmembrane transporter

activity,” “active transmembrane transporter activity,” and

“symporter activity” (Figure 2C).

3.2 Generation of a prognostic risk score
model for ccRCC

We included 560 genes in the LASSO regression analysis

and considered genes that appeared more than 700 times out of

1,000 repeats as candidate genes. Six DNA methylation-driven

genes (SAA1, SHROOM3, FUT6, SPATA18, AJAP1, and

NPEPL1) were selected as prognostic genes. SAA1 and

NPEPL1 were hypomethylated, whereas SHROOM3, FUT6,

SPATA18, and AJAP1 were hypermethylated (Figure 3A).

The expression levels of the six genes were significantly

negatively correlated with methylation (Figure 3B). A risk

model was established using the regression coefficients from

the multivariate Cox regression analysis (Figures 4A–C). The

risk score for each patient was calculated as follows:

FIGURE 1
The flowchart of identification and analysis of methylation-driven genes in ccRCC.

Frontiers in Genetics frontiersin.org04

Zhou et al. 10.3389/fgene.2022.996291

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.996291


Risk score � ( − 0.212 × SHROOM3) + (−0.142 × FUT6)
+ (−0.112 × SPATA18) + (0.038 × SAA1)
+ (−0.275 × AJAP1) + (0.209 × NPEPL1).

For 504 patients with complete clinical data, we divided them

into two groups based on the median six gene risk score: high-risk

(n = 252) and low-risk (n = 252) (Figure 4D). The clinical features of

the patients are presented in Table 1. The relationship between the

FIGURE 2
Overview of methylation driven genes in ccRCC. (A) Heatmap of methylation levels of 560 methylation-driven genes. (B) Heatmap of gene
expression levels of 560 methylation-driven genes. (C) GO analysis of 560 methylation-driven genes.
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FIGURE 3
Summary of the Sixmethylation-driven genes. (A) The distributionmap showing themethylation degree ofmethylation-driven genes in ccRCC.
(B) Regression analysis between gene expression and DNA methylation.
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FIGURE 4
Six-gene risk score model construction in the TCGA cohort. (A) LASSO coefficients. (B) 10-time cross validation for tuning parameter selection
by LASSO regression. (C)Multivariable Cox proportional hazard model of six genes. (D) Risk score distribution of high-risk and low-risk patients. (E)
Survival status scatter plots for high-risk and low-risk patients. (F) Heatmap of nine genes in the two risk groups. (G) Kaplan–Meier (KM) estimate of
the overall survival (OS) in the two risk groups. (H) The time-dependent ROC curves for 3-, 5- and 7-year survival prediction.
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risk score, survival status, and survival time is presented in Figure 4E.

A heatmap of the expression levels of these six genes is shown in

Figure 4F. Kaplan–Meier analysis of both groups showed aworseOS

in the groupwith high risk (Figure 4G). TheAUCs of themodel at 3-

, 5-, and 7-year were 0.732 (0.675–0.789), 0.760 (0.704–0.815), and

0.769 (0.699–0.838), respectively (Figure 4H).

3.3 Establishment and assessment of a
nomogram for OS prediction in ccRCC

Patient age, M stage, and risk score were considered as

significant predictors after univariate and multivariate Cox

regression analyses (Table 2). We quantified these predictors to

establish a prognostic nomogram (Figures 5A,B). The C-index of the

nomogram is 0.776. According to tdROC analysis, the AUCs of the

nomogram at 3-, 5-, and 7-year were 0.789 (0.740–0.838), 0.786

(0.732–0.839), 0.775 (0.706–0.844), respectively (Figure 5C). The

calibration curve showed consistency between the nomogram OS

prediction and actual survival rate (Figures 5D–F).

3.4 External validation of the nomogram

The ArrayExpress dataset E-MTAB-1980 was used as an

external dataset to validate the risk model and nomogram. Risk

score was considered as a significant predictor after univariate and

multivariate Cox regression analyses in the E-MTAB-1980 cohort.

(Supplementary Table 2). Similar to the TCGA cohort,

Kaplan–Meier analysis indicated poorer OS in the high-risk

group (Figure 6A). The risk model AUCs for predicting the 3-,

5-, and 7-year OS in the validation set were 0.848 (0.744–0.954),

TABLE 1 The clinicopathological characteristics of patients in the
TCGA cohort and ArrayExpress cohort.

Variables Training
set (n = 504)

Validation
set (n = 101)

Age [n (%)]

Median 60 64

>65 years 171 (33.9%) 44 (43.6%)

≤65 years 333 (66.1%) 57 (56.4%)

Gender [n (%)]

Male 334 (66.3%) 77 (76.2%)

Female 170 (33.7%) 24 (23.8%)

Grade [n (%)]

1 12 (2.4%) 13 (12.9%)

2 220 (43.7%) 59 (58.4%)

3 200 (39.6%) 22 (21.8%)

4 72 (14.3%) 5 (4.9%)

undetermined 2 (2.0%)

T stage [n (%)]

T1 258 (51.2%) 68 (67.3%)

T2 66 (13.1%) 11 (10.9%)

T3 169 (33.5%) 21 (20.8%)

T4 11 (2.2%) 1 (1.0%)

N stage [n (%)]

N0 226 (44.8%) 94 (93.1%)

N1 14 (2.8%) 7 (6.9%)

NX 264 (52.4%)

M stage [n (%)]

M0 403 (79.9%) 89 (88.1%)

M1 77 (15.3%) 12 (11.9%)

MX 24 (4.8%)

Mean overall survival (months) 46 59

TABLE 2 Cox regression analyses in TCGA cohort.

Univariable cox regression Multivariable cox regression

95% CI 95% CI

HR Lower Upper P HR Lower Upper P

Risk score 2.709 2.234 3.284 <0.001 2.124 1.679 2.686 <0.001
Age 1.028 1.015 1.042 <0.001 1.026 1.012 1.041 <0.001
Gender female References

male 0.952 0.694 1.307 0.762

T stage 1.912 1.619 2.258 <0.001 1.138 0.924 1.402 0.224

N stage N0 References References

N1 3.287 1.699 6.355 <0.001 1.342 0.668 2.697 0.408

NX 0.813 0.594 1.112 0.195 0.826 0.599 1.137 0.241

M stage M0 References References

M1 4.445 3.239 6.102 <0.001 2.818 1.926 4.123 <0.001
MX 1.005 0.318 3.181 0.993 0.539 0.163 1.786 0.312

Grade 2.675 1.89 3.786 <0.001 1.279 0.861 1.901 0.223
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0.831 (0.724–0.938), 0.731 (0.576–0.886), respectively (Figure 6B).

The nomogram AUCs for predicting 3-, 5-, and 7-year OS in the

validation set were 0.879 (0.783–0.976), 0.854 (0.753–0.955), and

0.825 (0.709–0.942), respectively (Figure 6C). The calibration curves

showed high consistency between the predicted and observed values

(Figures 6D–F). Our results show that the predictive risk model and

nomogram performed well in the validation set.

3.5 Molecular characteristics of different
risk groups

To further investigate the different characteristics of the two

risk subgroups, we performedWGCNA and GSEA analyses. We

included genes with the top 5,000 median absolute deviations in

the WGCNA analysis, and the soft threshold parameter was set

FIGURE 5
Generation of the nomogram incorporating risk score and clinical parameters. (A)Multivariable Cox proportional hazardmodel. (B)Nomogram
for predicting 3-, 5- and 7-year overall survival of ccRCC patients. (C) The time-dependent ROC curves of the nomogram for 3-, 5- and 7-year
survival prediction. (D–F) Calibration curves of the nomogram prediction of 3-, 5- and 7-year OS of ccRCC patients.
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to β = 6 (R2 = 0.82) (Figures 7A,B). Nine co-expressed gene

modules were identified using average linkage hierarchical

clustering (Figure 7C). We found that the green module was

most relevant to the risk score (Cor = 0.65, p = 7e-61 for the risk

group; Cor = 0.73, p = 2e-85 for the risk score) (Figure 7D). The

green module contained 541 genes. Setting |MM| >0.8 and

|GS| >0.7, the high connectivity of the four hub genes (LIFR,

ITGA6, AMOT, and EPB41L5) in the significant module was

FIGURE 6
Validation of the prognostic risk model and nomogram. (A) Kaplan–Meier (KM) estimate of the overall survival (OS) in the two risk groups in the
validation cohort. (B) The time-dependent ROC curves of the risk model for 3-, 5- and 7-year survival prediction in the validation cohort. (C) The
time-dependent ROC curves of the nomogram for 3-, 5- and 7-year survival prediction in the validation cohort. (D–F) Calibration curves of the
nomogram prediction of 3-, 5- and 7-year OS of ccRCC patients in the validation cohort.
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determined (Figure 7E). KM analysis showed that higher

expression levels of the four genes indicated a favorable

prognosis (Figure 7F).

We also performed GSEA analysis in the two risk groups.

Setting the absolute value of normalized enrichment score

(NES) > 1.5 and the false discovery rate (FDR) < 0.05, we

FIGURE 7
Construction and analysis of weighted gene correlation network. (A,B) Soft threshold filtering and validation. (C) The cluster dendrogram of genes. (D)
The relationship between 9 module and the risk model. (E) Identification of the hub genes (|MM|>0.8, |GS|>0.7). (F) KM analysis for 4 hub genes.
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identified 591 DEGs between the two risk groups with 552 up-

regulated and 39 down-regulated genes (Figures 8A,B). GO

enrichment analysis showed that some biological processes,

such as the B cell receptor signaling pathway, complement

activation, humoral immune response mediated by circulating

immunoglobulin, phagocytosis recognition and positive

regulation of B cell activation were enriched in the high-risk

group. The low-risk group was mainly associated with

establishing the endothelial barrier, Hippo signaling,

oligosaccharide catabolism, phosphatidylinositol-3-phosphate

biosynthesis, and xenobiotic export processes (Figures 8C,D).

We then analyzed the landscape of somatic mutations in the

two risk groups. We identified the top ten genes with the highest

mutation rates in both groups (Figures 9A,B). The mutation rates

of VHL, PBRM1, TTN, and SETD2 in both the groups exceeded

20%. Common mutations in the high-risk group also included

BAP1, KDM5C, FLG, and PTEN, whereas common mutations in

the low-risk group included ANK3, KMT2C, ATM, and CSDM3.

FIGURE 8
Functional enrichment analysis of differentially expressed genes between the two risk groups. (A)Heatmap of differentially expressed genes. (B)
Volcano map of differentially expressed genes. (C) Gene sets enriched in high-risk group. (D) Gene sets enriched in low-risk group.
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In addition, patients in the group with high risk had a higher

tumor mutational burden (TMB) (Figure 9C). The risk score was

positively correlated with TMB (r = 0.2, P = 3e-04, Figure 9D)

3.6 Immune landscape of different
subgroups

A heatmap was generated to illustrate the immune

infiltration landscape by different risk groups and

clinicopathological features (Figure 10A). Because anti-tumor

immune infiltration is critical, we analyzed the level of infiltration

of immune cells. We observed significant differences in the

immune cell infiltration levels between the two risk groups. In

the high-risk group, there were higher infiltration levels of

plasma cells, follicular helper T cells, Treg cells, and

M0 macrophages (Figure 10B). The correlation analysis

between immune cells is shown in Figure 10C. We also

analyzed the expression levels of common immunoglobulins

in different subgroups. The high-risk group had higher

expression levels of IGHA1, IGHA2, IGHG1, IGHG2, IGHG3,

and IGHG4 (Figure 10D). Furthermore, we analyzed the

correlation between risk scores and common immune

checkpoint (ICP) proteins, such as PD-1, CTLA4, TIGIT, and

LAG3. Consistent with the higher Treg cell infiltration in the

high-risk group, the expression of several common ICP proteins

FIGURE 9
Somatic mutation features between high-risk group and low-risk group. (A) The top 10 most significantly mutated genes in the high-risk
group. (B) The top 10 most significantly mutated genes in the low-risk group. (C) Difference in TMB between the high- and low-risk groups. (D)
Correlation between TMB levels with risk-scores.
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FIGURE 10
Immune characteristics of different risk groups. (A) Heatmap of the distribution of infiltrated immune cells and clinicopathological
characteristics between the low-and high-risk groups. (B) Differentially infiltrated immune cells between the two risk groups. (C) Correlation
analysis between infiltrated immune cells. (D) The expression of immunoglobulin in different risk groups. (E) The expression of ICPs in
different risk groups.
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significantly increased in the high-risk group (Figure 10E). In

addition, the TIDE scores were significantly higher in the high-

risk group compared with the low-risk group. (Supplementary

Figure 1).

3.7 Drug sensitivity analysis

The GDSC database was used to predict the sensitivity of

the two groups to anti-tumor drugs. We compared the

sensitivity of the two risk groups to sorafenib, axitinib,

gefitinib, eroltinib, and cediranib, and we found greater

sensitivity to these drugs in the low-risk group (Figures

11A–E). This might imply a favorable outcome for patients

in the low-risk group with these drugs. We also evaluated

several other chemotherapies that have therapeutic potential

in patients with ccRCC. The high-risk group showed greater

sensitivity to cisplatin and camptothecin, whereas the low-risk

group showed greater sensitivity to cytarabine, ZM447439,

and RO-3306 (Figures 11F–J).

3.8 Experimental verification

We performed qRT-PCR to validate the expression of

6 MDGs in 293T cells and two ccRCC cell lines (SW839 and

A498). The results showed that SAA1 and NPEPL1 were

significantly upregulated in ccRCC cells, while SHROOM3,

AJAP1, SPATA18, and FUT6 were significantly

downregulated in ccRCC cells. (Figures 12A–F).

4 Discussion

ccRCC is the most common subtype of renal cell

carcinoma and varies in clinicopathological features,

genetic variants, DNA methylation profiles, and multi-

omics features (Cancer Genome Atlas Research, 2013).

Traditional TNM staging poorly reflects the individual’s

tumor heterogeneity, and thus it cannot accurately predict

the clinical outcome of patients. Given this, there is a great

need to find effective prognostic biomarkers for ccRCC

patients’ survival prediction. Epigenetics, especially DNA

methylation, may influence the pathogenesis of ccRCC

(Lasseigne et al., 2014; Tian et al., 2014; Evelonn et al.,

2016). Therefore, we evaluated prognosis-related

methylation-driven genes for their ability to guide

individual therapies and improve long-term outcomes in

ccRCC.

In our study, we identified MDGs by MethylMix, which has

been applied to identify MDGs in various cancers (Xu et al.,

2019b; Long et al., 2019). We identified and analyzed 560 MDGs

in ccRCC tissues and used LASSO and multivariate Cox

regression analyses to form a risk score model. We divided

the patients into high- and low-risk groups according to the

median risk scores, and KM curve analysis indicated that the

high-risk group had a worse prognosis. We then established a

nomogram that included age, M stage and the risk score for OS

prediction in patients with ccRCC. The C-index, tdROC, and

calibration plots showed that our predictive model

performed well.

We identified six methylation-driven genes (SAA1, FUT6,

SPATA18, SHROOM3, AJAP1, and NPEPL1) that are

FIGURE 11
Difference of drug sensitivity. (A–E) Differences in response
to Sorafenib, Axitinib, Gefitinib, Erlotinib and Cediranib between
the two risk groups. (F–J) Differences in response to Cisplatin,
ZM447439, RO.3306, Camptothecin and Cytarabine
between the two risk groups.
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associated with ccRCC prognosis. Each of these genes have

been researched in ccRCC or in other cancer types. Serum

amyloid A1 (SAA1) belongs to the serum amyloid A

apolipoprotein family. Inflammation, trauma, surgery, and

advanced malignancy can increase SAA1 levels (Cheng et al.,

2018). SAA1 knockdown in ccRCC cells inhibits tumor

migration and invasion, and high SAA1 expression predicts

poor prognosis (Li et al., 2021). FUT6 is a member of the

fucosyltransferase (FUT) family, which promotes tumor

metastasis, proliferation, and poor prognosis (Yan et al.,

2015). A recent study has shown that FUT6 promotes the

proliferation, migration and invasion colorectal cancer cells

(Liang et al., 2017). However, in breast cancer cells, low

expression of FUT6 regulated by miR-106 b contributes to

tumor migration, invasion, and proliferation (Li et al., 2016).

The high-risk group had lower FUT6 expression levels, and

further studies are needed to elucidate the role of FUT6 in

ccRCC. Adherens turbine-associated protein 1 (AJAP1) is a

transmembrane protein in epithelial cell adhesion junctions

(Bharti et al., 2004) and has shown tumor inhibition activity in

hepatocellular carcinoma (Han et al., 2017), esophageal

cancer (Tanaka et al., 2015), and breast cancer (Xu et al.,

2019a). Spermatogenesis-related protein 18 (SPATA18) is

involved in mitochondrial quality control and induces

FIGURE 12
(A–F) Validation of the expression levels of themethylation-driven genes at the cellular level. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001,
#p > 0.05.
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mitochondrial-directed apoptosis in breast cancer cells

(Gaowa et al., 2018). SPATA18 expression can predict

favorable clinical outcomes in colorectal cancer (Sugimura-

Nagata et al., 2022). There are few reports available on

aminopeptidase-like 1 (NPEPL1) and shroom family

member 3 (SHROOM3); however, Shen and colleagues

found that NPEPL1 can act as an oncogene in colorectal

cancer (Shen et al., 2021). Since NPEPL1 and SHROOM3

can reflect the prognosis of patients with ccRCC, it is

important to further study their roles.

To analyze the molecular features of different risk groups,

we first constructed a co-expression network via WGCNA,

identified the module most associated with risk scores, and

screened four hub genes in the modules. Low expression of

four genes (LIFR, AMOT, ITGA6, and EPB41L5) suggested a

poor prognosis in patients with ccRCC. Furthermore, GSEA

analysis in the two risk groups indicated that multiple

functions and pathways associated with immune were

enriched in the high-risk group, such as complement

activation, the B cell receptor signaling pathway, positive

regulation of B cell activation, humoral immune response

mediated by circulating immunoglobulin, and phagocytosis

recognition. This finding suggests that immune cell

infiltration is involved in ccRCC progression. Analysis of

immune cell infiltration and the GSEA results were

consistent, with plasma cells, follicular helper T cells, and

Tregs being more abundant in the high-risk group. Treg cells

are an important subtype of CD4+ helper T cells that can

suppress antitumor immune responses and promote tumor

progression (Binnewies et al., 2019). Given the high

infiltration of plasma and follicular helper T cells, we

compared the expression levels of common

immunoglobulins in the two groups and found higher

levels of IGHA1, IGHA2, IGHG1, IGHG2, IGHG3, and

IGHG4 in the high-risk group. Serum IgA levels correlate

with immune escape and tumor burden (Peppas et al., 2020),

and high IgA levels indicate poor prognosis in melanoma

(Bolotin et al., 2017). In addition, IgG can promote the

progression of liver cancer and ccRCC (Sheng et al., 2016;

Wei et al., 2019). We also explored the correlation between

common ICP proteins and risk scores and found that the

group with high risk had higher expression levels of ICP

proteins (LAG3, PD-1, CTLA4, and TIGIT), thus

suggesting a better response to immune checkpoint

inhibitor treatment.

Treatment of patients with advanced ccRCC relies on

immunotherapy, targeted therapy, and chemotherapy.

However, tumor microenvironment alterations can lead to

resistance to immune-targeted drugs in ccRCC (Tang et al.,

2021); therefore, we aimed to identify drugs to which the

cancer may be sensitive to help guide treatment decisions.

We found drug sensitivity of the low-risk group to sorafenib,

axitinib, gefitinib, erlotinib, cediranib, ZM447439, RO-3306,

and cytarabine higher, and the high-risk group showed

greater sensitivity to cisplatin and camptothecin. For

metastatic ccRCC, Sorafenib is a first-line treatment

(Escudier et al., 2007). Axitinib can be used as a second-

line treatment for metastatic ccRCC or in combination with

pembrolizumab or avelumab as a first-line treatment (Ingels

et al., 2022). ZM447439 is a novel Aurora kinase inhibitor

that induces apoptosis in rectal cancer cells through the

mitochondrial apoptosis pathway (Li et al., 2010). RO-

3306 disrupts the proliferation of advanced

gastrointestinal stromal tumor cells by inhibiting cyclin-

dependent kinase 1 (Lu et al., 2021). Our drug sensitivity

analysis can provide a reference for ccRCC drug selection

and may provide directions for further therapeutic target

exploration.

Our study has some limitations in both approach and the

information selected. First, the development and evaluation of

this predictive model were based on publicly available datasets.

Large-sample, multi-center, prospective clinical cohort studies

are needed for further confirmation of our model. Second, the

biological mechanisms by which these MDGs affect ccRCC

prognosis need further investigation through in vitro and in

vivo experiments.

5 Conclusion

We established an accurate predictive nomogram based on

six methylation-driven genes for prognostic prediction in

patients with ccRCC. In addition, we further analyzed the

molecular characteristics, immune characteristics, and drug

sensitivity of two risk subgroups. The high-risk group showed

immune cell infiltrations that protect the tumor, higher tumor

mutational burden, and different drug sensitivities than

compared to the low-risk group. Our study provides novel

insights into the epigenetic mechanisms involved in ccRCC

progression and guidance for future individualized treatment

of ccRCC.
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