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Pyroptosis has been proved to significantly influence the development of lung

squamous cell carcinoma (LUSC). To better predict overall survival (OS) and

provide guidance on the selection of therapy for LUSC patients, we constructed

a novel prognostic biomarker based on pyroptosis-related genes. The dataset

for model construction were obtained from The Cancer Genome Atlas and the

validation dataset were obtained from Gene Expression Omnibus. Differential

expression genes between different pyroptosis expression patterns were

identified. These genes were then used to construct pyroptosis expression

pattern score (PEPScore) through weighted gene co-expression network

analysis, univariate and multivariate cox regression analysis. Afterward, the

differences in molecule and immune characteristics and the effect of

different therapies were explored between the subgroups divided by the

model. The PEPScore was constructed based on six pyroptosis-related

genes (CSF2, FGA, AKAP12, CYP2C18, IRS4, TSLP). Compared with the high-

PEPScore subgroup, the low-PEPScore subgroup had significantly better OS,

higher TP53 and TTNmutation rate, higher infiltration of T follicular helper cells

and CD8 T cells, and may benefit more from chemotherapeutic drugs,

immunotherapy and radiotherapy. PEPScore is a prospective prognostic

model to differentiate prognosis, molecular and immune

microenvironmental features, as well as provide significant guidance for

selecting clinical therapies.
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Introduction

As one of the most common cancers, lung cancer accounts

for a large portion of death from cancer worldwide. Although the

incidence declined from 2009 to 2018, approximately 350 people

die of lung cancer per day in the United States. (Siegel et al.,

2022). In non-small cell lung cancer (NSCLC), lung squamous

cell carcinoma accounts for approximately 25%–30% of cases.

The treatment for patients with LUSC is usually considered

difficult due to numerous disease features and comorbidities

such as chronic obstructive pulmonary disease. (Papi et al., 2004).

LUSC is not sensitive to many target therapies for the alterations

approved for targeted treatments are rare. Additionally, its

sensitivity to chemotherapy and radiotherapy is unsatisfactory.

Thus, the options for the treatment for the LUSC are limited,

especially in advanced LUSC. Given such difficulties, establishing

a reliable and accurate prognostic maker which could assist in

developing medical plans for LUSC is urgently needed.

Pyroptosis, initially discovered in the mononuclear

macrophage, is a type of lytic inflammatory cell death

initiated by the inflammasome. Gasdermins (GSDMs), pre-

forming effector proteins, are the crucial mediators of

pyroptosis. As the cytoplasm perceives invasive infections or

danger signals, the GSDMs will be activated. Activated GSDMs

are then inserted into cytomembranes and form large pores on

the cytomembranes, disrupting the cell osmotic potential and

inducing rapid cell death. Pyroptosis is associated with various

pathophysiological effects in humans, and it has been reported to

be related to hair loss, asthma and hearing impairment. (Shi et al.,

2017; Liu et al., 2021). There is increasing evidence suggesting

that pyroptosis could inhibit or promote tumorigenesis. For

example, the expression of the GSDMD could suppress gastric

cancer cell proliferation, while low expression of the GSDMD

shows a suppressive effect on NSCLC cell proliferation. (Gao

et al., 2018). GSDMA and GSDME are epigenetically inhibited by

methylation in most human cancer cells. (Moussette et al., 2017).

Nevertheless, the correlation between the pyroptosis state and the

prognosis of the LUSC remains unclear.

Considering existing studies, pyroptosis is significantly

influence the development of the LUSC. (Zhang et al., 2019;

Liu et al., 2021). In this study, the hub differentially expressed

genes (DEGs) significantly associated with pyroptosis expression

pattern and OS of LUSC patients were identified by weighted

gene co-expression network analysis (WGCNA) and univariate

Cox regression analysis on a genome-wide scale. We constructed

a novel prognostic maker, pyroptosis expression pattern score

(PEPScore), for investigating the prognosis value of these genes.

Then the molecular and immune profile of the PEPScore was

explored. We found that the tumor environment was

significantly affected by pyroptosis, and we also confirmed

that the PEPScore is a promising prognostic marker and has

an important guiding significance for the selection of the

chemotherapy, radiotherapy and immunotherapy.

Methods

Patients and datasets

The mRNAs-seq data, gene mutation information and the

relevant clinical data of 551 LUSC, comprising 502 cancer

samples and 49 para-cancer samples, were acquired from the

TCGA database (Supplementary Table S1) (https://portal.gdc.

cancer.gov/repository). For the external validation cohort,

Gene Expression Omnibus (GEO) was used to collect the

mRNAs-seq data and related clinical data. (ID: GSE30219,

GSE73403, https://www.ncbi.nlm.nih.gov/geo/).

Identification of different pyroptosis states
in LUSC and their association with survival

A total of 51 pyroptosis-related genes were gathered from

the previous articles (Jiang et al., 2021; Li et al., 2021) and

Molecular Signatures Database (Subramanian et al., 2005;

Liberzon et al., 2015) (MSigDb, version: 7.4 http://www.

gseamsigdb.org/gsea/msigdb/cards/REACTOME_

PYROPTOSIS.html). We investigated the expression

differences of pyroptosis-related genes between 502 tumors

and 49 normal samples by utilizing the R package of “limma”

with a p-value of 0.05. The Pearson correlation between these

pyroptosis-related genes was calculated in tumor samples

utilizing the “corrplot” package.

The relationship between the pyroptosis-related genes and

the essential cancer pathway activity was accessed through the

GSCALite website. RPPA data form TCPA database was used

to calculate score for 7,876 samples, 10 cancer related

pathways and 32 cancer types in this website (Liu et al.,

2018). The “ConsensusClusterPlus” package was used to

distinguish different expression patterns based on the

mRNA expression data of 51 pyroptosis-related genes. The

consensus distributions for each k value were revealed

through empirical cumulative distribution function (CDF)

plot. We used the cluster consensus plot and CDF plot to

confirm the number of clusters and their stability. Then, the

TCGA samples were clustered into two clusters and were

displayed by t-distributed Stochastic Neighbor Embedding

(t-SNE) and heatmap utilizing the “Rtsne” package. Finally,

the “survival” package was used to compare the OS of the two

clusters using Kaplan-Meier curves with a log-rank test.

Identification of pyroptosis-related hub
genes

The “limma” package was used to obtain the DEGs

between the two clusters (C1 vs C2). Determination of

DEGs was based on an absolute log2FC of >1 and a
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p-value of 0.05 adjusted by false discovery rate (FDR), which

was visualized by the heatmap and volcano map using

“pheatmap” and “ggplot2” packages.

Then, the “WGCNA” R package was carried out to identify

hub genes. To examine the independence and average

connectivity degree of multiple modules with varying

power levels, the gradient approach was applied. Among all

the soft threshold values, the one that showed the highest

mean connectivity was selected (β = 2). By adjusting the

merging threshold function to 0.25, we finally identified six

modules. The first two modules with the highest correlation

were chosen (the yellow and turquoise modules). The edges

between two genes with weight >0.3 were utilized to form a

network based on the genes in yellow and turquoise modules.

A total of 410 hub genes were identified for further

investigation in the yellow and turquoise modules.

The possible regulatory functions of these genes were

discovered using the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis

provided by the R package “clusterProfiler".

Construction and validation of the
prognostic signature

The batch effects between TCGA and GEO datasets were

adjusted by empirical Bayes framework with the “sva” R

package. Then, univariate Cox regression analysis was

carried out to choose prognostic hub genes significantly

correlated with OS among the 410 hub genes (yellow and

turquoise modules in WGCNA), and 21 genes were selected

for further analysis (p < 0.01). Next, the 21 genes were used to

develop a robust and concise PEPScore model by multivariate

Cox regression analysis in TCGA cohort. Consequently, a six-

gene PEPScore model was created, with the PEPScore equaling

the sum of each patient’s gene expression value (FPKM

format) multiplying their coefficients in the multivariate

Cox model. Based on the median PEPScore value, every

patient in the TCGA and GEO databases was grouped into

a high- or low-PEPScore subgroup. Kaplan-Meier survival

curves with log-rank were employed to identify the prognostic

power of the PEPScore in the two subgroups utilizing the

“survival” R package. The co-expression network of the

pyroptosis-related genes in two subgroups was conducted

through the “igraph” package. The “timeROC” R package

was performed to visualize the ROC curves and determine

the area under the curves (AUC) for 1-, 3-, and 5-year OS,

while the ROC predicting the pyroptosis expression patterns

by PEPScore was performed by “pROC” R package. The

independent prognostic value of the PEPScore was

confirmed using univariate and multivariate Cox regression

analysis. Finally, the model performance was compared with

other studies through the “survcomp” R package.

Construction of the nomogram

The nomogram predicting the probability of 1-, 3- and 5- year

OS of LUSC was developed by all independent prognostic factors

acquired by univariate andmultivariate Cox regression analysis. The

discrimination performance of the nomogram was assessed by

calibration and AUC. The nomogram’s discriminating ability was

measured using calibration curve. Then, using the time-ROC curve

and decision curve analysis (DCA), we compared the nomogram

with all to those with only one independent prognostic factor. The

best model is the one with the highest computed net benefit.

Comprehensive molecular and tumor-
microenvironmental profiling in two
subgroups

To explore the potential mechanism underlying the

difference of PEPScore in different PEPScore groups, we

initially used the R package “clusterProfiler” to perform Gene

Set Enrichment Analysis (GSEA) on the HALLMARK gene sets.

To assess the quality and quantity of gene mutations in two

groups, we performed gene mutation analysis and calculated the

tumor mutational burden (TMB) using “Maftools” package. The

information on genetic alterations was obtained from the TCGA.

The patients were dichotomized based on a cut-off of the TMB

calculated by R package of “survminer”. According to the cut-off

value of TMB (cut-off = 2.105), those with higher TMB were

grouped into high-TMB group, and the others were grouped into

low-TMB group. The difference in OS between the two groups

was assessed using Kaplan-Meier curves with log-rank analysis.

To explore the difference in immune characteristics of 502 LUSC

samples, we utilized “CIBERSORT” to assess the relative proportion of

22 different kinds of immune cells. Then we compared the quantity of

these cells between high- and low-PEPScore subgroups.

Exploration of the treatment strategy for
two subgroups

The Drugbank database (Wishart et al., 2018) (https://go.

drugbank.com/) was used to explore LUSC-related drug target

genes. Chemotherapy response of each sample was evaluated by

the “pRRophetic” R package (Geeleher et al., 2014) based on

Genomics of Drug Sensitivity in Cancer (GDSC), including

Cisplatin, Gemcitabine, Docetaxel, Vinblastine, Etoposide and

Paclitaxel. To explore the immunotherapy response of each

sample, the Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm (Fu et al., 2020) (http://tide.dfci.harvard.edu/) was used to

determine the TIDE score, TIS score, cell dysfunction score and

exclusion score. The radiotherapy sensitivity of each sample was

evaluated by the radiosensitivity index (RSI), which was reported in

the prior study. (Eschrich et al., 2009).
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Statistical analysis

Figure 1 depicts the entire analytical procedure. An

independent t-test was performed to explore the difference of

continuous variables with normal distribution between two

groups. For continuous variables did not follow a normal

distribution, the Wilcoxon test was used. The categorical

variables were compared using the Pearson chi-square test.

Kaplan-Meier survival analysis with the log-rank test was used

for the univariable survival study. Data processing was completed

by Perl (version5.30.0) and R software (version 4.1.1). All

statistical analyses were conducted with R software. All our

codes are available at the github website (https://github.com/

chenw265/For_research.git).

Result

Classification of pyroptosis-related genes
in different expression patterns

42 pyroptosis-related DEGs were identified by differential

expression analysis for pyroptosis-related gene expression levels

between 502 tumors and 49 normal samples (Supplementary

FIGURE 1
Abstract graphical representation for comprehensive characterization of PEPScore subgroups in LUSC.
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Figure S1A). According to the correlations between the

pyroptosis-related genes, majority of them were significantly

co-expressed or mutex-expressed. (Supplementary Figure S1B).

Then the expression levels of the pyroptosis-related genes in

major cancer signaling pathways among 32 cancer types were

analyzed though the GSCALite. (Liu et al., 2018). In these tumor

FIGURE 2
Exploration of two different expression patterns of pyroptosis-related molecules. (A) Heatmap depicts the association between pyroptosis-
related genes expression levels and essential cancer signaling pathways. The percentage is the total proportion of tumors in which a gene has an
influence on the pathway among the 32 cancer types (number of inhibited or activated cancer types/32 *100%). Pyroptosis genes that have a role
(inhibit or activate) in at least five cancer types are included in this heatmap. The percentage of tumors in which a pathway may be inhibited by
specified genes is represented by “pathway inhibit” (blue), whereas activation is represented by “pathway activate” (red). (B) The correlation between
the pyroptosis-related genes in LUSC and essential cancer signaling pathways. The dotted line indicates inhibition, whereas the solid line indicates
activation. (C) t-SNE plot shows two different pyroptosis expression patterns represented by the expression of pyroptosis-related genes. (D) Kaplan-
Meier curves for the OS between two distinct pyroptosis expression patterns. (E) Univariate Cox analysis to explore the prognosis value of each
pyroptosis-related genes for LUSC.
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tissue, most pyroptosis-related molecules, particularly IRF1,

GZMB, CASP5, BAK1 and AIM2, were consistently inhibited

in the cell cycle, DNA damage response, hormone AR and RTK

signaling pathway, but highly activated in the apoptosis signaling

way. (Figure 2A). And in LUSC tissue, most pyroptosis molecules

inhibited the hormone AR, cell cycle and DNA damage response

pathways but activated the apoptosis, hormone ER and EMT

(Figure 2B).

We performed consensus clustering analysis to identify

different expression patterns of the pyroptosis-related genes in

patients with LUSC. When k = 2, we got the most satisfying

Cumulative Distribution Function (CDF), indicating that the

LUSC patients could be well grouped into two clusters

(Supplementary Figures S2A-H), which was confirmed by

heatmap and t-SNE (Supplementary Figure S2I, Figure 2C).

The OS between the two expression patterns has a significant

difference (Figure 2D).

Identification of pyroptosis-related hub
genes

Preliminary screening for survival-related genes was conducted

using univariate Cox regression (Figure 2E). But we found that only

two genes (IL1B and NOD1) met the criteria of p < 0.05, which was

not satisfactory for the requirements of our model construction.

Therefore, we then analyzed differential expression between two

clusters on a genome-wide scale and a total of 962 DEGs were

obtained as the candidate genes (n = 962). Heatmap and volcano

map for DEGs show obvious differences (Supplementary Figures

S3A, B). Candidate genes were analyzed by WGCNA analysis and

six modules were identified using the optimal soft-thresholding

power and the average linkage hierarchical clustering.

(Supplementary Figure S3C, Supplementary Figure S4). A total of

410 genes in the turquoise and yellow modules were further chosen

as hub genes, whose expression patterns aremost closely relatedwith

the two different pyroptosis status. The gene network in turquoise

and yellow modules was displayed in Supplementary Figure S3D.

According to GO analysis, the hub genes were enriched in cell

differentiation and immune-related process. According to KEGG

analysis, the hub genes were mainly correlated with staphylococcus

aureus infection, hematopoietic cell lineage, rheumatoid arthritis,

cytokine-cytokine receptor interaction, etc. (Supplementary Figure

S3E, detailed in Supplementary Table S2).

Construction and validation of the
prognostic model

In order to identified the genes that are highly correlated

with OS among the hub genes whose expression patterns are

most closely related with the two different pyroptosis status,

the univariate Cox regression analysis was carried out among

the selected 410 hub genes (yellow and turquoise modules in

WGCNA), and 21 genes were identified (Figure 3A). Six genes

(CSF2, FGA, IRS4, CYP2C18, TSLP, AKAP12) correlated with

prognosis were further identified by multivariate cox

regression analysis among these 21 genes. We used these

genes to develop a pyroptosis-related prognostic model

named Pyroptosis Expression Pattern Score (PEPScore).

The PEPScore was calculated as follows: PEPScore �
expression level ofCSF2 × 0.18 + expressionlevelofFGA ×
0.09 + expressionlevel ofAKAP12 × 0.41 + expression level

ofIRS4 × (−0.20) + expression level ofCYP2C18 × (−0.11)
+expression level ofTSLP × (−0.19). The coefficient of the
formula is obtained from multivariate Cox regression
analysis, while the expression level of genes is in FPKM
format (Supplementary Table S3). Each patient was grouped
into low-PEPScore and high-PEPScore subgroups based on
the median value of the PEPScore.

As demonstrated by Kaplan-Meier curves, the high-PEPScore

subgroup had a lower survival probability than the low-PEPScore

subgroup. The ROC curve further confirmed that the PEPScore had

good prediction ability and the AUC was 0.625 for 1-year, 0.666 for

3-year and 0.677 for 5-year OS (Figure 3B). Two GEO datasets were

applied for external validation. A significant difference in OS was

found between the low-PEPScore and high-PEPScore subgroups

according to Kaplan-Meier curves, which was consistent with the

result of TCGA data. ROC curve indicated that the PEPScore

possessed an excellent predictive efficacy as well (Figures 3C, D).

Furthermore, the ROC curve indicated that PEPScore had the

best specificity of 0.691 and the best sensitivity of 0.745 to predict

different pyroptosis expression patterns (C1, C2) when the median

value of the PEPScore was the cut-off value of the ROC curve

(Figure 3E). The pyroptosis-related gene co-expression network and

the pyroptosis-related gene expression levels between the subgroups

were significantly different, which suggested that the PEPScore and

pyroptosis were closely related (Figure 3F, Supplementary Figure

S5A). Besides, there is significant co-expression ormutex-expression

between six model genes and most pyroptosis-related genes

(Supplementary Figure S5B).

Finally, although we did not use pyroptosis-related genes to

construct model directly in a common way, the PEPScore still

shows great prediction accuracy. Li et al. directly used pyroptosis-

related genes as input and construct a nine-gene risk model using

LASSO in LUSC, and their risk model also shows good

performance. (Li et al., 2022).However, the AUC of the

PEPScore was higher than Li et al.’s risk model in 1-, three-

and 5-year OS. The C-index of PEPScore was also higher than Li

et al.’s risk model’s as well (Supplementary Figure S6).

Clinical characteristics of the PEPScore

Univariate and multivariate Cox regression analysis were

used to validate the independent prognostic value of PEPScore
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(Supplementary Figure S7A). Additionally, the traditional

clinical characteristics were not statistically different except for

gender. (Supplementary Figure S7B).

To extend the clinical applicability of PEPScore, we

developed a nomogram in the TCGA cohort by integrating

clinical variables (Supplementary Figure S7C). Each patient

obtained a total score based on a combination of the points

for prognostic criteria. Patients with a higher total score had a

worse prognostic effect. The calibration plot shows that the

nomogram acted consistently with an ideal model

(Supplementary Figure S7D). Decision curve analysis (DCA)

and ROC curve analysis demonstrated that prediction

specificity of the nomogram was the best, followed by

PEPScore, age, or TNM staging (Supplementary Figure S7E, F).

Comprehensive analysis of molecular and
tumor-microenvironmental
characteristics in subgroups

According to the GO and KEGG analysis, DEGs obtained

from the differential expression analysis between the high-

FIGURE 3
Prognostic value and the characteristics of different PEPScore subgroups. (A) The forest plot depicts the result of univariate Cox analysis on
21 pyroptosis-related hub genes. (B) Kaplan-Meier survival analysis and ROC curves for patients in the TCGA cohort to identify the prognostic power
of the PEPScore. (C and D) Kaplan-Meier survival analysis and ROC curves for patients in the GSE30219 and GSE73403 cohort to validate the
prognostic power of the PEPScore. (E) ROC curve showing the specificity and sensitivity for PEPScore to predict the pyroptosis expression
patterns. (F) The co-expression network of the pyroptosis-related genes in the high-PEPScore subgroup and low-PEPScore subgroup.
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FIGURE 4
Comprehensive analysis of molecular and tumor-microenvironmental characteristics in PEPScore subgroups. (A) GO and KEGG analysis for
revealing the potential regulatorymechanisms underlying the difference of PEPScore in different subgroups. A total of 821 DEGs were obtained from
differential expression analysis between high- and low-PEPScore subgroups. (B) GSEA used on the HALLMARK gene sets to explore the potential
mechanism underlying the difference of PEPScore in different subgroups. (C) Top 20mutatedmolecules in the LUSC patients in TCGA database
of different PEPScore subgroups. Each column represents an individual and themutated genes are arranged bymutation frequency. The color block
indicatesmutation type, the number on the right shows themutation percentage, and the figure above shows the TMB. (D) TMB calculation to access
the quality and quantity of gene mutations in two PEPScore subgroups. (E) The Kaplan-Meier curves with the log-rank test show significant
differences in OS between high and low TMB subgroups. The cut-off value of TMB was 2.105, which was calculated by R package of “survminer”. (F)
The Kaplan-Meier curves with the log-rank test show significant differences in OS among LUSC patients with different PEPScore and TMB.
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PEPScore and low-PEPScore subgroups (a total of 821 DEGs)

were mainly enriched in immunological and cell differentiation

signaling pathways (Figure 4A, detailed in Supplementary Table

S4). GSEA showed that the gene sets of low-PEPScore were

mainly correlated with tumor proliferation signaling pathways,

while the gene sets of high-PEPScore were mainly correlated with

tumor metastasis and immune response signaling pathways.

(Figure 4B, detailed in Supplementary Table S5).

To further understand the PEPScore, we then analyzed gene

mutations between the subgroups. High-PEPScore subgroup had

a lower mutation rate than low-PEPScore subgroup, most of

which were missense mutations. TP53 mutation was the most

common mutation, followed by TTN mutation in both high-

PEPScore and low-PEPScore subgroups (Figure 4C). Then we

analyzed the mutation of the PEPScore model genes. FGA and

IRS4 had the highest mutation rates, accounting for 3%. And

FIGURE 5
The landscape of the TME and the characteristics of different PEPScore subgroups. (A) The proportions of immune cells in the two PEPScore
subgroups. The thick line in the box indicates the median value, whereas the dispersed dots indicate an outlier. The upper and bottom border of the
box reflects the 25th and 75th percentiles. Asterisk denotes the p-value (*: p < 0.05, **: p < 0.01, and ***: p < 0.001). (B) PEPScore categorization and
TEM cell proportions for 495 patients in the TCGA dataset. Patient annotations include gender, stage, race, age, smoking, and neoadjuvant
treatment.
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missense mutation accounted for the largest part (Supplementary

Figure S8A).

And then, we analyzed the relationship between PEPScore

and the TMB. The difference analysis showed that the high-

PEPScore group got a lower TMB (Figure 4D p = 0.0083). The

high-TMB group had a clear survival advantage over the low-

TMB group (Figure 4E). And the Kaplan-Meier curves illuminate

those patients with low TMB and high PEPScore got the shortest

median OS, while those with high TMB and low PEPScore got the

longest one (Figure 4F, p < 0.001).

Then infiltration of immune cells was analyzed through

“CIBERSORT” and was compared between PEPScore

subgroups by the Wilcoxon test. There are more abundant

T cells CD4 memory resting, macrophages M0, dendritic cells

activated and neutrophils in the high-PEPScore subgroup, while

there are more abundant T cells CD8, T cells follicular helper and

dendritic cells resting in the low-PEPScore subgroup (Figure 5A).

Characteristics correlated with the immune landscape, which

includes the clinicopathological characteristics of different

PEPScore subgroups, are shown in Figure 5B. According to

the correlation analysis between immune cells and the six

model genes, AKAP12 and CSF2 showed a negative

correlation with the infiltration of T follicular helper cells and

CD8 T cells, and they were also positively correlated with

neutrophils, T cells CD4 memory resting, etc. Especially, CSF2

was the gene that had a significantly strong correlation with most

immune cells (Supplementary Figure S8B).

Then we explored the relationship between PEPScore and the

checkpoint molecules and chemokine receptors expression levels.

We found that PEPScore was significantly positively correlated

with the expression levels of the checkpoint molecules and

chemokine receptors, except for VTCN1, while the association

between CD274 and IDO1 was statistically insignificant

(Supplementary Figure S9).

The role of PEPScore subgroups in clinical
therapy

We investigated the relationship between PEPScore and the

clinical efficacy of LUSC therapy. We analyzed the expression

differences of common chemotherapeutic drug targets in LUSC

between the subgroups, including drugs of chemotherapy,

immune checkpoint inhibitors, antiangiogenic drugs and

tyrosine kinase inhibitors. We found that the expression level

of the Tislelizumab, Pembrolizumab, Nivolumab and Sintilimab

target (PDCD1), ipilimumab target (CTLA4), Bevacizumab

targets (C1QA, C1AB, C1QC, FCGR3A, FCGR1A, FCGR2A,

FCGR2B and FCGR2C), Anlotinib targets (KDR, PDFGRB,

FGFR3 and KIT) and Crizotinib (ROS1, MST1R) were higher

in high-PEPScore subgroup. While the expression level of target

genes for Gemcitabine, Etoposide, and Larotrectinib were higher

in low-PEPScore subgroup (Figure 6A). Besides, we used

“pRRophetic” R tools to calculate the IC50 value of drugs and

we found that the IC50 of Cisplatin, Vinblastine, Etoposide and

Docetaxel was obviously lower in the low-PEPScore subgroup,

implying a negative association between the chemotherapeutic

drug sensitivity of LUSC and PEPScore (Figure 6B). TIDE is a

computational framework developed to evaluate the potential of

tumor immune escape from gene expression, serving as a

surrogate biomarker to evaluate the response to immune

checkpoint blockade. According to the TIDE algorithm, the

TIDE score in the low-PEPScore subgroup was found to be

lower than the high-PEPScore subgroup, which suggested that

low-PEPScore patients might benefit more from

immunotherapy. And MIS score was higher in the low-

PEPScore subgroup, while the T cell dysfunction score as well

as TIS score were higher in high-PEPScore subgroup (Figure 6C).

The predictive value of PEPScore was estimated by ROC curves.

We found that the AUC of PEPScore was better than TIDE and

TIS, indicating that the predictive value of PEPScore was as

excellent as TIDE and TIS for OS (Figure 6D). On top of these

two kinds of therapies, we also explored the relationship between

radiotherapy and PEPScore. The low-PEPScore subgroup got a

lower RSI score than high-PEPScore subgroup, suggesting that

the high-PEPScore subgroup was less expected to benefit from

radiotherapy (Figure 6E).

Discussion

In this study, we first analyzed differential expression of

51 pyroptosis-related genes in tumor and non-tumor tissues, as

well as the association between these pyroptosis-related genes

and cancer signaling pathways. We found that most of them were

different and associated with various cancer signaling pathways.

Based on pyroptosis-related DEGs, two pyroptosis expression

patterns with different prognosis were identified through

consensus clustering. Nevertheless, the association between

pyroptosis-related gene expression and LUSC patient

prognosis was not satisfactory enough in univariate Cox

analysis. This may be caused by the mutual compensation of

the complex signaling pathway network in humans. Thus, we

identified the DEGs between different pyroptotic expression

patterns on the whole genome, and we used WGCNA

combined with univariate cox analysis to identify

21 pyroptosis expression pattern hub genes and established

prognostic model PEPScore based on six genes (CSF2, FGA,

AKAP12, CYP2C18, IRS4, TSLP). PEPScore was shown to be a

reliable prognostic pyroptosis-related biomarker for LUSC. High

PEPScore suggested better survival while low PEPScore was the

opposite in both TCGA and GEO cohorts. Besides, ROC and

DCA showed that combining PEPScore with conventional

clinical prognostic factors could better predict patients’ OS.

PEPScore was made of six genes, CSF2, FGA, AKAP12,

CYP2C18, IRS4, and TSLP. Colony-stimulating factor 2 (CSF2,
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also known as GM-CSF), secreted as monomeric glycoproteins,

can control the production, differentiation, and function of

granulocytes and macrophages. (Ingelfinger et al., 2021). CSF2

could induce pyroptosis-related molecule expression in the

neutrophils, including IL-1B, caspase-1 (p20) and NLRP3.

(Furuya et al., 2018). Although a few studies believe that CSF2

inhibits tumor progression, most studies have shown that it can

stimulate various types of tumor cell growth and migration,

including lung cancer, gliomas and skin carcinoma. (Dong

et al., 2012; Hong, 2016). Thymic stromal lymphopoietin

FIGURE 6
PEPScore predicts drug sensitivity. (A) The heatmap presents the different expressions of common drug targets for LUSC patients in high-
PEPScore and low-PEPScore subgroups. Asterisk denotes the p-value (*: p < 0.05, **: p < 0.01, and ***: p < 0.001). (B) The difference in IC50 of the
common chemotherapeutic drugs between high- and low-PEPScore subgroups. (C) The Wilcoxon test shows the difference in TIDE, MSI, TIS and
T cell exclusion and dysfunction scores in high- and low-PEPScore subgroups. The p-value is indicated by asterisk (****p < 0.0001). (D) ROC
curve analysis of the predictive value of the PEPScore, TIDE and TIS. (E) The difference in Radiotherapy index (RSI) between high- and low-PEPScore
subgroups.
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(TSLP), an IL-7-like inflammatory factor could promote TH2 cell

responses that are involved in immunity in various inflammatory

diseases. High expression of TSLP could up-regulate the

expression of GSDMD-N, IL-1beta, as well as IL-18 in human

THP-1macrophages, inducing Caspase-1-dependent pyroptosis

through activation of NLRP3 inflammasome. (Moon and Kim,

2011; Ji et al., 2021). Indeterminately, in certain studies, TSLP has

a cancer-promoting effect, whereas in others, a cancer-protective

effect. (Dong et al., 2012). We found that lower expression of

TSLP led to a poorer prognosis, providing some insights for

further studies. Fibrinogen alpha chain (FGA) polymerizes with

FGB and FGG to form an insoluble fibrin matrix, which is an

extracellular matrix protein participating in blood clot formation

as well as tumor angiogenesis andmetastasis. A-kinase anchoring

protein 12 (AKAP12) is a member of the AKAP protein kinase

family that suppresses tumors. The expression of AKAP12 is

down-regulated in various cancers including colon cancer,

childhood acute lymphoblastic leukemia and hepatocellular

carcinoma, etc. Insulin receptor substrate 4 (IRS4), a

cytoplasmic protein containing many potential

phosphorylation sites, is overexpressed in NSCLC.

Cytochrome P450 family 2 subfamily C member 18

(CYP2C18), is a member of the superfamily of cytochrome

P450 enzymes, which are monooxygenases involved in drug

metabolism and other substances. It is reported to be

correlated with esophageal cancer, gastric adenocarcinoma

and breast cancer. Although our results demonstrate that

pyroptosis-related genes expression and the six model genes

have various degrees of association, the relationship between

the FGA, AKAP12, CYP2C18 and IRS4 and the pyroptosis

remains unclear. From the calculation formula of PEPScroe,

we found that the CSF2, FGA and AKAP12 and PEPScore

were positively correlated, while CYP2C18, IRS4 and TSLP

and PEPScore were negatively correlated. In conclusion, all

these six genes are significantly involved in pyroptosis and

cancer development, which may be a potential therapeutic target.

Although we did not use pyroptosis-related genes to

establish models directly like most studies, the PEPScore

still shows a strong association with pyroptosis (Ye et al.,

2021; Chen et al., 2022; Yang et al., 2022; Yu et al., 2022). The

ROC curve shows high specificity and sensitivity for

PEPScore to distinguish different pyroptotic expression

patterns. Moreover, the expression of the pyroptosis-

related genes and their correlations are significantly

different between the PEPScore subgroups. The way our

model constructed is an entirely different approach from

previous studies, and our results also demonstrate the

reliability of this method. It is worth mentioning that the

model constructed by our method has a better performance

than the model constructed by common method used on a

previous study in LUSC (Li et al., 2022).

To further acquire the biological insight into the

PEPScore, we explored and compared gene mutation

between the PEPScore subgroups. The most frequent

mutation is missense mutation, followed by nonsense

mutation and frameshift deletions. The most common

mutation gene in both groups, TP53, is more frequent in

low-PEPScore subgroup, as reported previously. Although

TP53 is a tumor suppressor gene, mutation of TP53 can

significantly upregulate the expression of interferon-

gamma, activated T-effector and immune checkpoint,

which indicates more likely to benefit from PD-1

inhibitors. Besides, the second most frequently mutated

gene between two subgroups was TTN, which is considered

associated with TMB, and high TTNmutation is revealed to be

related to better survival. (Yang et al., 2020). Therefore, high-

PEPScore LUSC patients with low TP53 and TTN mutation

possess a worse prognosis compared with low-PEPScore

LUSC patients with high TP53 and TTN mutations.

Different from apoptosis, pyroptosis can provoke different

degrees of inflammation reaction and is considered related to

immunity. (Liu et al., 2021). Our GO, KEGG and GSEA analysis

also suggested that pyroptosis can affect the tumor immune

microenvironment. Therefore, further understanding of the

TMB and the landscape of the TME can provide a more

complete understanding of the biological characteristics of

PEPScore as well as provide guidance for finding a new

therapeutic regimen for LUSC or improving immunotherapy

effect. TMB is a potential biomarker to predict ICI therapy

efficacy. (Yarchoan et al., 2017). In our study, patients with

high TMB and low PEPScore had significantly better prognosis

compared with patients with low TMB and high PEPScore, and

in the same PEPScore subgroup, patients with high TMB had

better prognosis compared with patients with low TMB,

suggesting that TMB can help explain why PEPScore

influence the immunotherapy effect. But not explaining all of

it, there may still be other mechanisms. Besides, the infiltration of

the immune cells in two PEPScore subgroups is different.

Neutrophils and M0 macrophages were enriched in high-

PEPScore subgroup, while T follicular helper cells (TFH),

cytotoxic CD8 T cells as well as dendritic resting cells were

more abundant in low-PEPScore subgroup. Previous results

revealed that high density of the T cell infiltration, especially

cytotoxic CD8 T cells, indicating a better prognosis. (Gentles

et al., 2015). The presence of the TFH, which is critical for the

germinal center formation and gives necessary help for B cell

mutation and function, is considered related to prolonging

survival in most human cancers. Neutrophils are also

regarded as tumor accomplices since they can regulate tumor

survival and migration, angiogenesis as well as immune response,

promoting tumor progression and metastasis. (Xiao et al., 2021).

Our results support these conclusions. The different components

of the immune cells in different PEPScore subgroups may result

from the different pyroptosis states of the tumor cells, which has

a different regulation effect on tumor immune

microenvironment. Based on the correlation analysis between
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model genes and immune cells, the expression of AKAP12 and

CSF2 has a negative correlation with the infiltration of

CD8 T cells as well as T follicular helper cells, which may be

because the expression of these genes promotes these cells

undergoing pyroptosis, leading to poor prognosis in LUSC

patients.

Finally, we confirm that PEPScore is reliable in predicting

the prognosis of patients with LUSC as well as providing

guidance on therapy selection. Our results show that different

types of chemotherapeutic drug targets were expressed at

different levels in PEPScore subgroups. Moreover, TIDE

and MSI, considered effective biomarkers for

immunotherapy, are also different in different PEPScore

subgroups. (Jiang et al., 2018). Interestingly, despite the

high expression of immunotherapy targets in the high-

PEPScore subgroup, their TIDE was low, which is

inconsistent with the previous report that up-regulated

immunotherapy targets are correlated with better

immunotherapy effects. We speculate that this may be

because of the aforementioned changes in the pyroptotic

state of the cancer cells, which affects their immune

microenvironment and promotes tumor immune escape.

Regrettably, the subgroup analysis of the IC50 of

chemotherapeutic drugs, immunotherapy TIDE score and

RSI suggests that any single treatment method is not

effective enough for the high-PEPScore subgroup, and they

may need combination therapy.

Although our multidimensional results show that the

PEPScore has great predict effects in LUSC, this study still

had some limitations that need to be considered. Firstly, our

study results cannot provide the exact mechanism by which

pyroptosis modulates the prognosis in LUSC. Some

experiments for exploring the potential mechanism are

needed. Secondly, this study cannot explain the exact

mechanism by which model genes of PEPScore affect the

LUSC pyroptosis status. Therefore, in subsequent studies,

further exploration of the specific mechanisms by which

model genes alter the pyroptosis status of tumor cells is

necessary. Moreover, a large-scale clinical cohort validation

is still lacking before the PEPScore enter into the application

in clinical practice. These have not only increased the

challenges but also provided us with optimism, making us

more motivated to continue digging.

In conclusion, we constructed a PEPScore model which was

validated internally and externally to predict the prognosis of

LUSC patients. PEPScore is correlated with gene mutation and

tumor immune microenvironment in terms of molecular

biological function. The PEPScore overall performance on the

validated datasets shows that the model is robust with broad

application prospects.
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