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Tetrabromobisphenol A (TBBPA) is a potent flame retardant used in numerous

appliances and a major pollutant in households and ecosystems. In vertebrates,

it was shown to affect neurodevelopment, the hypothalamic-pituitary-gonadal

axis and thyroid signaling, but its toxicity and modes of actions are still a matter

of debate. The molecular phenotype resulting from exposure to TBBPA is only

poorly described, especially at the level of transcriptome reprogramming,

which further limits our understanding of its molecular toxicity. In this work,

we combined functional genomics and system biology to provide a system-

wide description of the transcriptomic alterations induced by TBBPA acting on

differentiating mESCs, and provide potential new toxicity markers. We found

that TBBPA-induced transcriptome reprogramming affect a large collection of

genes loosely connected within the network of biological pathways, indicating

widespread interferences on biological processes. We also found two hotspots

of action: at the level of neuronal differentiationmarkers, and surprisingly, at the

level of immune system functions, which has been largely overlooked until now.

This effect is particularly strong, as terminal differentiation markers of both

myeloid and lymphoid lineages are strongly reduced: the membrane T cell

receptor (Cd79a, Cd79b), interleukin seven receptor (Il7r), macrophages

cytokine receptor (Csf1r), monocyte chemokine receptor (Ccr2). Also, the

high affinity IgE receptor (Fcer1g), a key mediator of allergic reactions, is

strongly induced. Thus, the molecular imbalance induce by TBBPA may be

stronger than initially realized.
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Introduction

Tetrabromobisphenol A (TBBPA) is a common flame

retardant utilized in the manufacturing of furniture, plastics,

textiles and electronic components (Shi et al., 2018). Due to that,

TBBPA is widely spreads in the environment and has been

detected in soil, sediment, dust, air and water (Sunday et al.,

2022). Thus, wild fauna is exposed to this contaminant and

TBBPA has been found in a variety of tissues and animals located

in very different habitats. For example, in the aquatic species mud

carp (Cirrhinus molitorella) and northern snakehead

(Ophicephalus argus), it has been at high concentration, up to

670 ng/g lipid weight in serum animals living in a natural pond

contaminated with e-wastes (Webster et al., 2009; Zeng et al.,

2014) and up to 245 ng/g wet weight in muscle of animals

isolated from North sea (Morris et al., 2004). Concentrations

found in tissues of other species may be lower, but still significant

(Johnson-Restrepo et al., 2008): up to roughly 9 ng/g (lipid

weight) in bottlenose dolphin, 35 ng/g (lipid wt) in bull shark,

1.4 ng/g (lipid wt) in Atlantic sharpnose shark, and 35 ng/g (lipid

wt) in harbor porpoises (Law et al., 2006). In barn owl, relatively

high concentration (up to 6 ng/g of dry weight) are found in

feathers (Eulaers et al., 2014), and also in South China waterbirds

(He et al., 2010) where accumulation can be as high as 173 ng/g.

During previous work, Zeng et al., 2016 detected at an electronic

waste recycling site up to 260 ng/g TBBPA in chicken eggs, and

890 in goose eggs, thereby asking questions about the

developmental toxicity. Human is no exception and exposure

is mediated mainly by ingestion, inhalation or dermal contact

(Abdallah et al., 2015). Not surprisingly, TBBPA has been

detected in human plasma, serum, hair and breast milk

(Cariou et al., 2008; Shi et al., 2013; Yu et al., 2019) leading in

an increase of awareness concerning TBBPA potential toxicity,

especially during infant development. An in-depth review of

TBBPA physio-chemical properties, environmental

concentrations, concentration found in biological samples

from wild animals (including humans) and biological effects

can be found in Sunday et al. (Sunday et al., 2022). The most well-

known effects are related to its neuro-toxicity and its impact on

reproduction and the hypothalamo pituitary gonadal axis. Three

weeks old mice exposed through maternal milk of mothers fed

with high doses of TBBPA results in neurological and behavioral

alterations (freezing reflex and horizontal movement in open

field) (Saegusa et al., 2009) (Nakajima et al., 2009). The main

focus in term of TBBPA-driven endocrine disruption has been on

the reproductive axis. Dams of pregnant Sprague-Dawley rats

exposed to TBBPA display diffuse thyroid follicular cell and

cellular hypertrophy (Saegusa et al., 2009), with a slight reduction

of T3 levels in male offsprings. Male dams exposed during

lactation also display lowered levels of T3 and T4, increased

pituitary and testicular weight (Van der Ven et al., 2008). Hamers

et la. report that TBBPA can act as an efficient competitor

(IC50 = 31 nM) for T4 binding to transthyretin (Hamers

et al., 2006), which may be a key step of the mechanism of

action. It can also compete with the direct binding of T3 to the

thyroid hormone receptors at a concentration when present in

the concentration range going from 3 to 50 µM (Kitamura et al.,

2005a). The antagonistic action of TBBPA against T3 was further

confirmed with TRE responsive reporter assays in CHO (Sun

et al., 2009) and HepG2 cells (Freitas et al., 2011). There are also

reports of a weak estrogen activity of TBBPA. In vitro, it impacts

testosterone biosynthesis (Dankers et al., 2013), resulting in

apoptosis in testis and reduced sperm count. At the cellular

level, spermatogonia show altered DNA damage response,

cytoskeleton and cell cycle. Li et al., 2022 evaluated the

postnatal effect of TBBPA on dams and found little effects on

testis weight and serum testosterone levels but reduced cell

proliferation resulting in smaller seminiferous tubule area

decrease Sertoli cells and germ cells number. Unfortunately,

they did not evaluate the reproduction success. Kitamura

et al., 2005b showed an anti-estrogenic activity of TBBPA and

an increase of uterine weight in vivo tests with mice. Others

studies reported alterations of gene expression related to estrogen

signaling targets, biosynthesis and metabolism in uterus in rats

(Sanders et al., 2016; Hall et al., 2017). Dunnick et al. (2015; 2017)

reported uterine epithelial tumors and endometrial epithelial

atypical hyperplasia.

TBBPA also affect the nervous system. A high throughput

toxicity test of a bank of 84 compounds identified TBBPA as a

selective toxicant targeting dopaminergic neurons of midbrain-

like tissues grown as organoids (Renner et al., 2021). Other

studies found that TBBPA was more cytotoxic to neural stem

cells than to neurons, astrocytes, or fibroblasts, and found that

neural stem cell apoptosis was accompanied by increased reactive

oxygen species generation and mitochondrial dysfunction (Cho

et al., 2020). It was further shown in vitro that TBBPA depolarize

the plasma membrane of rat cerebellar granule cells in cerebellar

slices and primary cultures. This is mediated by ionotropic

glutamate receptors and voltage-gated sodium channels

(Diamandakis et al., 2019).

Importantly, as reviewed in (Zhou et al., 2020), most work

has been carried out with very high TBBPA concentrations, well

above the range found in biological samples. Because of this, and

in order to characterize the effects of TBBPA during

development, Shaojun Liang et al. (2019a) exposed mouse

embryonic stem cells (mESCs) to low doses (nM range) of

TBBPA for up to 28 days, and monitored phenotypic changes

through transcriptome profiling by RNA-Seq and RT-qPCR.

They could confirm that the expression of a few key

developmental markers was altered, with a number of

potential phenotypic outcomes. Unfortunately, they did not

provide a system-wide description of the TBBPA effects on

differentiating mESCs.

In this work, we provide an in-depth description of the

system-wide dynamics of TBBPA effects on differentiating

mESCs. By using functional genomics coupled to system
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biology, we identify complex transcriptional signatures of altered

expression profiles. We not only confirm alteration of neuronal

markers, but we also provide additional altered gene expression

signatures which may serve as additional markers of TBBPA

neurotoxicity. Surprisingly, we found that the strongest effect is

on differentiation markers of the two lineages of immune cells,

myeloid and lymphoid, with a consistent reduction of terminal

differentiation markers. This may indicate that TBBPA effect on

immune system is more potent than currently thought. In term of

network dynamic, differentially expressed genes display a non-

random distribution with a marked bias toward low-connectivity

nodes, thus providing a rigorous and comprehensive description

of the TBBPA impact on the network. Our work provide a set of

candidate markers of TBBPA toxicity.

Methods

Data source

Raw data are available from the NCBI’s dedicated Sequence

Read Archive (SRA) website, under the accession number

GSE125324.

RNA-seq reads processing

Raw reads were subject to quality controls with the

FASTQC toolkit. Each library contains 21 to 22 million

reads of PHREAD score ≥36. For all reads, the first 13 bp at

the 5′ end were clipped because of contaminant sequencing

adaptors. Preprocessed reads were mapped on the version 10 of

the Mus musculus genome (mm10 from UCSC.genome.edu)

using BOWTIE 0.12.3 (Langmead et al., 2009) with the

following parameters: “-5 13 -m 1 -n 1 -L 35”. BOWTIE

output was piped to a simple awk script transforming the

data into BED6, further piped to the UNIX commands

SORT and UNIQ to keep only non-redundant reads.

Although this reduces the dynamic range of the gene

expression measure, this is good practice to limit the biases

induced by the PCR steps of the original library preparation

protocol. Overall, mapping efficiency was higher than 75%.

Removal of redundancy further reduced the mapped read count

by a factor of two, resulting in a uniquely mapped and non-

redundant reads count ≥8.5.106.
Co-variance between experimental conditions was assessed

by Principal Component Analysis (PCA): raw read counts were

subjected to a variance-stabilization transformation as described

in (Anders and Huber, 2010).

Gene expression call is based onmodels available fromUCSC

genome browser, and the reads count table was produced with

the INSERSECTBED v2.25 software from the BEDTOOLS

toolkit.

Differential analysis

In functional genomics, probabilistic requirements and time

+ cost constrains always conflict. To circumvent this issue, the

DESEQ software makes the assumption that genes of similar

expression level display similar variance, thus artificially creating

‘fake’ biological replicates, and increase statistical power. While

running three biological replicates is a standard, no biological

replicates is still fairly common. This is the case of the

GSE125324 datasets, where the ‘treated’ samples all lack

biological replicates.

Because of this, it is not possible to compare intra-group vs.

inter-group variance, and typical parametric differential

expression calls (treatment vs. control) can not be carried out.

DESeq could be run when no biological replicates are available,

but this approach still suffers from very limited power, and many

important DE genes may be missed, as acknowledged by the

authors (Anders and Huber, 2010). Brute force permutation tests

are also not practical because of the huge computational load,

and will still fail to overcome the weakness of the experimental

design (no biological replicates).

Therefore, differential expression calls were based on the

simple metric |log2(Fold Change)| ≥ 1. It should be noted that

despite being reasonable given the experimental setup, this

threshold may be more permissible to spurious hits, especially

when considering genes with low reads counts (Love et al., 2014).

Nonetheless, MA-plots clearly shows that DE genes are not

limited to genes with low read counts (Supplementary Figure S1).

Gene ontology

Gene ontology analysis is based on GORILLA software suite

(Eden et al., 2009), based on two unranked gene lists. We used the

transcriptional signature available from CellKb v2.1.3 (Patil and

Patil, 2022). This high-quality database aggregates manually

collected and curated single-cell, bulk RNA-seq and

microarray data.

Biological networks

The network is build upon pathways extracted from the

KEGG pathways database (Kyoto Encyclopedia of genes and

Genomes database) (Kanehisa and Goto, 2000), with the

CYTOSCAPE v3.8.2 environment (Shannon et al., 2003) all

KEGG pathways containing at least one DE gene were

collected with the JEPETTO plugin (Winterhalter et al., 2014)

the XGMML files produced by CYTOSCAPE were parsed

iteratively to fill in a n x n triangular matrix M representing

the final network, where each entry Mji correspond to a

functional interaction between the genes i and j (adjency

table). Here, nodes correspond to gene products and links are
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FIGURE 1
TBBPA treatment has long term effect on transcriptome. (A)Distancematrix between samples, shown as a heatmap. Color gradient range from
dark blue for identical samples (distance = 0) to white (distance = 1). (B) Principal Component Analysis (PCA). Only the first four major components
(45% total variance) are shown. (C–G)Overlap between DE genes after treatment with TBBPA 100 nM (left) or 10 nM (right), for each time point. (H–I)
All-by-all comparison DE genes lists. (J) Changes of expression level (log2 scale) of ACMSD, the only gene differentially expressed in all
experimental conditions.
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the functional connections connecting them (e.g. A regulates B,

which acts on A and C...). Importantly, given that KEGG

pathways store pathways of many different types (signaling

pathways, metabolic pathways, ), the resulting network is

neither a metabolic pathway nor a signaling pathways. We

prefer to refer to it as a network of biological pathways.

Network properties were computed with in-house scripts, in a

manner similar to other published tools (e.g. NETWORKX), or

with CYTOSCAPE.

Network layouts were computed with the “edge weighted

spring-embedded” algorithm and reworked by hand to improve

visual quality. Hubs are defined as nodes with high connectivity

(degree k ≥ 20) (Chin et al., 2014). The degree distribution

follows a power low distribution, as expected for biological

networks displaying scale free and small world properties (i.e.

short distance between randomly selected nodes compared to a

random network).

Permutation tests were carried out with PYTHON scripts

using RANDOM, NETWORKX and SCIPY libraries. They are

run with 1,000 iterations.

Results

Effects of TBBPA are time and dose
dependent

This work is based on the data set produced by (Liang et al.,

2019b), where they exposed differentiating mESCs to 10 or

100 nM TBBPA for 4–28 days, and measured transcriptional

responses by RNA-seq.

Hierarchical clustering of normalized read count data

clearly group samples by time point, suggesting that there

are more differences between treatment duration compared to

response to the two TBBPA concentrations (distance between

experiments displayed as a heatmap, Figure 1A). Principal

component analysis (PCA) further reveals that most of the

total variance is explained by only four components (65%

from PC1 to PC4). The main component (PC1) explains 30%

of the variance and clearly corresponds to individual time

points (Figure 1B). All experimental conditions are grouped

by time point; that is, 10 nM and 100 nM treatment are

grouped together at different time points. Only the fourth

component (PC4) shows grouping according to TBBPA

concentration, suggesting that this effect is quantitatively

modest (5%). Therefore, most of the differences are

between time point and TBBPA treatments have only a

modest effect on the transcriptome output. The

transcriptomic impact of TBBPA concentrations is even

lower.

We identified between 967 and 1,541 genes as differentially

expressed (DE) (|log2foldchange| ≥ 1, Supplementary Table S1)

in all treatment conditions tested. This reduces to a non-

redundant set of 5998 DE genes with ~48% (2,909/5,998)

found in at least one time point at both concentration, and

~21% (1,294/5,998) in at least one time point at 10 nM and

~29% (1795/5,998) at 100 nM. Overall, these values are well

within range of similar experimental datasets reported by

others, even if these studies report very different number of

DE genes, varying over one range of magnitude (from 342 in Lu

et al., 2021 to 3,308 in Guyot et al., 2014). We next asked

whether treatment with higher dose result in stronger or faster

biological responses, as could be expected from cascading

effects on developmental processes. First, we find that

treatment with 100 nM TBBPA tend to produce more DE

genes than with 10 nM, but this is not systematic. For

example, at D9 there are 1421 DE genes after 10 nM

treatment (and 1,534 at 100 nM), which is higher than at

D18, with 1277 DE genes at 100 nM (and 1,151 at 10 nM).

Also, the number of DE genes does not increase with treatment

duration (967 at D4, 1,421 at D9, but 1,255 at D12 and 1,299 at

D28). Strikingly, we found only modest overlap between the set

of DE genes at 10 and 100 nM treatment for each time point (i.e.

when not considering treatment duration, Figures 1C–G). The

overlap ranges from 17.1% for D4 [(882 + 317+650)*100/317 =

~17.1%] to 25.4% for D9. This indicate that the transcriptional

response induced by each TBBPA concentration is dominated

by a very specific component. In other words, higher TBBPA

exposure does not translate into « just » a stronger

transcriptional response inclusive of responses found at

lower doses. Of note, this result does not contradict the PCA

analysis, which considers the expression level of all genes, while

we focus here only on DE genes. We next asked how many DE

genes are in common between transcriptional responses at

different time points (Figures 1H,I). We found very little

overlap and the vast majority of DE genes is only found at

one time point, in both 10 and 100 nM treatments. Only four

genes are always DE with 10 nM (Acmsd, Cabp4, Dq267100 and

Fthl17a) and 6 with 100 nM (Acmsd, Acp4, Aldoart2, Lhfpl1,

Gm20199 and Mir6921). Acmsd is the only gene regulated at

both concentrations. The transcriptional response of all these

genes, including Acmsd, is highly variable and can be either

strongly or weakly induced or repressed, depending on

treatment duration (Figure 1J). Finally, we addressed

whether the small overlaps could be explained by a temporal

shift of transcriptional responses driven by higher TBBPA

concentrations: for example, some DE genes can potentially

display the regulation pattern from a time point (e.g. D4 to

D18) at 100 nM, but shifted toward longer time response at

lower concentration (e.g. from D9 to D28). We found very little

evidence supporting a temporal action of TBBPA, with only 5%

(117/2,271) of DE genes following this trend.

Altogether, these results clearly show that exposure to

different TBBPA concentrations results in contrasted

transcriptional responses, with only little change of the

temporal cellular responses.
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FIGURE 2
Integrative analysis of TBBPA-induced perturbations in biological networks. (A) Principle of network reconstruction, by combining all KEGG
pathways containing at least one DE gene, and merging together individual graphs (pathways). The resulting network is then annotated with DE
genes, highlighted in color. The network is then used to interrogate individual node’s connectivity and detect the influence of DE genes in the
network (local vs. broad), and identify subnetworks representing focus points of action. (B) The reconstructed network (4,173 nodes,
18,740 edges) has the typical structure of scale free networks, with a large number of low connectivity nodes and a limited number of hubs.
Connectivity is displayed as node size. DE genes are color-coded. (C) Subnetworks obtained after 9 days TBBPA treatment, showing all the DE genes
functionally interacting with each other. Most contain only a few nodes, except much largest one.
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A broad and diverse set of biological
pathways affected

We used standard tools and procedures to perform gene

ontology analysis in order to highlight the biological processes

involved. Overall, we found 552 GO terms significantly

enriched in at least one condition (Supplementary Table

S2). The most represented terms across experiments (i.e.

found in at least nine out of 10 conditions) are very broad

and general (level 1 or two GO terms): system process, calcium

ion homeostasis, cell-cell signaling, defense response,

inorganic ion transmembrane transport, ion

transmembrane transport, positive regulation of cytosolic

calcium ion concentration, signaling, ion transport,

inflammatory response, multicellular organismal process

(Supplementary Table S3) with a fair enrichment in ion

transport. In general, terms are highly diverse and do not

contrast any specific process or organ. For example, the term

female pregnancy is enriched in five out of 10 experiments, as

it is also the case for the term chemokine-mediated signaling

pathway, response to lipid and hormone metabolic process. A

majority of terms (325/552) are only found enriched in a

single experimental condition.

The number of genes associated to each term is highly

variable and range from 3 to 2,180. Among these, each

individual member of a small subset 542) contribute to at

least 10 different GO terms, indicating that the gene ontology

representation is biased by this small gene set. In general,

enriched terms are not limited to a single experimental

condition but they are found in several, resulting in a limited

GO contrast between experiments. This analysis clearly shows

that TBBPA has a very broad and general impact on many

biological functions, with only very limited contrast toward

specific terms.

Network biology to identify biological
processes and makers affected by TBBPA

We used the formal framework of system biology to

provide a more mechanistic description of the processes

involved at the cellular and molecular levels. Although this

might seem counter-intuitive, data integration at a system-

wide level is very efficient at highlighting unusual features or

feature responses within biological networks, and thus readily

pinpoint (sets of) genes of functional significance in the

experimental context. To this end, we proceed in two steps:

we first run a pathway analysis based on the popular KEGG

pathways database (Kanehisa and Goto, 2000), and we then

build a network of biological pathways for data integration. In

principle (Figure 2A), the network is build by collecting and

merging together all the pathways containing at least one DE

gene, whether or not they are significantly enriched (Kerdivel

et al., 2019; Buisine et al., 2021). This results into a network

where nodes are gene products and edges (links) represent the

functional interaction found in the original pathways. This

approach has multiple benefits: it is gene centric and does not

rely on pathway enrichment; it takes into account the fact that

pathways are not independent if they share one or many gene

products; it benefits from the theoretical and technical tools

developed in the field of system biology. One of the most

important product of this analysis is the identification of

highly connected nodes, also known as hubs. The biological

significance of hubs is important because affecting their

expression level is expected to translate into numerous

functional effects. As such, they correspond to central

sensors or regulators of cellular activity (Zhu et al., 2007).

Network analysis also helps identify subnetworks composed of

DE genes directly connected, if they exist. These are focus

points of concerted regulation within the network and

certainly represent key mediators of the biological response,

especially if they contain hubs. This is the rationale of our

analysis: are hubs favored targets or are they avoided? Are

functionally relevant subnetwork being affected?

KEGG pathways collected for network reconstruction at

each experimental condition are summarized Supplementary

Table S4. Only a very limited number of experimental

conditions showed evidence of statistically significant

pathway enrichment (based on XD-score ≥ 1). These

correspond to the D9 at 10 nM and the D18 at 100 nM

datasets with the pathways « renin-angiotensin system », «

retinol metabolism », « tyrosine metabolism ». This apparent

similarity between these two datasets is not reflected by the

PCA which shows instead marked differences between time

points (Figure 1B). This is in fact the result of a small number

of DE genes shared between the corresponding pathways

(Lrat, Tpo, Adh1a and Adh1b). This indicate that the action

of TBBPA is not mediated through the coordinated regulation

of entire pathways (as described in the KEGG database).

Instead, this suggests that DE genes are scattered

throughout numerous pathways, which fail to reach

statistical significance in enrichment analysis.

The reconstructed network has a total of 4,173 nodes and

18,740 edges (Figure 2B), which is well in range of previous

studies on other models (Kerdivel et al., 2019; Buisine et al.,

2021). This corresponds to a total of 161 aggregated KEGG

pathways containing at least one DE gene, for a subset of 733 DE

genes found in the database. We found that as little as 18 DE

genes involved in signaling (Adcy7, Calml3, Fas, Faslg, Hla-doa,

Hla-drb1, Hla-drb5, Igf1, Il10, Il6, Itga2, Mapk10, Nos2, Pik3cg,

Pla2g10, Pla2g4a, Plcb2, Rac2) contribute the most since they are

found in 92 of the 161 KEGG pathways used. This is expected

since biological processes often rely on shared molecular

mechanisms and signaling, e.g. Pi3k mediates both thyroid

hormone and insulin signaling (Fu et al., 2021; Byrnes et al.,

2022).
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Downstream network analyses will address the degree

distribution of DE genes within the network and

the predicted functional output of subnetworks (see

sections below). Of note, even the straightforward

identification of a subnetwork at individual time points

already provides important functional informations. An

example is shown Figure 2C, where 47 DE genes at

D9 functionally interact with each other. Among them,

two hubs, VAV1 and BTK, clearly stand out and readily

point to immune system related functions. Close

examination further reveals additional connection to

immune systems: ITK, TLR6, ITGAL, CD4... Nonetheless,

although powerful, this approach fails to integrate all

time points together, and significant time-dependent

connections may be missed.

Most transcriptome alterations are
scattered throughout the biological
network

The question being asked is whether transcription alterations

are randomly distributed within the network or whether

preferentially affect (or avoid) hubs. It is important to note

that even under-representation of hubs is of interest since

they stand out more. In order to characterize the network

dynamics, we carried out a topology analysis, i.e. we scored

node connectivity and asked whether DE genes tend to be highly

or poorly connected.

Overall, we found that DE genes connectivity is always

significantly lower (on average) compared to non-DE genes

(Figure 3A). This can be precisely quantified by estimating

FIGURE 3
Transcriptome alterations induced by TBBPA are not randomly distributed in biological networks. (A) Connectivity (degree) distribution of DE
genes versus no-DE, at each time point. * pval ≤0.05, ** pval ≤10–2, *** pval ≤10–3. (B) Cumulative proportion of network nodes relative to their
degree (Empirical Cumulative Distribution Function). DE genes are always located above non-DE genes, indicative of a higher proportion of poorly
connected nodes.
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empirical cumulative distribution functions (ECDF) coupled

to permutation tests (Figure 3B). In our case, this procedure

provides the proportion of nodes having a connectivity less or

equal than a target value ranging from one to n (n = max

connectivity). For example, a population of nodes with low

connectivity will have 95% of them (frequency = 0.95) with a

degree less than some value (e.g. 10), while a population of

highly connected nodes may only have a limited proportion

(e.g. 70%, frequency = 0.7). At a connectivity value of 25, our

results unambiguously show a statistically significant higher

ECDF value for DE genes compare to non-DE genes in the

network (Supplementary Table S5), hence indicative of a

lower overall connectivity. This indicates that TBBPA act at

multiple isolated targets spread within biological networks,

and its effects are thus very local. As shown above, this is not

associated to a clear and specific functional signature, but

FIGURE 4
DE genes functionally cooperate with each other. (A) Subnetwork depicting the functional interactions between DE genes. (B,C)Genes related
to neurobiology or immune system are highlighted in yellow, respectively. (D) Temporal dynamic of the subnetwork where most of genes (8 out of
10: Pomc, Mc4r, Pyy, Npy2r, Npy, Ghrl, Ghrhr and Ace2) are highly expressed in central nervous system.
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rather to a very diverse set of biological processes. This is an

important result because this suggests that TBBPA affect

diverse molecular targets, cascading into a large range of

biological processes.

Network biology uncovers alterations of
nervous and immune system markers

A significant fraction of all DE genes is not scattered within

the network but are instead directly connected to each other,

forming a dense subnetwork of coordinated responses

(Figure 4A). Indeed, subnetworks composed of DE genes

directly connected with each other collectively participate to

regulatory processes, and they are often significant mediators

of biological responses. We found such subnetworks at each time

point (between 5 and 12 per time point, see example Figure 2D)

and they all share similar properties: between 3 and 23 DE genes

and a slight enrichment of hubs. Roughly a third of all genes

found in these subnetworks are shared between at least two time

points, suggesting that they may functionally overlap. Two

extremes are VAV1 and BTK, two hubs (k = 55 and k = 50,

respectively) involved in immune system related pathways, and

found in the subnetworks at all time points but one (D18, not

shown). The mere presence of overlap between the subnetworks

found at different time points suggest a functional and/or a

temporal connection that needs to be addressed by combining

DE genes lists.

By combining all DE genes, irrespective of the treatment dose

or duration, we found that a significant fraction of them actually

form a giant subnetwork, i.e. each (DE) node is directly

connected to at least one other DE node (Figure 4A). Its size

is slightly smaller than expected by chance (permutation test, p =

0.030, z-score = -1.87), which is consistent with the overall

reduced connectivity of DE genes (compared to non-DE

genes) within the network (see below). The subnetwork is

composed of 146 nodes, including 19 hubs (degree ranging

from 20 to 56, Supplementary Table S6). Remarkably, the

subnetwork captures the majority of DE hubs (19/35 = 54%),

a contrast well supported statistically (p ≤ 10–5, z-score = 9.27).

Also, combining the datasets make the temporal coordination of

gene expression more apparent, as illustrated by the successive

expression of the neuro-endocrine systemmarkers (GHRL, NPY,

MC5R, MC4R, POMC, NPY2R, MC1R, ACE2, GHRHR and

PYY, Supplementary Video S1). Altogether, and given the

structural and functional importance of hubs, it is clear that

this subnetwork captures a significant part of the molecular

phenotype induced by TBBPA challenges.

Strikingly, Gene Ontology analysis (using non-subnetwork

genes as background) restricted to the gene set of the subnetwork

shows a very strong enrichment of biological processes related to

the immune system (Table 1, top 20 GO terms). This

corresponds to the main biological functions expressed

collectively within the subnetwork. This signature results from

a combination of GO terms like “immune response” (GO:

0006955), “inflammatory response” (GO:0006954), “positive

regulation of immune system process” (GO:0002684), “defense

response” (GO:0006952), “immune response-activating signal

transduction” (GO:0002757), “cell surface receptor signaling

pathway” (GO:0007166) and “G protein-coupled receptor

signaling pathway” (GO:0007186), to name a few. Even if the

subnetwork contains a few genes involved in various aspects of

neurobiology (Mc5r, Pomc, Mc1r, Mc4r, Pyy, Npy2r, Npy, Ghrl,

Ghrhr, Ace2, Ptprc and Itgam), we found no statistical

enrichment of GO terms related to neurobiology and

neurodevelopment.

We next focus on two regions of the subnetwork (Figures

4A–C), related to neuronal functions on the one hand, and the

immune system on the other. The first region of interest is a

group of 10 connected genes (Mc5r, Pomc, Mc1r, Mc4r, Pyy,

Npy2r, Npy, Ghrl, Ghrhr and Ace2), with eight of them being

strongly expressed in central nervous system (Figure 4B). They

display a gradual and time dependent regulation (Figure 4D):

only two to three genes are DE at D4 and D9 (Mc1r, Ghrl and

Pyy), six genes are DE at D12 (Mc5r, Pomc,Mc1r,Mc4r, Npy and

Ghrl). The transition to D18 is marked by the progressive

shutdown of three genes (Mc5r, Pomc and Mc1r) and the

regulation of four additional genes (Pyy, Npy2r, Ghrhr and

Ace2). This temporal pattern, even if limited to only a small

TABLE 1 Top 20 of GO terms enriched in the subnetwork. Most of
them are related to immune system functions.

p-value FDR q-value Enrichment fold

2.08E-22 2.59E-18 3.43

1.18E-21 7.38E-18 4.51

6.38E-21 2.65E-17 2.18

2.17E-20 6.76E-17 1.68

3.49E-20 8.71E-17 2.96

3.56E-20 7.38E-17 3.15

4.65E-20 8.28E-17 2.3

1.71E-16 2.67E-13 1.7

5.54E-16 7.67E-13 2.38

2.8E-15 3.49E-12 3.98

3.08E-15 3.49E-12 5.48

3.89E-15 4.04E-12 3.09

4.13E-15 3.96E-12 3.69

4.27E-15 3.8E-12 2.91

6.58E-15 5.46E-12 1.93

7.24E-15 5.64E-12 2.88

9.65E-15 7.07E-12 2.69

3.07E-14 2.13E-11 3.64

4.45E-14 2.92E-11 2.93

1.4E-13 8.73E-11 2.85
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region of the subnetwork, is a strong confirmation of a TBBPA

effect at the neurological level. In order to investigate this further,

we addressed whether a collection of neuro-developmental

markers (Trevino et al., 2021) also follow this trend. We

proceed in two steps: we first describe the normal evolution of

gene expression in differentiating mESCs, before documenting

the impact of various TBBPA concentration at each time point.

Without TBBPA treatment, mESCs show a rapid and abrupt

shutdown of pluripotence markers (Nanog, Fgf4, Klf4, Pou5f1,

Figure 5A), and a more gradual repression of cycling progenitors

markers (Top2a, Mki67, Clspn, Aurka). Although astrocytes

markers seem unaffected, this indicate that mESCs

spontaneously differentiate in various neural cell populations.

TBBPA has a relatively strong impact (Figure 5B) on the

expression of neuronal markers (mature and immature: St18,

Sst, Sp8, Pax6, Ppp1r17, Neurog1/2) and early radial glia cells

(Npy). The differentiation markers of others cell populations also

follow this dynamic but to a lesser extend: Sox10 and Nkx2-2 for

OPC-oligodendrocytes, Ascl1 and Olig2 for mGPC cells. The

majority of glia markers are shutdown, as opposed to neuron

markers which tend to be more expressed. Oligodendrocytes and

intermediate progenitor markers display more diverse

regulations often going in opposite direction. These results not

only confirm the known impact of TBBPA on the nervous

system, they also pinpoint strong contrasts between cell-

populations (neuron vs. glia).

The second focus point correspond to the immune system

(Figure 3C). The strong signature of immune system markers

does not originate solely from the astrocytes and microglia cells

found in the nervous system (Figure 6). In fact, a cellkb analysis

of the subnetwork genes reveals a second and clearly distinct set

of immune system markers found in T cells and natural killer

cells lineage, and more generally in the lymphoid lineage

(Figure 6, Supplementary Table S7). We find remarkable that

a majority of the nodes located in the subnetwork match the

transcriptional signatures of the immune cells. We next

FIGURE 5
Time dependent evolution of differentiation markers. Heatmaps of expression changes (Log2 scale). (A) Spontaneous differentiation without
treatment (D0 vs. D4, D9, D12, D18 and D28). (B) After 10 nM or 100 nM TBBPA treatment. RG: radial glia. mGPC: multipotent glial progenitor cell.
nIPC: neuronal intermediate progenitor cell. MGE: medial ganglionic eminence. CGE: caudal ganglionic eminence. PSB: pallial-subpallial boundary.
VLMC: leptomeningeal cell. Markers are from (Trevino et al., 2021).
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FIGURE 6
The transcriptional signature of the subnetwork corresponds to immune system functions. DE genes are compared to expression changes
specific of individual immune cell types. Color code is according to the various cell lineages, where strong colors correspond to higher scores.
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performed the same analysis as for neuro-developmental

markers, and we plotted the expression value of a set genes

used as markers of different cell populations (Figure 7) (Alberti-

Servera et al., 2017). Strikingly, the heatmap is dominated by a

lowered expression of these markers, meaning that with TBBPA,

most cells fail to reach the differentiation state they would have

reached without. The other remarkable feature is that all cell

types are affected, both frommyeloid and lymphoid cell lineages.

Altogether, this integrative analysis in differentiating mESCs

clearly shows that TBBPA affects the expression pattern neural

markers, and uncovers new effects on immune cells.

Discussion

In previous work, Liang and al. Setup an in vitro system to

address the long duration treatment effects of continuous

exposure to TBBPA. To this end, they used the differentiation

of mouse embryonic stem cells (mESCs) to embryoid bodies as a

sensitive assay to score the toxicity of TBBPA during

development. In this work, we used a post genomic analysis

framework to provide a system-wide description of the

functional disturbances induced by TBBPA. Although often

perceived as challenging, system biology is a natural

complement to functional genomics that chaperon the

transition from raw results (lists of DE genes) to a biological

model. Indeed, the biological interpretation of high throughput

data is notoriously laborious because it produces long lists of DE

genes which are difficult to make sense of spontaneously. But by

providing a wide and naive view of a biological system, network

analysis can readily identify “unusual” region with respect to the

experimental perturbations, without functional a priori. Our

analyses provide novel observations: we first show that

response to high and low doses of TBBPA are vastly different

from each other, and that a high dose does not accelerate the

stereotype response of a low dose treatment. We next show that

the majority of TBBPA-induced gene expression alterations are

scattered throughout biological networks, although a few hubs

and subnetworks stand out. TBBPA affects the expression of

several markers of neural cell populations, including

oligodendrocytes as well as neuronal intermediate progenitor.

We also uncover a strong transcriptional impact on immune

system markers, including myeloid and lymphoid lineages. The

functional impact of TBBPA is therefore the expression of its

cumulative toxicity at two subnetworks together with a more

diffuse and widespread component, that should be addressed as a

whole.

On the challenge of making biological
sense of large lists of DE genes

System biology magnify the functional
description of transcriptomic datasets

Functional genomics (RNA-seq and microarray analyses)

often produce very long lists of genes of interest, of the order

of a few thousand per experiment, which far exceeds the

processing capabilities of a human brain and prevent the

conceptual modeling of the processes under study. Gene

ontology and pathway analysis are very popular approaches

used to reduce the dimensionality of the datasets and to

provide a more biologically-sound summary of complex

biological responses. This is made possible with knowledge

databases organized according to different paradigms: the

Gene Ontology database (Ashburner et al., 2000), the KEGG

pathway database (Kanehisa and Goto, 2000) and others. Gene

ontology is modeled through hierarchical relationships between

“GO terms”, each associated to a set of genes, and addressed with

a controlled vocabulary, while KEGG pathway are user defined

and curated collections of molecular interactions called

“pathways”.

Fundamentally, the approaches are based on a measure of

enrichment of DE genes compared to lists of genes known to be

involved in specific biological processes. In the case of the

popular tool GOrilla, enrichment is defined as E = (b/n)/(B/

N), where b is the number of DE genes of the categories, n is the

total number of DE genes, B is the total number of genes

associated with a specific GO term and N is the total number

of genes (Eden et al., 2009). In this context, it is clear that strong

biological responses (b high) channeled through a limited

number of biological processes would result in a high b/n

ratio (close to 1), which is expected to be much higher than

the proportion of all the genes involved in specific GO term (B/N

low, therefore b/n > B/N). In contrast, transcriptional

FIGURE 7
Transcriptome alterations of immune cell differentiation
markers, after exposure to TBBPA. Markers are based on single cell
analysis of gene expression. Genes labelled with a star (“*") belong
to the subnetwork.
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interferences scattered throughout numerous processes (b low)

will result in a low b/n ratio (<< 1) and therefore a very weak

enrichment (b/n ≈ B/N). Although the various tools developed

over time to interrogate gene ontology define their own metrics,

the underlying logic is very similar and most of the differences

stem from their assessment of statistical robustness.

This has very practical consequences, because the very nature

of the transcriptional changes may prevent enrichment analysis

to reach statistically significant terms. This explains very well our

results, where the lists of DE genes fail to highlight biological

contrasts, while our system-level analysis shows that most DE

genes are scattered throughout the network. In agreement,

alternative tools (R package goProfiles, Sanchez et al., 2016)

also failed to show significant differences between datasets

(not shown) when considering all DE genes simultaneously.

Combining enrichment analysis to system biology proved to

be much more resolutive, as restricting the analysis to the

subnetworks (i.e. sets of functionally connected DE genes co-

operating together) increase the b/n ratio, and result in a clear

enrichment. Biologically, the terms are related to immune system

and neurobiology, and although the influence of TBBPA on

neural cells is not new, such impact on the immune system is.

This is not a trivial result, and it may well represent an

inherent limitation of toxicogenomics, whereby transcriptional

interferences scattered at multiple targets may prevent the

biological interpretation of RNA-Seq data. As such, poor

contrast in enrichment analyses may not indicate a limited

toxicological impact, but rather an analytical consequence of

system-wide properties. Luckily, because it is a naive and

integrative analysis framework, system biology is perfectly

suited to characterize and measure these properties.

Shared functional content within
subnetworks

Although it is based on a similar rationale, our approach is

not akin to network propagation, which has been a point of

interest in recent years (Barel and Herwig, 2018). In short,

network propagation combines experimental data (e.g.,

transcriptomic responses) with molecular interaction

knowledge structured in protein-protein interaction or

signaling networks. The topology of the network is then used

to propagate individual node’s response to nearby nodes

throughout the network (including non DE genes), and by

that help amplify signal and functionally interpret the

experimental data (Barabási and Oltvai, 2004). The underlying

postulate is that interacting factors collectively participate to

common processes and convey functional perturbations. In

this context, interacting non-DE genes could not be used as

markers, their role is just limited to enhance the functional

information conveyed by DE genes. These approaches are

very efficient at identifying sub-modules, improving the

functional description of biological processes (enrichment

analysis) and identifying novel anti-cancer drug targets

(Zecena et al., 2018; Tran and Pham, 2021). For example,

Barel and Herwig found different gene sets when comparing

the effect of structural analogs of anthracyclines, with very little

overlap (Barel and Herwig, 2018). After network propagation

(i.e., subnetwork enriched in non-DE neighbors) they

found >200 genes in common and a much improved disease

pathway enrichment.

In our work, the subnetwork was not built with network

propagation. Instead, it was build with more stringent criteria

and only incorporate DE genes (non-DE genes being excluded).

Nonetheless, given the sheer size of the subnetwork (>100 genes),
its shared functional information content is expected to be

maximal and there is little doubt that the corresponding

biological functions (immune system) are the top molecular

phenotypic alterations induced by TBBPA.

We should emphasize that our work did benefit from time

course series allowing us to collect a large set of DE genes affected

at a time point or another. It is clear that despite a limited overlap

of DE genes between experiments, many of them belong to

similar pathways and are often neighbors within the network.

It is very likely that network propagation carried out on only a

single experiment would have reached similar conclusion.

Altered gene expression induced by
TBBPA

Biological networks are highly structured and share a key

property: node connectivity follow a power law distribution

(“scale free” property (Barabási and Oltvai, 2004)). This imply

that most nodes are loosely connected to the network, while a

limited number of them are highly connected (“hubs”). Hubs are

integration points within networks, and are either convergence

points of sensory information or factors controlling a large

palette of downstream effectors.

Biological networks are robust against random attacks/

perturbations because they statistically affect nodes with low

connectivity, and will unlikely impact the function and the

structure of the network as a whole. In other words, even

with perturbations, nodes remain connected through multiple

routes, and affecting one does not prevent signal propagation

through alternative paths. In contrast, networks are highly

sensitive to targeted attacks/perturbations at hubs, and any

compound affecting them is known to have broad and far-

reaching impact, resulting in strong toxicity and numerous

adverse effects (e.g. Piñero et al., 2018; Barel and Herwig

2018). This is well illustrated with cancer cells, which often

hijack hub functions and thereby prevent the homeostatic

balance of cellular activity (Barabási and Oltvai, 2004),

followed by massive functional switches. Therefore, describing

the tropism of DE genes for the different network compartments
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provide important mechanistic informations about the dynamic

in place at the scale of the system as a whole.

We found that transcriptome alterations after 4 days

treatment are under-represented at hubs and are mainly

distributed throughout the network, i.e. the most robust

component against perturbations. Accordingly, the biological

functions affected are fairly-diverse, but with a slight trend on

signaling (intracellular calcium, phototransduction) or

metabolism (see Supplementary Table S4). This fact, together

with the numerous accounts of TBBPA molecular phenotypic

alterations (Van der Ven et al., 2008; Dunnick et al., 2015;

Parsons et al., 2019), indicate that despite targeting the most

robust network compartment, the TBBPA impact is not fully

buffered and may be relatively high. This conclusion is not a

truism because transcriptome perturbations can be well buffered

in vivo, even with very potent glucocorticoids (only 38 DE genes

in Xenopus tailfin after 100 nM corticosterone treatment (Buisine

et al., 2021)).

Even if TBBPA has raised concern since 1979 (Inouye et al.,

1979), the breadth of its effect remains poorly known. In fact,

previous studies reported impact on endocrine systems (thyroid and

reproductive) and neurobiology/development causing numerous

indirect side effects. Most studies commonly use on a limited set

of well-established molecular and cellular markers (Watanabe et al.,

2010; Liang et al., 2019b). Very little is known about additional

biological processes, and TBBPA toxicity has even been challenged

(Schauer et al., 2006; Dong et al., 2021). In this context, our findings

of a set of genes respondent to TBBPA, of novel markers of

neurological functions and strong transcriptional signature on

immune system may help settle this debate.

A small set of genes respondent to TBBPA
as potential new markers

In a toxicological context, the little overlap between time

points implies that most DE genes can not be used as markers of

TBBPA exposure because expression changes are time-

dependent. Fortunately, a small set of genes DE

in ≥6 experimental conditions (out of 10 total) providing

potential time-independent candidate markers. The best

candidate, Acmsd, is DE at all time points and TBBPA

concentration. A few of these markers are connected to neural

biology. We will quickly review their function. Acmsd is the only

gene DE in all experimental conditions. This gene encodes for an

alpha-amino-beta-carboxy-muconate-epsilon-semialdehyde

decarboxylase which convert ACMS into AMS (alpha-

aminomuconate semialdehyde) and prevent the accumulation

of quinolate (QA), a neuronal excitotoxin involved in

neurodegenerative disorders. Thus, Acmsd is a potential new

marker of the effect of TBBPA. Unfortunately, there is no

experimental data supporting the molecular mechanism of

this connection, as it is required for the development of an

adverse outcome pathway (AOP). We note, however that

Matsuda et al. (Matsuda et al., 2014) proposed that Acmsd

gene expression may be linked to the cholesterol metabolism

pathway through the regulation of Srebf2. In turn, Srebf2

dysregulation, together with altered cholesterol metabolism, is

part of the proposed mode-of-action of TBBPA, leading to the

key event “oligodendrocyte hypo-myelination” (Klose et al.,

2021). The mechanistic connection between Acmsd and Srebf2

remains an open question.

The other genes are not DE in all conditions but are positive

at each time point and thus may represent interesting candidate

markers. Cabp4 encodes a calcium binding protein expressed in

bipolar cells in the eyes leading to congenital stationary night

blindness if the gene is mutated (Smirnov et al., 2018). Fthl17a

encodes a ferritin heavy chain like 17 and is expressed in

embryonic germ cells (Ruzzenenti et al., 2015). Dq267100 is a

snoRNA whose function remain unknown.

ACP4 is an acid phosphatase deregulated in prostate cancer

cell line and in testicular cancer tissues. Aldoart2 encodes an

aldolase fructose-bisphosphate A known to been expressed

during development. Deregulation of this gene could be

involved in cancer progression. Lhfpl1 belong to a family of

LHFP genes known to be involved in deafness if they are

mutated. Mir6921 is a gene encodes for a miRNA and defect

lead to abnormal behaviors, craniofacial anomalies and gene

dosage imbalance. For GM20199, very little is known, except that

its expression dependent on CREBBP in the context of acute

myeloid leukemia (Zimmer et al., 2012).

Two hubs clearly stand out when considering individual

subnetworks, VAV1 et BTK, which are DE at all time point

but one (BTK, D18). Other hubs significantly differ between time

points. The fact that two hubs are found in a subnetwork is not

surprising because in scale free networks, connected DE genes

pairs are more likely to include hubs and they will tend to

accumulate with increasing gene pairs. It is more the fact that

they are found consistently even after long treatment duration

(4 vs. 28 days), where indirect effects can dominate molecular

responses. These two gene products are important factors of B-,

T- and NK cells maturation and function (see below). Therefore,

the recurrent presence of VAV1 and BTK in subnetworks points

to a robust alteration of immune system homeostasis.

Markers of TBBPA effects on neurological
functions

The impact of TBBPA on the nervous system is not new and

has been the subject of numerous reports (Nakajima et al., 2009;

Chen et al., 2016; Zhu et al., 2018). In a few studies, in vivo, its

effects have been scored by measuring phenotypic constants

rather than by expression changes of a few marker genes:

TBBPA impairs nicotinic receptors functions in frontal cortex

(Viberg and Eriksson, 2011). It also reduces hypocampus
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neurogenesis, activate glial activation (without neuronal loss) and

reduced BDNF-CREB signaling, resulting in memory loss (Kim

et al., 2017). Primary culture of hippocampus neurons treated

with TBBPA resulted in the induction of a few markers of

apoptosis: increased LDH activity as well as DNA

fragmentation and condensation (Szychowski and Wójtowicz,

2016).

In vitro, Liang et al., 2019a assessed the impact of TBBPA on

neural ectoderm differentiation. They quantified transcriptome

alterations by RNA-seq followed by GO terms analysis and

extensive RT-qPCR validations. Only two neurobiology-

relevant GO terms (“nervous system development” (GO:

0007399) and “midbrain development” (GO:0030901)) were

found to overlap with their very small list of DE genes: Rfx4,

Barhl1, Cbln1, Serf1a, Chrna3. Based on this, they proposed that

TBBPA alters axon growth/guidance and neurotransmission.

In this context, our work provides additional data and

suggest a wider impact, because several cells types may be

affected in vitro: microglia, oligodendrocytes and neuronal

intermediate progenitor cells. The first DE gene of interest is

neuropeptide Y (Npy), which participate in numerous

physiological processes mainly (but not only) in the nervous

system (Rezitis et al., 2022) (Ubuka and Tsutsui, 2022) (Yannielli

and Harrington, 2001; Loh et al., 2017). Interestingly, among

other things, NPY regulates the secretion of thyrotropin releasing

hormone (TRH) by thyrotropin-releasing hormone neurons

(Fekete et al., 2001), which may enhance further the action of

TBBPA as a disruptor of thyroid hormone signaling (Decherf

et al., 2010). The expression of two differentiation markers of

multipotent glial progenitor cells (Ascl1 and Olig2) is affected by

TBBPA (Szu et al., 2021), together with two transcription factors

(Nkx2-2 and Sox10) acting downstream in the cellular

differentiation pathway of oligodendrocytes (Sugimori et al.,

2008). This is a strong indication that TBBPA impact

oligodendrocytes differentiation in vitro, well in line with

previous report (Klose et al., 2021). Finally, key markers of

neurons cells development are also impacted by TBBPA:

Ppp1r17, Penk, Neurog1 and Neurog2. Altered expression of

these genes is known translate into various neurological and

metabolic diseases (Girskis et al., 2021) (Huang et al., 2014). The

expression of other genes involved in various aspects of brain

development is also affected: Tbr1, Crym and Pax6 (Hevner et al.,

2001, 2002) (Kinney and Bloch, 2021) (Georgala et al., 2011;

Cvekl and Callaerts, 2017).

TBBPA impact immune system functions

mESCs can differentiate into virtually any cell type,

depending on the experimental setup (culture media,

hormone/growth factor supplementation etc). The vast

repertoire de developmental trajectories of differentiating

mESCs is well illustrated in previous work (Zhou et al., 2010),

but also in Liang et al. (2019a). They show expression of gene

marker characteristic of each embryonic layer (ectoderm,

mesoderm, endoderm), as well as various cell populations:

neural cells, cardiomyocytes, thyroid gland, keratinocytes and

hepatocytes. The fact that immune cells originate from

mesoderm is a first indication that the experimental system

they used can generate immune cells. A second indication is

that differentiating mESCs into neural cells also produce many

additional cells types, including cells expressing collagens, glia,

and other immune cells (Briggs et al., 2017). Remarkably, using

different differentiation protocols channel cells to alternative

developmental trajectories, but the resulting cell populations

consistently reach the same differentiation states, including

immune cells (Briggs et al., 2017). In addition, mESCs are

well known to differentiate into macrophages (Hai et al.,

2022), microglia (Beutner et al., 2010), and cells expressing

lymphocytes costimulatory molecules (Ling et al., 1998). For

these reasons, in vitro differentiation of mESCs into neural cells is

expected to produce a small proportions of immune cells.

Given the strong emphasis on neural development in Liang

et al. (Liang et al., 2019a), the very strong transcriptional

signature on immune system was unexpected. Unfortunately,

it did not receive as much attention as the nervous system or the

hypothalamo-pituitary-gonadal (HPG) axis, and therefore our

current understanding of these effects is poor. In this context,

providing a list of potential novel endpoints is valuable and

further illustrate the strength of combining functional genomics

and system biology.

We found that the subnetwork concentrates many DE genes

belonging to several immune system pathways. In fact, immune

system markers are not limited to the subnetwork but are also

found in the non-subnetwork part. Overall, TBBPA affects

markers of both lymphoid and myeloid lineages (Alberti-

Servera et al., 2017). It is clear, however, that DE genes shared

by multiple cell types are expected to have broad effects on

immune system.

A limited number of studies reported an impact on the

immune system (Watanabe et al., 2010). report enhanced

sensitivity to respiratory syncytial viruses after dietary

exposure to very high doses of TBBPA (1,700 mg/kg).

Exposure with lower doses has no significant effect on spleen

weight. In vitro, NK cells undergo lysis after exposure to mM

scale concentrations of TBBPA (Hurd andWhalen, 2011). At the

micro-molar range, TBBPA modulates inflammatory response,

and induces cyclooxygenase-2 through pro-inflammatory

transcription factors NF-κB and AP-1 (Han et al., 2009).

The main marker used tomonitor TBBPA effects on immune

system is the production of cytokines. For example, this is the

case of tumor necrosis factor alpha (Tnf-α), interferon γ (Ifnγ) or
Il-4/6/8/24 (Watanabe et al., 2010, 2017; Koike et al., 2013; Park

et al., 2014; Almughamsi and Whalen, 2016). In another study

Wang et al. (Wang et al., 2019) found that macrophages exposed

to TBBPA over-express pro-inflammatory cytokines (Il-1β, Il-6,
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and Tnf-α), together with a reduced expression of antigen-

presenting-related genes (including Cd86, DE in our datasets).

Although a few of these markers are DE in our dataset (e.g.

Il24, Cd86), we provide a much extended list TBBPA-sensitive

genes (85 genes, Figure 4C) relevant for immunity. We

acknowledge that some of these genes may be shared by

multiple cell types, including non-immune cells, and we will

focus below on specific markers of immune cell types defined by

Alberti-Servera et al. (2017).

We found two hubs DE in all experimental conditions except

one: VAV1 et BTK. Together with EGFR, which gene is also DE,

they collectively participate to essential steps of immune cells

maturation and functions, both for innate and adaptative

responses (Turner and Billadeau, 2002; Strijbis et al., 2013).

As expected, the simultaneous genetic inactivation of both

Vav1 and Btk leads to severe defect of splenic B cells

population, which exhibit a very immature phenotype (Betzler

et al., 2022). The splenic micro-architecture and the formation of

efficient germinal centers are also affected (Betzler et al., 2022).

Such broad effects and strong phenotype illustrate well how

biological networks are fragile against targeted attacks at hubs.

We found alterations of general markers of myeloid cells:

Elane, Ctsg, Fcer1g, Ccr2, Mpo, Csf1r, Ctsh. The two genes Elane

and Ctsg both encode peptidases mediating together the

proteolytic cleavage of histone H3 and promote the monocyte

to macrophage differentiation (Cheung et al., 2021). Ccr2 is a

chemokine membrane receptor involved in PI3K and JAK-STAT

pathways, working together with Csf1r to mediate macrophage

recruitment and differentiation (Ito et al., 2008; Hume and

MacDonald, 2012). Finally, CTSH is a cathepsin BA, a

protease involved in innate immune system and MHC antigen

presentation.

In term of lymphoid lineage, two markers common to B

and T cells are dysregulated: Il7r, a membrane receptor

playing a critical role for V(D)J recombination, and DNTT,

a template-independent DNA polymerase essential for in B

and T-cells differentiation and for generating the pool of

antibody diversity. There also are four markers specific of

B cells population. The function of IGLL1 is connected to

signal transduction and the balance between proliferation and

differentiation of pre and pro B cells (Lu et al., 2019). The

factors CD79A and B are membrane bound immunoglobulin

associated proteins critical for signal transduction and the

function of B cell antigen receptor (Sakaguchi et al., 1988;

Hermanson et al., 1989). BLNK is an intracellular protein that

bridges B cells receptor-associated kinase activation with

downstream signaling pathways (Pappu et al., 1999). Its

function as a mediator of signal transduction is therefore

important for B-mediated immune response. It is

noteworthy that Blnk, Cd79a and Cd79b form a small

“chain” within the subnetwork, meaning that they directly

interact with each other and functionally cooperate. The fact

that they are dysregulated is predictive of a strong disruption

of membrane receptor signaling and intracellular signal

transduction by TBBPA in these cells. We found a single

maker of T cell population, ZAP70, which is a target of TCR

mediated phosphorylation and intracellular signal

transduction (Chan et al., 1992).

A potential for long term TBBPA effects ?

The experimental setup designed by Liang et al. is based on a

continuous exposure to 10 or 100 nM TBBPA, with culture

media supplemented with TBBPA renewed everyday. Given

the numerous direct and indirect effects on developing

embryoid body during extended incubation time (up to

28 days), it is difficult to infer any mechanistic insight on the

mode of action of TBBPA. The datasets rather reflect the

cascading effects of chronic exposure during a differentiation

processes in vitro. The relevance of TBBPA toxicity for a critical

developmental window vs. the whole lifespan depends of the cell

population being addressed.

The fact that TBBPA is a neurotoxicant has been questioned

because the blood brain barrier (BBB) is a potent molecular filter

protecting the central nervous system (Kacew and Hayes, 2020;

Zhou et al., 2020; Denuzière and Ghersi-Egea, 2022).

Nonetheless, the BBB is slightly leaky at two locations in the

central nervous system: the choroid plexus at hypocampus, and

the median eminence at the root of the hypothalamus. These

serve as sensors of the metabolic state (Goodman and

Hajihosseini, 2015) and as discussed above, TBBPA might

have a local action there, throughout lifespan. In addition,

various pathological contexts are linked to defects in BBB

integrity, such as neuroinflammation (Serna-Rodríguez et al.,

2022), epilepsy (Oby and Janigro, 2006) and traumatic injuries.

In these cases, TBBPA has the potential of broader effects that

may not be limited to the developmental window before the

establishment of the BBB.

In addition, immune cells are not safeguarded in a restricted

territory, and they are scattered in the body and traffic freely

through the vascular systems. It is therefore likely that immune

cells can be exposed to TBBPA during the whole lifespan. The

fact that BTK is a key mediator of innate immunity and

inflammation (Weber et al., 2017; Weber, 2021) strongly

suggest that TBBPA has the potential to lead to a strong

imbalance, which in turn could induce and/or aggravate

damages to the BBB integrity (Ní Chasaide and Lynch, 2020),

and permeate TBBPA in the central nervous system with more

direct effects. Of note, BTK inhibitor share a variety of clinical

applications, ranging from treatment of B cell malignancies, to

autoimmune diseases and COVID-19 (Zhu et al., 2021;

Malekinejad et al., 2022; Rezaei et al., 2022; Weis et al., 2022),

which raise the question on whether TBBPA may interfere with

these therapeutic actions. This will certainly require dedicated

experimental exploration and validation.
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Conclusion

In this work, we used system biology as a complement to

functional genomics to characterize the phenotypic effects of

TBBPA during the growth and differentiation of mESC. This

readily identified a number of integration hotspots within

molecular networks (hubs), as well as a collection of gene

products functionally interacting together and collectively

participating to a limited number of biological processes

(subnetworks). In agreement with previous work, we found

a clear alteration of markers related to neural functions.

Unexpectedly, we also found very strong repression of

markers related of the terminal differentiation of several

immune cells, suggesting a strong impact of TBBPA on this

essential system. This is bad news: not only TBBPA

impacts rthe homeostatic balance of several endocrine

pathways and neural development, but it also has the

potential to affect the main system safeguarding body

integrity against aggressors.
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