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Background: The non-negligible role of epigenetic modifications in cancer

development and tumor microenvironment (TME) has been demonstrated in

recent studies. Nonetheless, the potential regulatory role of N7-

methylguanosine (m7G) modification in shaping and impacting the TME

remains unclear.

Methods: A comprehensive analysis was performed to explore the m7G

modification patterns based on 24 potential m7G regulators in 817 lung

adenocarcinoma (LUAD) patients, and the TME landscape in distinct m7G

modification patterns were evaluated. The m7G score was established based

on principal component analysis (PCA) to quantify m7G modification patterns

and evaluate the TME cell infiltrating characteristics of individual tumors.

Further, correlation analyses of m7Gscore with response to chemotherapy

and immunotherapy were performed.

Results: We identified three distinct m7G modification patterns with the

biological pathway enrichment and TME cell infiltrating characteristics

corresponded to immune-desert, immune-inflamed and immune-excluded

phenotype, respectively. We further demonstrated the m7Gscore could

predict the TME infiltrating characteristics, tumor mutation burden (TMB),

response to immunotherapy and chemotherapy, as well as prognosis of

individual tumors. High m7Gscore was associated with increased component

of immune cell infiltration, low TMB and survival advantage, while lowm7Gscore

was linked to decreased immune cell infiltration and increased TMB.

Additionally, patients with lower m7Gscore demonstrated significant

therapeutic advantages.
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Conclusion: This study demonstrated the regulatory mechanisms of m7G

modification on TME formation and regulation of lung adenocarcinoma.

Identification of individual tumor m7G modification patterns will contribute

to the understanding of TME characterization and guiding more effective

immunotherapy strategies.

KEYWORDS

lung adenocarcinoma, tumor microenvironment, mutation burden, immunotherapy,
N7-methylguanosine (m7G)

Introduction

Lung cancer is currently the second most frequently

diagnosed cancer, and the leading cause of cancer death in the

world, accounting for 11.4% of all new cancer diagnoses and

causing 18.7% of cancer-related deaths (Sung et al., 2021). Lung

adenocarcinoma (LUAD) is the most common subtype,

accounting for approximately 40% of all lung cancers. Current

clinical treatments of LUAD include surgery, chemotherapy,

radiotherapy, immunotherapy and molecularly targeted

agents. Unfortunately, the poor prognosis of patients

highlights the urgent need for the development of novel and

more specific therapeutic targets for the treatment of LUAD.

Accumulated evidence suggests that aberrant epigenetic

modifications, especially RNA methylation, play critical roles

in cancer development and progression (Berdasco and Esteller,

2010).

N7-methylguanosine (m7G) is one of the most prevalent

modifications occurring in transfer RNA (tRNA) (Gauss et al.,

1979), ribosomal RNA (rRNA) (Motorin and Helm, 2011) and

messenger RNA (mRNA) 5′cap (Capping, 1976), that plays an

essential role in regulating RNA processing, exporting,

metabolism and function. Meanwhile, as a universally

conserved modified nucleosides, m7G was found widely

among eubacteria, eukaryotes (Juhling et al., 2009), and a few

archaea (Edmonds et al., 1991). Notably, recent researches have

begun to demonstrate the existence of m7G modification within

internal mRNAs in higher eukaryotes (Chu et al., 2018; Malbec

et al., 2019), and identified the distribution features of the

internal mRNA m7G using both methylated RNA

immunoprecipitation sequencing and chemical modification-

assisted BS-seq methods (Zhang et al., 2019). Accumulative

evidences have unraveled part of the regulatory mechanisms

of m7G modification within mRNA, for example, METTL1-

WDR4 complex was demonstrated to act as the m7G

methyltransferases for mRNAs and mediate their formation

(Malbec et al., 2019). Thus, m7G has become a novel

biological marker with critical regulatory roles with the rapid

advancement of sequencing technology. To further investigate

the m7G modification patterns in LUAD and elucidate their

impact on tumor progression, we retrieved 24 potential m7G

modification-related regulators by considering the previous

research (Tomikawa, 2018) and exploring the Molecular

Signatures Database (www.broadinstitute.org/gsea/msigdb/

annotate.jsp).

Tumor progression depends not just on the genetic and

epigenetic heterogeneity of tumor cells, but also on the tumor

microenvironment (TME), a complex environment containing

tumor cells, interstitial cells [e.g., fibroblasts, endothelial cells,

tumor-associated macrophages (TAMs)], distant recruited cells

[e.g., infiltrating immune cells and bone marrow-derived cells

(BMDCs)], and non-cellular elements (e.g., extracellular matrix,

cytokines, chemokines and new blood vessels) (Witz and Levy-

Nissenbaum, 2006). Complex interactions between tumor and

TME are critically involved in multiple malignant biological

behaviors such as stimulating cells proliferation and

angiogenesis, suppressing apoptosis, as well as inducing

immune tolerance (Mantovani et al., 2008). Growing evidence

reveals the pivotal role of TME in tumorigenesis, tumor

progression and immune evasion (Quail and Joyce, 2013). In

particular, TME significantly correlate with response to immune

checkpoint blockade (ICB) therapy, and the evaluation of TME

cell infiltrating characterization is crucial for the development of

novel immunotherapeutic strategies (Ali et al., 2016). Thus,

comprehensive analyses of the TME landscape facilitate the

identification of distinct tumor immunophenotypes, and

contribute to developing biomarkers of the response to

immunotherapy and discovering novel targets for

immunotherapy.

Compelling evidence has revealed the pivotal role of RNA

methylation in shaping and impacting the TME (especially

immune cells infiltrating) (Cao and Yan, 2020; Zhang et al.,

2020). The m6A RNA methylation has been reported mediating

the biological behavior of tumor cells and tumor-infiltrating

immune cells by regulating RNA splicing, translation,

initiation degradation and nuclear export (Pinello et al., 2018;

Han et al., 2019; Wang et al., 2019). And m1A methylation

modification has been confirmed to participate in the regulation

of TME complexity and diversity based on immune cell

infiltration (Gao et al., 2021; Liu et al., 2021). Chen et al.

(2022) reported that METTL1-mediated m7G modification

altered the immune characterization and dynamic interplay

between tumor cells and surrounding stromal compartment.

Galloway et al. (2021) reported that m7G cap

methyltransferase RNMT increased translational capacity

during T cell activation by coordinating mRNA processing.
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However, due to methodological limitations, these studies

have necessarily focused on one or several m7G regulators and

cell types, while the antitumor effect of RNA modification is a

highly coordinated process that regulated by numerous tumor

suppressor factors. Therefore, a comprehensive analysis of the

correlation between TME cell infiltration characterizations and

multiple m7G regulators will further elucidated the mechanisms

of m7G modification regulating the TME characterization and

provide novel support for more effective immunotherapy.

In this study, we extracted and integrated the genomic data of

817 LUAD samples from the public databases to

comprehensively analyze the m7G modification patterns, as

well as explored the TME cell infiltrating characteristics under

different patterns. We identified three m7Gmodification patterns

which corresponded to immune-desert, immune-inflamed and

immune-excluded phenotype, respectively, revealing that m7G

modification played an indispensable role in shaping the TME

characterization. Furthermore, a set of scoring system was

established to quantify the individual tumor m7G modification

patterns in LUAD patients. Improving the m7G modification

patterns by targeting m7G regulators or m7G-related genes may

alter TME cell-infiltrating characteristics, that may contribute to

the development of novel immunotherapy target or optimization

of combination therapy strategies.

Materials and methods

Data extraction and preprocessing

The flowchart of this study was shown in Figure 1. Gene

expression profiles and matching clinical annotation were

retrieved from The Cancer Genome Atlas (TCGA, https://

www.cancer.gov/) and Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/) database. Patients with

incomplete survival information were excluded from further

analyses. Finally, 817 LUAD patients were included from four

datasets (GSE50081, GSE37745, GSE30219, and TCGA-

LUAD) for further analyses in this study. For consistency,

Fragments Per Kilobase of transcript per Million

reads sequenced (FPKM) values (TCGA-RNA sequencing

data) were converted into transcripts per kilobase million

(TPM) values. Batch effects in this cohort were removed

using the ComBat algorithm (sva R package). The detailed

information for each dataset was summarized in

Supplementary Table S1. The somatic mutation profiles and

Copy Number Variation (CNV) data of LUAD samples

were obtained from TCGA database. These data were

analyzed using the R (version 4.1.1) and R Bioconductor

packages.

FIGURE 1
Overview of the study design and analytical flow. LUAD, lung adenocarcinoma; m7G, N7-methylguanosine; TME, tumor microenvironment;
DEG, differentially expressed gene; PCA, principal component analysis.
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Identification and unsupervised clustering
for 7-methylguanosine regulators

Twenty four regulators related to m7G modification were

identified from the published literature (Tomikawa, 2018) and

three Gene Set (M26066, M26714, M18244) from Gene Set

Enrichment Analysis (GSEA, http://www.gsea-msigdb.org/

gsea/index.jsp), including METTL1, WDR4, NSUN2, DCP2,

DCPS, NUDT3, NUDT4, NUDT10, NUDT11, NUDT16,

AGO2, CYFIP1, EIF3D, EIF4E, EIF4E2, EIF4E3, EIF4G3,

GEMIN5, LARP1, NCBP1, NCBP2, IFIT5, LSM1, and

SNUPN. To identify distinct m7G modification patterns and

categorize patients into subgroups, we performed unsupervised

consensus clustering analysis (K-Means algorithm, Euclidean

distance measure) using “ConsensusClusterPlus” R package

(Hartigan and Wong, 1979; Wilkerson and Hayes, 2010), and

conduct 1,000 repetitions to ensure the stability of classification.

Biological pathway enrichment analysis

To explore the difference in biological pathway between

distinct m7G modification patterns, we used “GSVA” R

package to conduct Gene set variation analysis (GSVA), which

is a non-parametric, unsupervised method for estimating

variation of gene set enrichment through the samples of an

expression dataset (Hänzelmann et al., 2013). The gene sets of

“c2. cp.kegg.v7.5.1,” “c5. go.bp.v7.5.1,” “c5. go.cc.v7.5.1,” and “c5.

go.mf.v7.5.1” were downloaded from GSEA database for GSVA

analysis, and adjusted p value less than 0.05 was considered

statistically significant.

Comprehensive analysis of the tumor
microenvironment characterization

The Estimation of Stromal and Immune cells in Malignant

Tumor tissues using Expression data (ESTIMATE) algorithm

(Yoshihara et al., 2013) was performed to infer the fraction of

stromal (defined as stromal score) and immune cells (defined as

immune score) in each LUAD samples using “ESTIMATE” R

package (v1.1.0, https://bioinformatics.mdanderson.org/

estimate/rpackage.html). The ESTIMATE score is the sum of

the immune score and the stromal score, and represents the

comprehensive proportion of both components in the TME.

Tumor purity was defined as the percentage of malignant cells in

a solid tumor sample. The single-sample gene-set enrichment

analysis (ssGSEA) algorithm (Barbie et al., 2009) was performed

to quantify the immune cell infiltration using “GSVA” R package.

The immune cell population were determined with reference to

the study of Zhang (Zhang et al., 2020). Specific marker gene sets

for each immune cell type (Supplementary Table S2) were

derived from the published literatures (Barbie et al., 2009;

Charoentong et al., 2017), which contained both innate

immune cells (eg, eosinophils, neutrophils, macrophages) and

adaptive immune cells (e.g., CD4+ T cell, CD8+ T cell, regulatory

T cell). The gene set of immune-checkpoints was referred to

Mariathasan et al. (2018).

N7-methylguanosine-related genes
identification and N7-methylguanosine
gene signature construction

Differentially expressed genes (DEGs) among distinct m7G

modification patterns were determined by empirical Bayesian

method using the “limma” R package (Smyth, 2004), and the

selection criteria was set as adjusted p value <0.001. The

intersections of distinct DEGs were defined as m7G-related

DEGs. Based on m7G-related DEGs, all patients were

classified into several subgroups for further analysis by

performing unsupervised consensus clustering analysis

(K-Means algorithm, Euclidean distance measure). This

procedure was repeated 1,000 times to ensure the stability of

classification. The “clusterProfiler” R package was used to

perform GO enrichment analysis for the m7G-related DEGs,

and significant enrichment pathways (adjust p value <0.05 and Q
value <0.05) were displayed in the barplot.

Furthermore, to quantify the m7G modification patterns of

individual tumors, a m7G gene signature (named as m7Gscore)

was conducted according to the following steps. Firstly,

univariate Cox regression analysis was performed to identified

significant (p < 0.001) prognosis m7G-related DEGs. Following

principal component analysis (PCA), both principal components

1 (PC1) and principal components 2 (PC2) were extracted to act

as the gene signature score. Finally, we applied a method similar

to gene expression grade index (GGI) (Sotiriou et al., 2006; Zhang

et al., 2020) to define the m7Gscore of each patient:

m7Gscore � ∑(PC1i + PC2i), where i is the expression of

m7G-related DEGs.

Prediction of immunotherapy and
chemotherapy response

We investigated the predictive capacity of m7Gscore in

responding immunotherapy and four common first-line

chemotherapy drugs (cisplatin, paclitaxel, docetaxel,

gemcitabine) (Ettinger et al., 2021) for LUAD. The clinical

response to immunotherapy was inferred by the Tumor

Immune Dysfunction and Exclusion (TIDE, http://tide.dfci.

harvard.edu/), an algorithm to simulate two primary

mechanisms of tumor immune evasion: the induction of

T cell dysfunction in tumors with high cytotoxic T

lymphocytes (CTLs) infiltration and the prevention of T cell

infiltration in tumors with low CTL (Jiang et al., 2018). Generally,
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a lower T cell dysfunction signature score predicts a better

response to immunotherapy. The 50% inhibiting

concentration (IC50) values of the four chemotherapy drugs

were predicted using the pRRophetic algorithm (Geeleher et al.,

2014) and the value was normally transformed.

Statistical analysis

The Student’s t test was used to compare the differences

between two groups, and one-way ANOVA and Kruskal-Wallis

tests were used to compare the differences among multiple

groups. Spearman correlation coefficient was used for

correlation analysis. Survival curves were constructed using

the Kaplan-Meier method, and the log-rank test was used to

identify the significance of differences. Univariate Cox regression

analysis was performed to estimate the hazard ratios (HR) and

95% confidence intervals (CI). Multivariate Cox regression

analysis was employed to identify independent prognostic

factors, and only patients with complete clinical information

were included in final multivariate analysis. The waterfall plots of

a mutational landscape in TCGA-LUAD cohort were generated

using “maftools” R package (Mayakonda et al., 2018). The copy

number variation (CNV) landscape of m7G regulators in 23 pairs

of chromosomes was visualized using “RCircos” R package

(Zhang et al., 2013). All statistical analyses were performed

using R software (version 4.1.1), and a p value < 0.05 was

considered statistically significant.

FIGURE 2
Landscape of genetic and expression variation of m7G regulators in lung adenocarcinoma (LUAD). (A) The mutation frequency of 24 m7G
regulators in 561 patients with LUAD from TCGA-LUAD cohort, and each column represents individual patients. The top barplot depicts tumor
mutation burden and mutation frequency in each regulator is given on the right. The right barplot depicts the proportion of each variant type. The
stacked barplot below depicts fraction of conversions in each sample. (B) The copy number variation (CNV) alteration frequency of m7G
regulators in TCGA-LUAD cohort. The height of each column represents the alteration frequency (Red dot: the amplification frequency; green dot:
the deletion frequency). (C) The location of CNV alteration of m7G regulators on 23 chromosomes using TCGA-LUAD cohort. (D) The expression of
m7G regulators between normal tissues and LUAD tissues (Red: tumor; blue: normal). The horizontal line indicates the median, the lower and upper
boundaries of the boxes the interquartile range, and the dots the outliers. Asterisks indicate statistical significance, *p < 0.05, **p < 0.01, ***p < 0.001.
(E) The interaction between m7G regulators in LUAD. Each regulator is represented as a circle, where the size of the circle represents the effect of
each regulator on the prognosis, and p values were calculated by Log-rank test (*p < 0.05, **p < 0.01, ***p < 0.001).
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Results

Analysis of genetic variation, expression
and prognostic value of m7G regulators in
lung adenocarcinoma

Genetic alteration is a critical factor influencing gene

expression and function, we firstly explored the incidence of

somatic mutations and copy number variations (CNV) of

24 m7G regulators in LUAD. As shown in Figure 2A, 80 of

561, (14.26%) samples experienced mutations of m7G regulators.

Among them, the mutation frequency of EIF4G3 was the highest

(3%), followed by LARP1 (2%), while nearly half of the regulators

did not show any mutations. The summary of CNV showed that

AGO2, NSUN2, METTL1, NCBP2 and NUDT3 were the top five

regulators with highest CNV frequency, and amplification

variations obviously higher than deletion (Figure 2B). The

location of m7G regulators CNV on chromosomes was

displayed in Figure 2C. To explore whether the genetic

variation affect the expression level of m7G regulators in

LUAD patients, the mRNA expression levels of these

regulators were further analyzed between normal and LUAD

samples, which indicated that most of these regulators were

dysregulated in LUAD samples (Figure 2D). Moreover,

univariate (Supplementary Figure S1A) and multivariate

(Supplementary Figure S1B) Cox regression analyses further

identified four independent poor prognostic factors (NUDT11,

NUDT4, LARP1 and NCBP2) and two protective factors

(EIF4E3, NUDT10) for LUAD patients. A complex regulatory

network depicted the regulatory relationship (Supplementary

Table S3) among m7G regulators and their prognostic

significance for LUAD patients (Figure 2E). We found that

most of regulators displayed a remarkably positive correlation

in expression, whereas a few negative correlations among

EIF4G3 and AGO2/NSUN2/WDR4/METTL1/LSM1,

NUDT16 and LSM1/METTL1. In brief, the genetic alteration

and expression level of m7G regulators are highly heterogeneous

and significantly correlated with prognosis, indicating that the

expressional alteration of m7G regulators played a crucial role in

the LUAD occurrence and development.

Identification of m7G methylation
modification patterns mediated by
24 regulators

Based on the expression of 24 m7G regulators, three distinct

m7G modification patterns were identified using unsupervised

consensus clustering with optimal clustering stability, including

230 patients in pattern A, 262 patients in pattern B and

325 patients in pattern C (Supplementary Figures S2A–F). We

named these patterns “m7Gcluster” A-C. Principal component

analysis (PCA) confirmed the significant distinction existed on

the m7G regulators expression among these m7G modification

patterns (Supplementary Figures S2G). The expression patterns

of m7G regulators and comparison of baseline clinicopathological

characteristics in the three m7Gclusters were shown by the

heatmap (Supplementary Figures S2H). m7Gcluster A

exhibited high expression of METTL1, WDR4, NSUN2,

DCPS, NUDT3, AGO2, EIF4E, LARP1, NCBP1, NCBP2,

EIF4G3, LSM1; m7Gcluster B was characterized by decreased

expression in almost regulators, except for METTL1, LSM1 and

SNUPN; m7Gcluster C exhibited high expression of DCP2,

NUDT16, CYFIP1, EIF4E3, and IFIT5.

Biological behaviors and the tumor
microenvironment characterization in
distinct m7G modification patterns

To identify the biological significance of distinct m7G

modification patterns, we performed GSVA enrichment

analysis (Supplementary Table S4). Specifically, m7Gcluster A

was enriched in common oncogenic signaling pathways (e.g.,

mTOR, Notch and NSCLC signaling pathway), while lacked

immune activation process (e.g., cytokine-cytokine receptor

interaction, antigen processing and presentation), leading to

the activation of abnormal biological characteristics including

cell cycle, basal transcription factors, spliceosome, etc.

(Figure 3A). On the contrary, in m7Gcluster B, various

oncogenic signaling pathways such as mTOR, Notch and

cancer associated pathways were strikingly suppressed, and

immune activation process were significantly activated

(Figures 3A,B). As expected, patients in m7Gcluster A showed

the worst prognosis, whereas patients in m7Gcluster B had the

best prognosis (Figure 3C). Significantly, m7Gcluster C was

significantly enriched in innate immune activation process

(such as Fc epsilon RI, Nod like receptor, Toll like receptor,

and Fc gamma R-mediated phagocytosis signaling pathways)

(Figure 3B), while patients with this m7G modification pattern

did not show a matching survival advantage. We speculated that

this result may be related to high-level enrichment of stromal

interactions pathways (such as ERBB, Wnt, TGF beta, Adherens

Junction, Focal Adhesion and Regulation of Actin Cytoskeleton

pathways), as well as B cell receptor (BCR) and T cell receptor

(TCR) which could upregulate B and T cells activation threshold.

To further explore the TME characterization, we compare

the difference in immune cell infiltration among distinct m7G

modification patterns (Supplementary Table S5; Figure 3D).

Increased adaptive (e.g., B cell, CD8+ T cell, T helper cell) and

innate (e.g., macrophage, NK cell, dendritic cell) immune cell

infiltration was exhibited in m7Gcluster B and C as compared to

m7Gcluster A. To our surprise, m7Gcluster C was remarkably

rich in innate immune cell infiltration including dendritic cell,

eosinophil, gamma delta T cell, macrophage, mast cell, natural

killer cell, and cell types associated with immune suppression
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FIGURE 3
Biological characteristics and tumor microenvironment characterization of each m7G modification pattern. (A,B) The heatmap visualizes the
enrichment of biological processes using GSVA analysis in distinct m7Gmodification patterns; (A)m7Gcluster A vs. m7Gcluster B; (B)m7Gcluster B vs.
m7Gcluster C. Activated pathways are colored red and inhibited pathways are colored blue. The LUAD cohorts are used as sample annotations. (C)
Survival analyses for the three m7G clusters based on 817 patients with LUAD from four cohorts (TCGA-LUAD, GSE30219, GSE50081,
GSE37745). (D) The abundance of 23 TME infiltrating cells in the three m7G clusters. The horizontal line indicates the median, the lower and upper
boundaries of the boxes the interquartile range, and the dots the outliers. Asterisks indicate statistical significance, *p < 0.05, **p < 0.01, ***p < 0.001.
(E–H) Violin plots show differences in the (E) immune score, (F) stromal score, (G) ESTIMATE score and (H) tumor purity between distinct m7G
clusters.
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FIGURE 4
Clinicopathologic characteristics, genomic profiling and tumor microenvironment characteristics among distinct m7G modification-related
genomic subtypes. (A) The heatmap visualizes the gene expression levels across the whole genome and comparison of baseline clinicopathological
characteristics in each sample. Blue represents low expression and red represent high expression. (B) Survival analyses for the three gene clusters
based on 817 patients with LUAD from four cohorts (TCGA-LUAD, GSE30219, GSE50081, GSE37745). (C) Difference in the m7G regulators
expression among three gene clusters. (D) Difference in the abundance of 23 TME infiltrating cells among three m7G gene clusters. (E) Difference in
the immune-checkpoint related gene expression among three gene clusters. The horizontal line indicates the median, the lower and upper
boundaries of the boxes the interquartile range, and the dots the outliers. Asterisks indicate statistical significance, *p < 0.05, **p < 0.01, ***p < 0.001.
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such as MDSC and regulatory T cell. Additionally, the

ESTIMATE algorithm revealed the lowest level of stromal and

immune cell infiltration in m7Gcluster A, while revealed the

highest level in m7Gcluster C (Figures 3E–H). Based on the above

results and previous research (Chen and Mellman, 2017), We

could summarize that the three m7G modification patterns

corresponded to three different immunophenotypes.

Strikingly, m7Gcluster A was identified as immune-desert

phenotype, characterized by suppressed immune-related

pathways and deficient immune cell infiltration. m7Gcluster B

was identified as immune-inflamed phenotype, characterized by

immune activation and high level of adaptive immune cells

infiltration. More importantly, we found that the TME

characterization of m7Gcluster C was consistent with the

immune-excluded phenotype described by Chen (Chen and

Mellman, 2017), which was characterized by enhanced tumor

stroma activity and abundant innate immune cells trapped in

surrounding tumor cell nests.

Identification of m7G modification-related
genomic subtypes and transcriptome
characterization

In order to further explore the potential biological

significance of distinct m7G modification patterns, we

distinguished 2071 m7G-related differentially expressed genes

(DEGs) (Supplementary Figure S3A, Supplementary Table S6).

Subsequently GO enrichment analysis of m7G-related DEGs

revealed significant enrichment of biological processes related

to m7G modification and immune system (Supplementary Table

S7, Supplementary Figure S3B), which confirmed that m7G

modification played a critical role in immune modulation of

the TME. To clarify the potential mechanisms, we further

performed unsupervised consensus clustering based on the

401 prognosis m7G-related DEGs (Supplementary Table S8)

and classify the entire LUAD cohort into three main

m7G-related genomic subtypes (named as m7G gene cluster

A-C), including 181 patients in cluster A, 268 patients in

cluster B and 368 patients in cluster C (Supplementary

Figures S4A–F). Signature genes expression level and baseline

clinicopathological characteristics for the different clusters were

displayed in Figure 4A. We found that m7G gene cluster A and B

showed opposite gene expression patterns, and patients with

alive status or clinical stage I-II were mainly concentrated in the

cluster B. Kaplan-Meier analysis indicated that gene cluster A

exhibited poorer prognosis, while gene cluster B exhibited

better prognosis, and gene cluster C exhibited intermediate

prognosis (Figure 4B). Moreover, prominent differences were

observed in the expression of m7G regulators among the three

gene clusters (Figure 4C), which demonstrated again that m7G

modification modulate the genomic phenotype of LUAD

patients.

To explore the relationship between m7G-related genomic

features and the tumor immune microenvironment, we

examined the immune cell infiltrating characteristics

and immune-checkpoint related gene (ICG) expression in

three gene clusters. As shown in Figures 4D,E, gene

cluster A was characterized by low levels of immune cell

infiltration and upregulated ICG expression. Conversely,

gene cluster B was characterized by high levels of immune

cell infiltration and downregulated ICB expression.

Remarkably, gene cluster C exhibited high immune cell

infiltration level, while high immune checkpoint related

mRNAs expression, which might be relevant to the poor

prognosis.

Construction and evaluation of m7Gscore,
one m7G modification quantification
system

Regrettably, the above conclusions were generated based

on group-level analyses, the characteristics of m7G

modification in individual patients were limited.

Considering the heterogeneity of m7G modification, we

constructed a scoring system (named as m7Gscore) based

on prognosis m7G-related DEGs to accurately quantify and

predict the individual tumors m7G modification pattern

(Supplementary Table S9). Patients were classified into high

m7Gscore group (n = 348) and low m7Gscore group (n = 469)

using the optimal cut-off value 2.984 identified by the

“surv_cutpoint” function from the “survminer” R package.

An alluvial diagram was generated to depict the distribution

transitions of individual patients among the m7Gclusters, m7G

gene clusters and m7Gscore groups (Figure 5A).

Nonparametric Kruskal-Wallis (K-W) test was performed

to reveal the difference in m7Gscore among distinct

m7Gclusters and m7G gene clusters. We noticed that

m7Gcluster A presented the lowest median score, whereas

m7Gcluster C presented the highest (Figure 5B), which

suggested that low m7Gscore might be closely associated

with deficient immune cell infiltration while high m7Gscore

might be linked to stromal activation. Additionally, m7G gene

cluster B had significantly higher m7Gscore than the other two

clusters, while m7G gene cluster A showed the lowest median

score (Figure 5C). Moreover, K-M analysis indicated that high

m7Gscore conferred a significant survival benefit (p < 0.001,

Figure 5D). Subsequent subgroup analyses (Supplementary

Figures S5E–J) showed that the prognostic value of m7Gscore

remained statistically significant for each subgroup based on

gender (male, female), age (≤65, >65), and clinical stage (I-II,

III-IV). m7Gscore also showed the prognostic value in

different datasets (Supplementary Figures S5A–D).

Additionally, As shown in Supplementary Figures S5H–L,

patients with high m7Gscore exhibited a significantly higher
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percentage of alive status (68%), and patients who died had

remarkably lower m7Gscore (p < 0.001). Univariate

(Figure 5E) and multivariate (Figure 5F) Cox analyses

confirmed m7Gscore as a robust and independent

prognostic biomarker for evaluating patient outcomes [HR:

0.495 (0.393–0.623), p < 0.001].

Furthermore, we assessed the relationship between

m7Gscore and the TME cell infiltration to explore whether

m7G modification quantification system can reflect the

TME heterogeneity. The ESTIMATE algorithm indicated

that high m7Gscores were significantly associated with

enhanced levels of immune and stromal cell infiltration as

well as low tumor purity (p < 0.001; Figures 6A–D).

Correlation analysis of immune cell infiltration and

m7Gscore (Figure 6E) indicated that m7Gscore was

significantly positively correlated with most types of innate

immune cells (e.g., eosinophil, dendritic cell, mast cell) and

B cell, whereas negatively correlated with active CD4 T cell and

CD56dim NK cell. In addition, m7Gscore was negatively

correlated with immunosuppression-related ICGs (including

IDO1, PDCD1, LAG3, TNFRSF9), whereas positively

correlated with CD28−CD80/86 (Figure 6F) which

provides co-stimulatory signals for T-cell activation

(Esensten et al., 2016; Ma et al., 2021a). Considering the

above results, high m7Gscore indicated increased immune

and stromal cell infiltration, while low m7Gscore was

correlated with decreased immune cell infiltration and

great immunosuppression. m7Gscore could reflect the

m7G modification pattern of individual LUAD patients to

further evaluate the TME characterization.

FIGURE 5
Construction of the m7G signature and correlation of m7Gscore with clinicopathological features. (A) Alluvial diagram shows the changes of
m7G clusters, gene clusters, m7Gscore and survival state. (B) Differences in m7Gscore among three m7G clusters (p < 0.001, Kruskal-Wallis test). (C)
Differences in m6Ascore among three gene clusters (p < 0.001, Kruskal-Wallis test). (D) Survival analyses for low (469 cases) and high (348 cases)
m7Gscore groups in the four cohorts using Kaplan-Meier curves (p < 0.0001, Log-rank test). (E,F) Univariate (E) and multivariate (F) analyses for
m7Gscore using the Cox regression model.
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FIGURE 6
Correlations between m7G signature and the tumor microenvironment characteristics. (A–D) Violin plots show differences in the (A) immune
score, (B) stromal score, (C) estimate score and (D) tumor purity between low and high m7Gscore groups. (E) Correlations between m7Gscore and
the abundance of 23 TME infiltrating cells. (F)Correlations betweenm7Gscore and immune-checkpoint related gene expression. Positive correlation
was marked with red and negative correlation with blue. The circle color represents Spearman coefficient value, the size of circle is inversely
proportional to the p-value, and the asterisk stands for p < 0.05.
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Analysis of tumor somatic mutation in
patients with different m7Gscores

Accumulated evidence demonstrated that tumor mutation

burden (TMB) is an emerging biomarker of response to immune

checkpoint blockade (ICB) therapy (Yarchoan et al., 2017; Ready

et al., 2019), we analyzed the landscape of tumor somatic

mutation among patients with different m7Gscore to indirectly

reflect the immunotherapeutic outcomes in TCGA-LUAD

cohort. The waterfall plots suggested that low m7Gscore group

exhibited more extensive tumor somatic mutation than the high

m7Gscore group, with the rate of the 20th most significant

mutated gene 22% versus 9% (Figures 7A,B). As shown in

Figures 7C,D, the m7Gscore exhibited a significant negative

correlation to TMB. Subsequent Kaplan-Meier survival

analysis indicated that patients with a high TMB level had

better OS than those with a low TMB level in low m7Gscore

group (Figure 7E). The above results demonstrated that

m7Gscore could effectively reflect the TMB level of LUAD,

which indirectly indicated the values of distinct m7G

modification patterns in predicting ICB therapy outcomes.

Prediction of immunotherapy and
chemotherapy response

Based on the TIDE (Tumor Immune Dysfunction and

Exclusion) algorithm, patients in TCGA-LUAD cohort were

classified into insensitive and sensitive groups. As shown in

Figure 8A, m7Gscores were significantly higher in the

insensitive group than in the sensitive group (p < 0.001).

Similarly, m7Gscores were significantly positively correlated

with T cell dysfunction scores in GSE30219 (R = 0.39, p <
0.001; Figure 8B) and GSE37745 (R = 0.40, p < 0.001;

FIGURE 7
The correlation of m7Gscore and the tumor somatic mutation. (A,B) The waterfall plot of tumor somatic mutation in LUAD patients with low
m7Gscore (A) and high m7Gscore (B), each column represents individual patients. The top barplot depicts tumor mutation burden (TMB) and
mutation frequency in each gene is given on the right. The right barplot depicts the proportion of each variant type. The stacked barplot below
depicts fraction of conversions in each sample. (C,D) The relationship between the m7Gscore and TMB. (E) The Kaplan–Meier curves of the OS
of subgroup patients stratified by the m7Gscore and TMB.
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Figure 8C) cohorts, which suggested that patients with higher

m7Gscores had poor immunotherapy response rates. Moreover,

there were marked increases in the IC50 to cisplatin (Figure 8D,

p < 0.001), paclitaxel (Figure 8E, p < 0.001), docetaxel (Figure 8F,

p < 0.001) and gemcitabine (Figure 8G, p < 0.01) in high

m7Gscore group, which indicated the poor efficacy to these

drugs in patients with high m7Gscores compared to patients

with low m7Gscores. Together, m7Gscore could effectively

predict the response to chemotherapy and immunotherapy for

LUAD patients.

Discussion

With the rapid advancement of deep sequencing and large-

scale profiling (Enroth et al., 2019; El Allali et al., 2021),

accumulating evidence has demonstrated that m7G

modification is critical for maintaining the physiological

conditions of cells and organisms (Pei and Shuman, 2002;

Lindstrom et al., 2003; Haag et al., 2015), while its aberrant

distribution is closely related to tumor development and

progression (Ma et al., 2021b). Moreover, recent studies have

also confirmed that m7Gmay affect the distribution and function

of immune cells (Zhang et al., 2021; Gao et al., 2022), such as

T cells (Galloway et al., 2021). As most studies have focused on

single regulator or single TME cell type, a comprehensive

recognition of TME infiltration characterizations mediated by

multiple m7G regulators is still lacking. Exploring the role of

different m7G modification patterns in the TME cell infiltration

will help to enhance our understanding of the TME antitumor

immune response and guide novel immunotherapy strategies.

In this study, three m7G methylation modification patterns

were identified based on 24 potential m7G regulators, which had

significantly distinct TME cell infiltration characterizations. The

m7G cluster A was characterized by suppressed immune-related

functions and deficient immune cells infiltration, consistent with

immune-desert phenotype; cluster B was characterized by

immune activation and high level of adaptive immune cells

infiltration, consistent with immune-inflamed phenotype;

cluster C was characterized by enhanced tumor stroma

activity and abundant innate immune cells, consistent with

the immune-excluded phenotype. As mentioned in previous

literatures (Gajewski et al., 2013; Joyce and Fearon, 2015;

Chen and Mellman, 2017), the immune-inflamed tumors can

demonstrate infiltration of large number of immune cells,

especially T, B and monocytic cells, in the tumor parenchyma;

the immune-excluded tumors are also characterized by the

presence of abundant immune cells, but the immune cells are

FIGURE 8
The correlation of m7Gscore and the therapeutic response. (A) The difference in m7Gscore between sensitive and insensitive groups divided by
TIDE algorithm in TCGA-LUAD cohort. (B,C) The correlation of m7Gscore and the T cell dysfunction signature in GSE30219 (B) and GSE37745 (C)
cohorts. (D–G) Differences in the IC50 of cisplatin (D), paclitaxel (E), docetaxel (F), gemcitabine (G) between low and high m7Gscore groups. IC50,
50% inhibitory concentration, which negatively correlated with drug responsiveness.
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retained in the stroma surrounding nests of tumor cells rather

than penetrate the parenchyma; the immune-desert tumors are

associated with the immunological ignorance and paucity of

immune cells in either the tumor parenchyma or the stroma.

Significant enrichment of stromal interactions pathways in m7G

cluster C and the characteristics of TME cell infiltration in each

cluster corroborate the accuracy of our immunophenotypic

classifications for distinct m7G modification patterns. Not

surprisingly, m7G cluster C exhibits activated innate immunity

but no matching survival advantage.

Furthermore, differentially expressed genes among the three

modification patterns (named as m7G-related DEGs) were

identified and demonstrated to be significantly associated with

immune-related biological pathways. Three m7G-related

genomic subtypes were identified based on 401 prognostic

m7G-related DEGs, which were also significantly related to

immune cell infiltration and activation. This further

demonstrated the crucial role of m7G modification in

modulating the TME landscape. Given the individual

heterogeneity of m7G modification, it was critical to quantify

m7G modification patterns in individual tumors. Therefore, we

developed a novel scoring system (m7Gscore) to assess the m7G

modification pattern of individual LUAD patients. The patients

with immune-excluded and immune-inflamed tumor presented

a higher m7Gscore, while the patients with immune-desert tumor

presented a lower m7Gscore. Also, high m7Gscores were

significantly associated with enhanced levels of immune and

stromal cells infiltration. These results suggested m7Gscore was a

reliable tool for assessing individual tumor m7G modification

patterns, which could further indicate the immune phenotype in

tumor environment. Additionally, m7Gscore was proved to be an

independent prognostic factor, with lower m7Gscores indicating

poorer prognosis.

Our results demonstrated the significantly negative

correlations of m7Gscore with the expression of IDO1,

PDCD1, and LAG3, which have been considered as important

targets for cancer immunotherapy (Cyriac and Gandhi, 2018;

Ruffo et al., 2019; Tang et al., 2021). There was also a markedly

negative correlation between m7Gscore and tumor mutation

burden (TMB). Growing evidence demonstrated that patients

with high TMB had a greater clinical response to anti-PD-1/PD-

L1 immunotherapy (Yarchoan et al., 2017; Ready et al., 2019).

The Tumor Immune Dysfunction and Exclusion algorithm

further showed that higher m7Gscore was associated with

T cells dysfunction and exclusion, which directly reflect the

efficacy to T cell-based immunotherapy (Jiang et al., 2018).

Thus, the above results fully demonstrated that individual

m7G modification pattern could be an effective indicator that

estimate the responsiveness to Immune checkpoint blockade

(ICB) therapy. Many reports have revealed the interaction

between chemotherapy and immunotherapy, and the

differences in immune and stromal cell infiltration in TME

jointly affect resistance to chemotherapy (Wang et al., 2016;

Zhu et al., 2021). Fu et al. (2018) have reported the immunotypes

could predict the efficacy of patients to adjuvant chemotherapy.

In this study, patients with higher m7Gscore exhibited poor

efficacy to several first-line chemotherapy drugs (including

cisplatin, paclitaxel, docetaxel and gemcitabine) for LUAD,

and this might due to lower T cell infiltration and higher

stromal cell infiltration.

In a word, m7Gscore can act as an effective tool to evaluate

the individual m7G modification pattern and the corresponding

immune phenotypes for LUAD patients, further to guide

treatment decisions in clinical practice. m7Gscore can also be

a potential prognostic biomarker for predicting survival. More

importantly, m7Gscore may guide the clinicians in predicting the

clinical response to ICB therapy and the efficacy of adjuvant

chemotherapy. Modifying the m7G modification patterns by

targeting m7G regulators or m7G-related genes may improve

unfavorable TME cell infiltrating characterization, that may

contribute to the development of novel immunotherapy target

or optimization of combination therapy strategies. These

findings offered new insights for identifying distinct immune

phenotypes and developing individualized cancer

immunotherapy.

Despite the important strengths of this study, several

limitations should be noted. First, due to the limited

clinicopathological parameters in public datasets, there would

be potential bias when the m7Gscore acted as a prognosis

biomarker. Second, we did not evaluate the location of

immune and stromal cell infiltration in the TME. Thirdly, we

could not directly analysis the correlation between m7Gscore and

LUAD patients’ response to therapy due to the lack of treatment-

related information. Finally, our findings were carried out based

on a bioinformatics analysis, and further experimental validation

is warranted.

Conclusion

In conclusion, this study revealed the non-negligible role of

m7G modification in TME heterogeneity and complexity.

Identifying m7G modification patterns helps predict clinical

response to ICB therapy and efficacy of adjuvant

chemotherapy. We believe that the assessment of

individual tumor m7G modification pattern will contribute to

a more comprehensive understanding of TME characterization

and facilitate the development of novel immunotherapy

strategies.
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